
Control and Cybernetics 
vol. 26 (1997) No. 3 

Evolutionary computation: recent developments and open 
issues 

by 

K e n n e t h  D e  J o n g  

Computer Science Department 
George Mason University 

Fairfax, VA 22030 
kdejong@gmu.edu 

A b s t r a c t :  The field of evolutionary computation has experi-
enced a significant growth of interest and activity in the past few 
years. This has resulted in fresh perspectives and a flurry of new 
results in both theory and applications. This paper will summarize 
this recent progress and characterize some of the remaining unre-
solved research issues. 

1. Introduction
The field of evolutionary computation (EC) is in a stage of tremendous growth 
as witnessed by the increasing number of conferences, workshops, and papers in 
the area as well as the emergence of a central journal for the field. Until recently, 
the field could be characterized as a fairly amorphous collection of independent 
research groups each representing a particular approach to evolutionary com-
putation with little interaction in the form of migration and cross-fertilization 
of ideas. 

However, in the past few years the evolutionary computation landscape has 
been rapidly changing. There has been a significant increase in the levels of 
interaction between various research groups. New arrivals to the field have 
resulted in the injection of new ideas which challenge old tenets. Emerging out 
of all of this activity are the beginnings of some structure, some common themes, 
and some agreement on important open issues. We attempt to summarize these 
emergent properties in the remainder of the paper. 

2. The historical roots of EC
A few years ago the best way to describe the EC field was in terms of its 
historical evolution. There have been three well-defined paradigms which have 
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served as the basis for much of the activity in the field: genetic algorithms 
(GAs), evolution strategies (ESs), and evolutionary programming (EP). Each 
of these paradigms has acquired an admittedly oversimplified characterization 
of its basic tenets which, in spite of its shortcomings, serves as a useful starting 
point for the subsequent discussions of issues and open questions. 

G A s  owe their name to an early emphasis on representing and manipulating 
individuals in terms of their genetic makeup rather than using a phenotypic 
representation. Much of the early work used a universal internal representa-
tion involving fixed-length binary strings with "genetic" operators like mutation 
and crossover defined to operate in a domain-independent fashion at this level 
without any knowledge of the phenotypic interpretation of the strings (Hol-
land, 1975; De Jong, 1975). This universality was also reflected in a strong 
emphasis on the design of robust adaptive systems with a broad range of ap-
plications. Equally important was the early emphasis on theoretical analysis 
resulting in "the schema theorem" and characterizations of the role and impor-
tance of crossover. 

B y  contrast, ESs were developed with a strong focus on building systems ca-
pable of solving difficult real-valued parameter optimization problems (Rechen-
berg, 1973; Schwefel, 1981). The "natural" representation was a vector of real-
valued "genes" which were manipulated primarily by mutation operators de-
signed to perturb the real-valued parameters in useful ways. Analysis played a 
strong role here as well with initial theorems on convergence to global optima, 
rates of convergence, and other E S  properties such as the "1/5" rule. 

Universality was also a central theme of the early work on EP. The direction 
this took was the idea of representing individuals phenotypically as finite state 
machines capable of responding to environmental stimuli, and developing oper-
ators (primarily mutation) for effecting structural and behavioral change over 
time (Fogel et al., 1966). These ideas were then applied to a broad range of 
problems including prediction problems, optimization, and machine learning. 

These early characterizations, however, are no longer all that useful in de-
scribing the enormous variety of current activities on the field. G A  practitioners 
arc seldom constrained to universal fixed-length binary implementations. E S  
practitioners have incorporated recombination operators into their systems. E P  
is used for more than just the evolution of finite state machines. Entire new sub-
areas such as genetic programming (Koza, 1992) have developed. The literature 
is filled with provocative new terms and ideas such as "messy GAs" (Goldberg, 
1991). 

As a consequence, the field today is better described in terms of fundamen-
tal issues, promising new developments, and open research questions. In the 
remainder of the paper, we present just such a view of the field. 
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3. Fundamental EC issues

In this section we discuss the basic issues common to all forms of evolutionary 
computation. 

3.1. Characteristics of fitness landscapes 

The majority of the EC work to date has been with problem domains in which 
the fitness landscape is time-invariant and the fitness of individuals can be 
computed independently from other members of the current population. This is 
a direct result of the pervasiveness of optimization problems and the usefulness 
of evolutionary algorithms (EAs) in solving them. This has led to considerable 
insight into the behavior of EAs on such surfaces including such notions as 
"GA-easy", "GA-hard", and "deception". 

However, most of these insights evaporate if we attack problem classes for 
which the fitness landscapes violate one or more of our traditional assump-
tions. There are at least three important problem classes for which results are 
badly needed: autonomously changing landscapes, the evolution of cooperative 
behavior, and ecological problems. 

Problems involving autonomously changing landscapes frequently arise when 
fitness is defined in terms of one or more autonomous agents in the environment 
whose behavior can change independently of any of the search activity of an EA. 
Typical examples are mechanical devices which age, breakdown, etc, or changes 
in weather patterns which dramatically change the "fitness" of a particular ship 
on the open sea. Ifwe apply typical optimization-oriented EAs to such problems, 
the strong pressures to converge generally result in a loss of the population 
diversity needed to respond to such changes. We currently have very little 
insight regarding how to design EAs for such problems. 

Rule learning systems (Holland, 1986; Grefenstette, 1990), iterated pris-
oner's dilemma problems (Axelrod, 1987; Fogel, 1995), and immune system 
models (Forrest et al., 1993) are examples of problems in which fitness is a func-
tion of how well an individual complements other individuals in the population. 
Rather than searching for a single optimal individual, the goal is to evolve groups 
of individuals (generalists, specialists, etc.) which collectively solve a particular 
problem. 

If we apply typical optimization-oriented EAs to such problems, the strong 
pressures towards homogeneity in the population make it difficult to maintain 
different but cooperative individuals. Additional mechanisms for rewarding 
groups of individuals seem to be required (e.g., bucket brigades, profit shar-
ing), but we have little in the way of theory to guide us. 

Ecology-oriented problems present a third and perhaps most difficult class 
of landscapes in which the shape of the fitness landscape is directly affected 
by the evolutionary process itself. Perhaps a better way to think of this is in 
co-evolutionary terms in which multiple interacting evolutionary processes are 
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at work modeling the availability of resources (Holland, 1992), prey-predator 
relationships, host-parasite interactions (Hillis, 1990), and so on. Very few of 
our insights from the optimization world appear to carry over here. 

The interest in using EAs to solve problems like these which violate tradi-
tional assumptions continues to grow. We already have examples of EAs which 
are powerful function optimizers, but which are completely ineffective for evolv-
ing cooperative behavior or tracking a changing landscape. Modified EAs are 
now being developed for these new problem classes, but are also much less useful 
as traditional optimizers. These developments have created both the need and 
the opportunity to gain a deeper understanding of the behavior of EAs. 

3.2. Choice of representation 

One of the most critical decisions made in applying evolutionary techniques to 
a particular class of problems is the specification of the space to be explored 
by an EA. This is accomplished by defining a mapping between points in the 
problem space and points in an internal representation space. 

The EC community differs widely on opinions and strategies for select-
ing appropriate representations, ranging from universal binary encodings to 
problem-specific encodings for TSP problems and real-valued parameter opti-
mization problems. The tradeoffs are fairly obvious in that universal encodings 
have a much broader range of applicability, but are frequently outperformed by 
problem-specific representations which require extra effort to implement and ex-
ploit additional knowledge about a particular problem class (e.g., Michalewicz, 
1994). 

Although there are strong historical associations between GAs and binary 
string representations, between ESs and vectors of real numbers, and between 
E P  and finite state machines, it is now quite common to use representations 
other than the traditional ones in order to effectively evolve more complex ob-
jects such as symbolic rules, Lisp code, or neural networks. Claiming one E A  
approach is better than another on a particular class of problems is not mean-
ingful any more without motivating and specifying ( among other things) the 
representations chosen. 

What is needed, but has been difficult to obtain, are theoretical results on 
representation theory. Holland's schema analysis (1975) and Radcliffe's (1991) 
generalization to formae are examples of how theory can help guide represen-
tation choices. Similarly "fitness correlation" (Manderick et al., 1991) and 
operator-oriented views of internal fitness landscapes (Jones, 1995) emphasize 
the tightly coupled interaction between choosing a representation for the fitness 
landscape and the operators used to explore it. Clearly, much more work is 
required if effective representations are to be easily selectable. 

• •
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3.3. Modeling the dynamics of population evolution 

At a high level of abstraction we think of evolutionary processes in terms of 
the ability of more fit individuals to have a stronger influence on the future 
makeup of the population by surviving longer and by producing more offspring 
which continue to assert influence after the parents have disappeared. How these 
notions are turned into computational models varies quite significantly within 
the EC community. This variance hinges on several important design decisions 
discussed briefly in the following subsections. 

3.3.1. Choosing population sizes 

Most current EAs assume a constant population size N which is specified as a 
user-controlled input parameter. So called "steady state" EAs rigidly enforce 
this limit in the sense that each time an offspring is produced resulting in N + l
individuals, a selection process is invoked to reduce the population size back to 
N. B y  contrast, "generational" EAs permit more elasticity in the population
size by allowing K   l offspring to be produced before a selection process is
invoked to delete K individuals.

Although we understand that the size of an EA's population can affect its 
ability to solve problems, we have only the beginnings of a theory strong enough 
to provide a priori guidance in choosing an appropriate fixed size (e.g., Goldberg, 
1992), not much theory regarding appropriate levels of elasticity (K), and even 
less understanding as to the merits of dynamically adjusting the population size. 

3.3.2. Deletion strategies 

The processes used to delete individuals varies significantly from one E A  to 
another and includes strategies such as uniform random deletion, deletion of 
the K worst, and inverse fitness-proportional deletion. It is clear that "elitist" 
deletion strategies which are too strongly biased towards removing the worst 
can lead to premature loss of diversity and suboptimal solutions. It is equally 
clear that too little fitness bias results in unfocused and meandering search. 
Finding a proper balance is important but difficult to determine a priori with 
current theory. 

3.3.3. Parental selection 

Similar issues arise with respect to choosing which parents will produce offspring. 
Biasing the selection too strongly towards the best individuals results in too 
narrow a search focus, while too little bias produces a lack of needed focus. 
Current methods include uniform random selection, rank-proportional selection, 
and fitness-proportional selection. 

We understand these selection strategies in isolation quite well (Back, 1995; 
Blickle and Thiele, 1995). However, it is clear that parental selection and indi-
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vidual deletion strategies must complement each other in terms of the overall 
effect they have on the exploration/exploitation balance. We have some the-
ory here for particular cases such as Holland's "optimal allocation of trials" 
characterization of traditional GAs (Holland, 1975), and the "1/5" rule for ESs 
(Rechenberg, 1973), but much stronger results are needed. 

3.3.4. Reproduction and inheritance 

In addition to these selection processes, the mechanisms used for reproduction 
also affect the balance between exploration and exploitation. At one extreme 
one can imagine a system in which offspring are exact replicas of parents ( asexual 
reproduction with no mutation) resulting in rapid growth in the proportions of 
the best individuals in the population, but with no exploration beyond the initial 
population members. At the other extreme, one can imagine a system in which 
the offspring have little resemblance to their parents, maximizing exploration 
at the cost of losing the useful parental characteristics. 

The EC community has focused primarily on two reproductive mechanisms 
which fall in between these two extremes: 1-parent reproduction with mutation 
and 2-parent reproduction with recombination and mutation. Historically, the 
E P  and ES communities have emphasized the former while the GA community 
has emphasized the latter. 

However, these traditional views are breaking down rapidly. The ES  com-
munity has found recombination to be useful, particularly in evolving adaptive 
mutation rates (Back et al., 1991). Various members of the GA community have 
reported improved results by not using recombination (de Garis, 1990), by not 
using mutation (Koza, 1992), or by adding new and more powerful mutation 
operators (Eshelman and Schaffer, 1991). 

As before, we have the tantalizing beginnings of a theory to help understand 
and guide the use and further development of reproductive mechanisms. Be-
ginning with Holland's initial work (1975), the GA community has analyzed in 
considerable detail the role of crossover and mutation (see, for example, Gold-
berg, 1989b, Vose and Liepins, 1991, Booker, 1992, De Jong and Spears, 1992, 
or Spears, 1992). The ES community has developed theoretical models for op-
timal mutation rates with respect to convergence and convergence rates in the 
context of function optimization (Schwefel, 1995). 

However, the rapid growth of the field is pressing these theories hard with 
"anomalous results" (Forrest and Mitchell, 1992) and new directions not covered 
by current theory. One of the important issues not well understood is the benefit 
of adaptive reproductive operators. There are now a variety of empirical studies 
which show the effectiveness of adaptive mutation rates (e.g., Fogarty, 1989, 
Back et al., 1991, or Fogel and Atmar, 1992) as well as adaptive recombination 
mechanisms (e.g., Schaffer and Morishima, 1987, or Davis, 1989). 
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4. New and important directions for EC research
In the previous section, we summarized the current state of the art with respect 
to fundamental EC issues and indicated where additional research on these 
issues is required. In this section, we discuss some more speculative areas which 
are likely to play an important role in the near future. 

4.1. Representation and morphogenesis 

In the earlier section on representation issues we discussed the tradeoffs between 
problem-independent and problem-specific representations. Closely related to 
this is the biological distinction between the more universal genotypic descrip-
tions of individuals in the form of plans for generating them and the phenotypic 
descriptions of the actual generated structures. 

Historically, much of the EA work has involved the evolution of fairly simple 
structures that could be represented in phenotypic form or be easily mapped 
onto simple genotypic representations. However, as we attempt to evolve in-
creasingly more complex structures (e.g., Lisp code, Koza, 1992, or neural net-
works, de Garis, 1990), it becomes increasingly difficult to define forms of mu-
tation and recombination which are capable of producing structurally sound 
and interesting new individuals. If we look to nature for inspiration, we don't 
see many evolutionary operators at the phenotype level (e.g., swapping arms 
and legs!). Rather, changes occur at the genotype level and the effects of those 
changes are instantiated via growth and maturation. If we hope to evolve such 
complexity, we may need to adopt more universal encodings coupled with a 
process of morphogenesis (e.g., see Dawkins, 1987, or Harp et al., 1989). 

4.2. Inclusion of Lamarckian properties 

Although EAs may be inspired by biological systems, many interesting proper-
ties arise when we include features not available to those systems. One common 
example is the inclusion of Lamarckian operators, which allow the inheritance 
of characteristics acquired during the lifetime of an individual. 

In the EC world this is beginning to show up in the form of hybrid systems 
in which individuals themselves go through a learning and/or adaptation phase 
as part of their fitness evaluation, and the results of that adaptation are passed 
on to their offspring (e.g., see Grefenstette, 1991, or Turney et al., 1997). 

Although initial empirical results are encouraging, we presently have no good 
way of analyzing such systems at a more abstract level. 

4.3. Non-random mating and speciation 

Currently, most EAs incorporate a random mating scheme in which the species 
or sex of an individual is not relevant. One problem with this, as with real bi-
ological systems, is that the offspring of parents from two species are often not 
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viable. As we move to more complex systems which attempt to evolve cooper-
ating behavior and which may have more than one evolutionary process active 
simultaneously, the roles of non-random mating and speciation will become an 
important issue. 

Some solutions to these problems have been suggested, such as crowding 
(De Jong, 1975), sharing (Goldberg, 1987), and tagging (Booker, 1982). Un-
fortunately, these solutions tend to make fairly strong assumptions, such as the 
number of species and/or the distribution of niches in the environment. For 
some problems these assumptions are reasonable. However, in many cases such 
properties are not known a priori and must evolve as well (Spears, 1994). 

4.4. Decentralized, highly parallel models 

Because of the inherent natural parallelism within an EA, much recent work 
has concentrated on the implementation of EAs on both fine and coarse grained 
parallel machines. Clearly, such implementations hold promise of significant 
decreases in the execution time of EAs. 

More interestingly, though, for the topic of this paper, are the evolutionary 
effects that can be naturally implemented with parallel machines, namely, spe-
ciation, nicheing, and punctuated equilibria. For example, non-random mating 
may be easily implemented by enforcing parents to be neighbors with respect to 
the topology of the parallel architecture. Species emerge as local neighborhoods 
within that topology. Subpopulations in equilibrium are "punctuated" by easily 
implemented migration patterns from neighboring subpopulations. 

However, each such change to an EA significantly changes its semantics and 
the resulting behavior (De Jong and Sarma, 1995). Our admittedly weak theory 
about traditional EAs is currently of little help in understanding these parallel 
implementations. 

4.5. Self-adapting systems 

Another theme that has been arising with increasing frequency is the inclusion of 
self-adapting mechanisms with EAs to control parameters involving the internal 
representation, mutation, recombination, and population size. This trend is due 
in part to the absence of strong predictive theories which specify such things 
a priori. It is also a reflection of the fact that EAs are being applied to more 
complex and time-varying fitness landscapes. 

Some important issues that need to be solved involve the self-adaptation 
mechanism itself. For example, do we use an E A  or some other mechanism? 
If we use an EA, how do we use fitness as a performance feedback for self-
adaptation? 

On a positive note, the EC community has already empirically illustrated the 
viability of self-adaptation of mutation and recombination as noted earlier, as 



Evolutionary computation: recent developments and open issues 571 

well as adaptive representations like Argot (Shaefer, 1987), messy GAs (Gold-
berg, 1991), the dynamic parameter encoding (DPE) scheme of Schraudolph 
and Belew (1992), and the Delta coding of Whitley et al. (1991). 

4.6. Coevolutionary systems 

Hillis' work (1990) on the improvements achievable by co-evolving parasites 
along with the actual individuals of interest gives an exciting glimpse of the 
behavioral complexity and power of such techniques. Holland's Echo system 
(1992) reflects an even more complex ecological setting with renewable resources 
and predators. More recently, Potter et al. (1995) have shown the benefits of 
"cooperative" co-evolutionary models. 

Each of these systems suggests an important future role for co-evolution in 
EAs, but they raise more questions than they answer concerning a principled 
method for designing such systems as well as the kinds of problems for which 
this additional level of complexity is both necessary and effective. 

5. Summary and conclusions

This is an exciting time for the EC field. The increased level of EC activity 
has resulted in an infusion of new ideas and applications which are challenging 
old tenets and invalidating historical categorizations. As a result of this rapidly 
changing EC landscape, a new view of the field is emerging based on core issues 
and important new directions to be explored. 

We have attempted to summarize this new view by characterizing the current 
state of the field, and also pointing out important open issues which need further 
research. We believe that a view of this sort is an important and necessary part 
of the continued growth of the field. 

References 
AXELROD, R. (1987) The evolution of strategies in the iterated prisoner's 

dilemma. In: L. Davis, ed., Genetic Algorithms and Sim11,lated Annealing. 
London: Pitman. 

BACK, T., HOFFMEISTER, F. and SCHWEFEL, H.-P. (1991) A survey of evo-
lution strategies. Proceedings of the Fo11,rth International Conference on 
Genetic Algorithms. La Jolla, CA, Morgan Kaufmann. 

BACK, T. (1995) Generalized convergence models for tournament and (mu, 
lambda) selection. Proceedings of the Sixth International Conference on 
Genetic Algorithms, Pittsburgh, PA, Morgan Kaufmann. 

BELEW, R. K. and BOOKER, L.B., eds. (1991) Proceedings of the Fov:rth In-
ternational Conference on Genetic Algorithms. La Jolla, CA, Morgan 
Kaufmann. 



572 K. DE JONG 

BLICKLE, T. and THIELE, L. (1995) A mathematical analysis of tournament 
selection. Proceedings of the Sixth International Conference on Genetic 
Algorithms, Pittsburgh, PA, Morgan Kaufmann. 

BOOKER, L.B. (1982) Intelligent behavior as an adaptation to the task envi-
ronment. Doctoral Thesis, Department of Computer and Communication 
Sciences. University of Michigan, Ann Arbor. 

BOOKER, L.B. (1992) Recombination distributions for genetic algorithms. Pro-
ceedings of the Foundations of Genetic Algorithms Workshop. Vail, CO, 
Morgan Kaufmann. 

DAVIS, L. (1989) Adapting operator probabilities in genetic algorithms. Pro-
ceedings of the Third International Conference on Genetic Algorithms. La 
Jolla, CA, Morgan Kaufmann. 

DAWKINS, R. (1987) The Blind Watchmaker. New York, W. W. Norton and 
Company. 

DE GARIS, H. (1990) Genetic programming: modular evolution for darwin ma-
chines. Proceedings of the 1990 International Joint Conference on Neural 
Networks, 194-197. Washington, DC, Lawrence Erlbaum. 

DE JONG, K.A. (1975) A n  analysis of the behavior of a class of genetic adap-
tive systems. Doctoral Thesis, Department of Computer and Communi-
cation Sciences. University of Michigan, Ann Arbor. 

DE JONG, K. and SPEARS, W. (1992) A formal analysis of the role of multi-
point crossover in genetic algorithms, Annals of Mathematics and Art ficial 
Intelligence Journal, 5, 1, 1-26. 

DE JONG, K. and SARMA, J .  (1995) On decentralizing selection algorithms. 
Proceedings of the Sixth International Conference on Genetic Algorithms, 
Pittsburgh, PA, Morgan Kaufmann. 

ESHELMAN, L . J .  and SCHAFFER, J.D. (1991) Preventing premature conver-
gence in genetic algorithms by preventing incest. Proceedings of the Fourth 
International Conference on Genetic Algorithms. La Jolla, CA, Morgan 
Kaufmann. 

FOGARTY, T.C. (1989) Varying the probability of mutation in the genetic 
algorithm. Proceedings of the Third International Conference on Genetic 
Algorithms. Fairfax, VA, Morgan Kaufmann. 

FOGEL, L.J . ,  OWENS, A.J .  and WALSH, M.J. (1966) Art ficial Intelligence 
Through Simulated Evolution. New York, Wiley Publishing. 

FOGEL, D.B. and ATMAR, J.W., eds. (1992) Proceedings of the First Annual 
Conference on Evolv.tionary Programming. La Jolla, CA, Evolutionary 
Programming Society. 

FOGEL, D.B. (1995) On the relationship between the duration of an encounter 
and the evolution of cooperation in the iterated prisoner's dilemma. Evo-
lv.tionary Computation, 3, 3, 349-363. 

FORREST, S. and MITCHELL, M. (1992) Relative building-block fitness and 
the building block hypothesis. Proceedings of the Second Workshop on 
Foundations of Genetic Algorithms. Vail, CO, Morgan Kaufmann. 



Evolutionary computation: recent developments and open issues 573 

FORREST, S.,  JAVORNIK, B. ,  SMITH, R .  and PERELSON, A. (1993) Using ge-
netic algorithms to explore pattern recognition in the immune system. 
Evol11,tionary Comp'll.tation, 1, 3, 191-212. 

GOLDBERG, D.E.  and RICHARDSON, J .  (1987) Genetic algorithms with shar-
ing for multimodal function optimization. Proceedings of the Second Inter-
national Conference on Genetic Algorithms. Cambridge, MA, Lawrence 
Erlbaum. 

GOLDBERG, D.E.  (1989B) Genetic Algorithms in Search, Optimization and 
Machine Learning. Reading, MA, Addison-Wesley. 

GOLDBERG, D.E. ,  DEB, K. and KORB, B .  (1991) Don't worry, be messy. Pro-
ceedings of the Fo'll.rth International Conference on Genetic Algorithms. 
La  Jolla, CA, Morgan Kaufmann. 

GOLDBERG, D., DEB, K.  and CLARK, J .  (1992) Accounting for noise in siz-
ing of populations. Proceedings of the Second Workshop on Fo'll.ndations 
of Genetic Algorithms. Vail, CO, Morgan Kaufmann. 

GREFENSTETTE, J . J . ,  RAMSEY, C. and SCHULTZ, A. (1990) Learning sequen-
tial decision rules using simulation models and competition. Machine 
Learning, 5, 4, 355-381. 

GREFENSTETTE, J .  J .  ( 1991) Lamarckian learning in multi-agent environments. 
Proceedings of  the Fo'll.rth International Conference on Genetic Algorithms. 
La  Jolla, CA, Morgan Kaufmann. 

HARP, S., SAMAD, T.  and GUI-IA, A. (1989) Towards the genetic synthesis 
of neural networks. Proceedings of the Third International Conference on 
Genetic Algorithms. Fairfax, VA, Morgan Kaufmann. 

HILLIS, D.W. (1990) Co-evolving parasites improve simulated evolution as an 
optimization procedure. Physica D,  42, 228-234. 

HOLLAND, J .H. (1975) Adaptation in Nat'U.ral and Art ficial Systems. Ann 
Arbor, Michigan, The University of Michigan Press. 

HOLLAND, J .H.  (1992) Adaptation in Natv,ral and Art ficial Systems. Cam-
bridge, MA, MIT Pross. Second Edition. 

HOLLAND, J .H.  (1986) Escaping brittleness: The possibilities of general-pur-
pose learning algorithms applied to parallel rule-based systems. In: R. 
Michalski, J .  Carbonell, T. Mitchell, eds., Machine Learning: A n  Art ficial 
Intelligence Approach. Los Altos: Morgan Kaufmann. 

JONES, T.C.  (1995) Evolv,tionary Algorithms, Fitness Landscapes, and Search. 
Ph.D. Thesis, University of New Mexico, Albuquerque, NM. 

KOZA, J . R .  (1992) Genetic programming: On the programming of comp'll.ters 
by means of natural selection. Cambridge, MA, MIT Press. 

MANDERICK, B. ,  DE WEGER, M. and SPIESSENS, P .  (1991) The genetic al-
gorithm and the structure of the fitness landscape. Proceedings of  the 
Fov,rth International Conference on Genetic Algorithms. L a  Jolla, CA, 
Morgan Kaufmann. 

MICHALEWICZ, Z. (1994) Genetic Algorithms + Data Strnctures = Evol11tion 
Programs. Berlin, Germany: Springer-Verlag. 



574 K. DE JONG 

POTTER, M., DE JONG, K. and GREFENSTETTE, J .  (1995) A coevolutiona-
ry approach to learning sequential decision rules. Proceedings o f  the Sixth 
International Conference on Genetic Algorithms, Pittsburgh, PA, Morgan 
Kaufmann. 

RADCLIFFE, N.J.  (1991) Forma analysis and random respectful recombina-
tion. Proceedings of the Fov,rth International Conference on Genetic Al-
gorithms. La Jolla, CA, Morgan Kaufmann. 

RECHENBERG, I. (1973) Evolutionsstrategie: Optimierung Technischer Sys-
teme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, 
Stuttgart. 

SCHAFFER, J.D. and MORISHIMA, A. (1987) An adaptive crossover distribu-
tion mechanisms for genetic algorithms. Proceedings of the Second Inter-
national Conference on Genetic Algorithms. Cambridge, MA, Lawrence 
Erlbaum. 

ScHRAUDOLPH, N.N. and BELEW, R.K. (1992) Dynamic parameter encoding 
for genetic algorithms.Machine Learning Journal, 9, 1, 9-22. 

ScHWEFEL, H.-P. (1981) Numerical Optimization of Computer Models. New 
York, John Wiley and Sons. 

SCHWEFEL, H.-P. (1995) Evolution and Optimum Seeking. New York, John 
Wiley and Sons. 

SHAEFER, C.G. (1987) The ARGOT strategy: adaptive representation genetic 
optimizer technique. Proceedings of  the Second International Conference 
on Genetic Algorithms. Cambridge, MA, Lawrence Erlbaum. 

SPEARS, W.M. (1992) Crossover or mutation? Proceedings of  the Foundations 
of Genetic Algorithms Workshop, Vail, Colorado, Morgan Kaufmann. 

SPEARS, W.M. (1994) A simple subpopulation scheme. Proceedings of  the 
Fourth Conference on Evolv.tionary Programming. San Diego, CA, MIT 
Press. 

TURNEY, P.,  WHITLEY, D. and ANDERSON, R. (1997) Evolution, learning, 
and instinct: 100 years of the Baldwin effect. Evolutionary Compv.tation, 
4, 3. 

VOSE, M.D. and LIEPINS, G.E. (1991) Schema disruption. Proceedings of  the 
Fourth International Conference on Genetic Algorithms. La Jolla, CA, 
Morgan Kaufmann. 

WHITLEY, D., MATHIAS, K. and FITZHORN, P. (1991) Delta coding: an it-
erative search strategy for genetic algorithms. Proceedings o f  the Fourth 
International Conference on Genetic Algorithms. La Jolla, CA, Morgan 
Kaufmann. 


