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A b s t r a c t :  In this study we discuss a class of stochastic opti-
mization problems for the cases where parameter of optimization is 
a probability distribution. The knowledge about this distribution is 
reduced to fixed values of some of its moments, or quantiles. Ex-
amples from reliability maintenance, inventory, and queueing theory 
illustrate the specific nature of the problems that goes beyond the 
known frames of the general theory. 

The article is in the form of a survey of papers relevant to the 
stated scope, related mainly to some authors and less known re-
sults. Relationships with general theory, and discission on prospec-
tive other considerations arc also given. 
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1. Introduction and summary
Most problems of stochastic inventory control, reliability maintenance, etc. con-
sider optimization of functionals that are expected value of some expression in-
volving one or more random variables. This makes these functionals ultimately 
dependent on some probability distribution function F(x). In practice this 
function is not completely known. Usually the information about participating 
random variables, and therefore about F(x), is restricted to the knowledge of 
some of its initial moments, or some quantiles only. To specify the problem, we 
introduce the following definition and notations. 

Definition 1 We say that the c11mulative probability distribution function (cdf) 
F(x) belongs to the class D(m1, . . .  ,mn ) if! it satisfies the equations j• O O  ;•00 

1 = .  - o o  dF(x), and mk = ,  - o o  xk dF (x); k = 1, . . .  , n. (1) 

1This work is supported in part by GMI Grant NFPDG 3-585001. 
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Here m 1, . . .  , m n is a given seq11,ence of real numbers satisfying required condi-
tions to represent the moments of  some probability distribv,tion. 

The common problem is: to estimate the efficiency 

Eff(T, a ,  F*) = extremumFED(m 1 , ... mn) Eff(T, a ,  F) (2) 
of the use of corresponding systems during a time interval [O, T], while the 
function F(x) is incompletely known (i.e. it belongs to a certain class of cdf's, 
say, in the sense of Definition 1). In (2) a is some controllable parameter which 
can be the subject of other optimization. 

To solve problems of type (2) usually the methods known from Markov-
Tchebysheff moment problem (see e.g. Carlin and Studden, 1968, or Krein and 
Nudelman, 1973) are used. However, the specific conditions of reliability, war-
ranty, inventory control, queuing, and other related problems generate some 
new aspects for application of these methods. In the present work we discuss 
several questions relevant to these fields in order to highlight what is similar 
and what is different in the theoretical setups and the reality of practice. The 
work has the form of a brief survey of some known (to the authors) results 
related to the optimal control problems in reliability maintenance under incom-
plete information. The discussed specifics are illustrated also on examples from 
warranties with restricted reliability data, as well as on examples from inventory 
control with incomplete demand information, and optimal control of an unreli-
able process. This survey has no pretension to completeness, it rather aims to 
present some peculiarities in the study. At the end we state some prospective 
development of problem (2), which appear to be of practical importance due 
to the necessity to introduce extended restrictions instead of (1). In this case 
the class of probability distributions O is determined by inequalities of the type 
Ck :s; mk :s; dk, k = l ,  2, . . .  , n. Such type of problems offer new challenge to
mathematicians. In this context we review some resent results of Danielian and 
Tatalian (1987, 1987a, 1988, 1994). 

2. Optimization problems in technical maintenance
In a series of works Barzilovich and Kashtanov (1971, 1975, 1983), and Kash-
tanov (1981, 1987) considered maintenance problems with emphasis on the spe-
cific probability information about the systems, available in practice. It gener-
ates a class of new optimization problems, requiring some specific methods for 
its solution. As an illustration we consider three kinds of problems in the next 
subsections. 

2.1. Strategies for reliability maintenance 

A system with preventive inspections, latent failures and renewals. Let the life 
time X of a system have cdf Fx(x) = P(X < x). Suppose a failure during the



Stochastic optimization problems 95 

system operating time is not discovered immediately but after a random time 
interval Z with cdf Fz(x) = P ( Z  < x). This is a latent failure. The random 
variables (r.v.) X and Z can be dependent and have common cdf F x ,z (x , z) 
with marginals F x (x) and Fz(z). The system starts to operate at t = 0, and 
a preventive inspection is assigned after a random time Y with cdf Fy(x)  = 
P(Y < ,r,). If in the random time interval [O, Y] the system has no failure, then 
an inspection starts, and has a random duration 91 , whose cdf is G1 ( x). If the 
system has failed but the failure was not detected, the inspection would have a 
duration 92 with cdf G2 (x). On the other hand, if the failure is discovered at 
the time X + Z before Y expires, then the inspection is also conducted, and is
followed by a renewal of the system. This is started immediately after a latent 
failure turns into explicit one, and the residual inspection and repair will have 
duration g3 with a cdf G3(x). During any inspection all the necessary repairs 
are made (their times are included in the inspection) and afterwards the system 
starts to operate as properly as a new system. The following inspections are 
assigned in the same way as for a new system. Thus the maintenance process is 
regenerative with points of regeneration at the end of any inspection. Note that 
the r.v.'s within the times between two inspections can be arbitrarily dependent. 

As measures for quality of the maintenance the following profit functions are 
considered: 
(i) The availability coefficient

R(z) = lim R(t, z), 
t-+oo 

where R(t, z) is the probability that the system is correctly operating 
within the interval [t, t + z);

(ii) The expected specific profit ( or losses) per unit time

L 1 = lim 9(t)
t-+oo t ' 

where g(t) is the expected profit for the system operation on (0, t). 
Using the points of regeneration and the Smith's renewal theorem from renewal 
theory (see e.g. Gnedenko et al., 1983), the following expression for R(z) can 
be derived: 

R(z) _ 
It A(t, z)dFy(t)

- It B(t)dFy(t)
Here the notations 

A(t, z) = 1·= [1 - F ( x  + z)]dx,
' t 

and 

(3) 

(4) 

B(t) = 1
t 

[1 - 'ljJ(x)]dx + E 91 + (Eg2 - E91)Fx(t) + (E93 - E92)'1/J(t), (5) 

with 

?jJ(t) = P ( X  + Z < t) = 1
t 

1
t

- z d Fx ,z (x , z) (6) 
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are used. One can easily check that B(t) is the conditional expected duration 
of a separate period of regeneration for the system under the condition that the 
next inspection will start at time t > 0. In an analogous manner one can derive 
g(t) and L 1 in (ii), and will obtain: 

Jt C(t)dFy(t) 
L i =  L i ( F y )  = --'j ""'oo_B_(-t)-dF_y_(-t), 

where B(t) is given by (5). The function 

C(t) = [co(t) - c1(t)][l - Fx(t)] + .lt ca(v.)dFx(v,)

- , {  c1(11,) (100 
f x , z (t - v,, z)dz + .lt-,, f x , z (t , 11,)) dv, 

(7) 

(8) 

represents the expected profit in the time period 0, t); 7/J(t) is g·iven by (6); 
f x , z (x , z) is the common probability density function (p.d.f.) corresponding 
to the cdf Fx , z (x , z) of the random vector (X, Z); ci(x) (for i = 1, 2, 3, 4) are
loss functions corresponding to time of duration x which the system spent in 
operation while being into the state i, defined as follows: State 1 means work 
in presence of a latent failure ( i = 1). State 2 - inspections started before the 
latent failure occurred (i = 2). State 8 - inspection started during a latent 
failure was in presence ( i = 3). State 4 - an inspection started after a latent
failure had been detected, and then (i = 4). The only positive profit (function) 
is ca(x) while the system operates correctly for time of continuous duration x. 
Abbreviations used in (8) are 

ck= /
00 

ck(x)dGk-1(:r;), k = 2,3,4. 
Jo (9) 

The problem is how to determine "the most favorable" cdf Fy(y) of preven-
tive inspection period Y, in order to achieve the best quality of maintenance. 

In cases of complete information it is supposed that all the cdf's Fx(x) ;  
F z (x ), Gi(x), i = 1, 2, 3 are known. Then one has to find the optimal cdf Fy(x)  
which gives the extreme value of the profit functions, given by either (3), or (7), 
and no additional restrictions apply. The solutions to this kind of optimization 
problems with cost function given as a fraction of linear functionals of type 
like (3), and (7) can be significantly simplified. We recommend the use of a 
Barzilovich and Kashtanov's result (1971, pp. 26-28). We formulate it and give 
a new simplified proof. 



Stochastic optimization problems 

Theorem 1 Consider the fv,nctional 

( ) _ JlJI N A(x1, . . .  XN )dG1 (x1) . . .  dG N (XN ) J G1, . . .  G N - r ( ) ( ) 
, 

J lJINB x1,---XN dG1 x1 , . . .  dGN (xN ) 

97 

(10) 

where the functions A( x1 , . . .  , x N ), B ( x1 , . . .  , x N ) are known, and B (  x) is either 
positive, or negative for all x = ( x 1 , , . .  , x N ) E atN . Let J ( G) be bounded over
the set D = {G1(x), . . .  ,GN (x); cdf's on [O,oo)}. Then the extreme problem:
To .find 

extremum0Erl J (  G1, . . .  G N ) = J (  Gf, . . .  G1.r) (11) 

has its solution on the set D* = {Gk (x) : Gk(x) = 0 for x::;; Tk and Gk (x) = l ,
for- x > Tk , Tk E at1 , k = l ,  . . .  , N }  of degenerated cdf's.

Proof :  Denote by G(x) = (G1(x 1) , . . .  , GN (xN )) the vector of cdf's used in 
calculation of (10), and let A(x) = A(x1, . . .  , xN ); B (x) = B(x1, . . .  , xN )- For
G(x) E W we have 

which is a multivariate function with N non-random arguments. Further, let 
f *  and f**  be two points where the global minimum and the global maximum 
of J(G) = A ( f ) / B ( f )  are located. They will then correspond to some cdf's G* 
and G** in D*, i.e. 

r = arg J n f  J(G) = arg J(G*)
GErl* 

T"* = arg sup J(G) = arg J(G**). (12) 
GErl* 

It is also possible that some components Tt or Tt* o f f *  and/ or f**  are equal 
to oo. However, the following inequalities are satisfied for any vector x 

A(r)/B(T")::;;  A(x)/B(x)::;; A ( r * ) / B ( r * ) .  (13) 

Multiply the left hand side inequality by the non-negative product B(T")B(x), 
and the right hand side one by the product B(f**)B(x) to get two equivalent 
inequalities 

A(T")B(x)::;; B(f*)A(x) and B(f**)A(.i!)::;; A(T"*)B(x). 

Integrate with respect to any cdf G(x), and verify that 

A(T") / B(x)dG(x)::;; B(T") / A(x)dG(x),JlJIN JlJIN 
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and 

B(r*) { A(x)dG(x)   A(r*) { B(x)dG(x). J'fRN • J'fRN 

The above two inequalities are equivalent to the inequality: 

A ( r ) / B ( r )    J(G(x))   A(r*)/B(r*). (14) 

Thus, the statement is true. 
Hence, the points of local extremes of the function A(x*)/B(x*) are among 

the solutions of the system 

a (A(x)) 
a x i B(x) , i = l ,  2, . . .  , N, (15) 

and the absolute extremes can be located at infinity (if some Ti = = ). To find
them it is necessary to compare the values of A(x)/B(x) for all those arguments 
until the extremes are specified. Thus, the stochastic optimization problem (11) 
turns into (12), a deterministic one. Its solution is given by (15). 

We now return to the initial optimization problems for either R(z) from (3), 
or L 1 (F y) from (7). To have the condition B(x) > 0, from (5) and (6) we derive 
as a sufficient condition, that the inspections starting in working state, during 
an undiscovered latent failure and after an accident must form an increasing 
sequence in average. This means that when the natural order 

(16) 

holds, and therefore in expressions (3) and (7) it will be true that B(t) > 0. 
Referring to Theorem 1 we conclude that the optimal inspection interval Y* is 
non-random, since FY* (.T) E D*. Thus for given distributions of the life and the 
repair times, the optimal inspection has fixed, systematic time interval Y* = T*. 

As an example we consider the exponential case. Let X and Z be inde-
pendent r.v.'s with Fx (x ) = l - e-,\x, and F z (x ) = l - e-'1'"'. Consider the
availability coefficient R(z) given by (3) - (6) as profit function (it equals to 
R(O) when z = 0). Using Theorem 1 we conclude that when (16) holds, then 

supR(z) = supA(T,z)/B(T). 
Fy T O 

With the specified forms of A(t, z), B(t), and 1/J(t), the inspection interval T*(z) 
is the point where the supT>O [A(T, z)/ B(T)] is located. The ultimate result 
(after performing the routine-calculus considerations) is as follows: 

1. If..\ :::C: 1, then it is always preferable to have inspections in fixed finite time
interval T*(0), scheduled right after any new system has started operation;

2. i f . . \<  1, and the inequality. .\/ ,> ..\(Eg2 - Eg1) + ( 1 - ..\)Eg1 holds, then
the same type of non-random inspections, as in 1), are optimal, since it
gives maximum expected profit per unit time in the long run.
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No simple expressions for 7*(z) can be found. Even in the case of explicit 
failures (i.e. when P(Z = 0) = 1 holds), the optimal interval 7*(0) of inspections 
can not be explicitly given, but as the solution of the equation 

- F x ( 7 )  + [Fx(7)/Fx(7)] 17 
[ 1 - Fx(x)]dx = Egif(Eg3 - Eg1).

However, there exist simple numerical algorithms for determination of 7*(0) 
based on Theorem 1. Several such algorithms in some other particular cases of 
the reliability maintenance with known probability distributions are given ( e.g, 
Barzilovich and Kashtanov, 1971, 1975; Gnedenko et al., 1983). 

2.2. Optimization o f  maintenance problem under restrictions 

We observe in technical maintenance problems that most of the measures of 
effectiveness have the form 

I(F) = 1_: A(t)dF(t)/ 1_: B(t)dF(t) =
d e f U(F)/V(F),  (17) 

where F(t) is a cdf in  n , n   l ,  and A(t), B(t) are piece-wise continuous and 
bounded functions. More generally a sufficient supposition is that U(F) in (17) 
is uniformly bounded on some set 8' of cdf's and V(F) has constant sign on it. 
Then in related optimization problems the following Lemma (Gnedenko et al., 
1983, p.259) can be successfully applied: 

Lemma 1 I f  there exists supFES' I(F) = c, then the subset S'c of all cdf's for 
which supFES'c I(F) = c coincides with the subset of all cdf's in 8' for which the 
maximal value of the expression 

J ( F )  = U(F) - cV(F)

is attained. 

The proof follows the idea of 'the proof of Theorem 1. When assuming that 
the Lemma is not true, a contradiction occurs. 

Lemma 1 is used in the proof of the next statement, and it is relevant to the 
optimization of functionals of type (17) under various restrictions. Assume that 
the cdf F(x) belongs to the class 

fl(N, Y, A ) =  {F: F(yi) E Ai, Ai E  1 , Ai - closed sets, 
i = 1, . . .  , N }  (18) 

of distributions that have values within given numerical subsets A={Ai, i = 
1, . . .  , N, y1 < . . .  < YN }, whenever the argument y coincides with some of the 
given Yi· Further, let us denote by fl*(N, Y, A) the subset of step functions F(y), 
which are cdf's, and have no more than one jump within each of the intervals 
[Yi, Yi+1), i = 1, . . .  , N. The following theorem holds: 
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T h e o r e m  2 For the extremes of any measure of effectiveness I(F) of fraction-
linear type (11) it is trv,e that 

extremumFED(N,Y,A) I(F) = extremumFED*(N,Y,A) I(F).  

Proof .  Here we give just the main idea of the proof. Precise details can 
be easily derived (in analogy with Gnedenko et al., 1983, p.262 - 264). Let 
Fo(x) be a cdf for which the extremum of I ( F )  is attained, and let ?ri = F(yi), 
i = 1, . . .  , N. Since Yi are ordered, and Fo(y) is monotonic, we obtain that 
7r1 ?r2 --- 'lrN . .  

According to Lemma 1, the set for getting the extremes of I(F)  coincides 
with the set where J ( F )  = 0. B y  the substitutions ?ro = 0, 7rN+l = 1, y0 = -oo,  
and YN+l = oo, the functional J ( F )  can be rewritten in the form 

N (Yk+1-0 J ( F )  = L J,, C(x)dF(x), with C(x) = A(x) - cB(x).
k=O. Yk 

Let xk be the point where C(x*) = extremumx E (Yk,Yk+il C(x). Construct
the piece-wise function 

Ft (x)  = 'Irk, f o r  x E [Yk, xk], and 1rk+1, f o r  x E (xk, Yk+1l-

Then it is easy to see that 

J(Fo) = J ( F t ) ,  

(19) 

and from Lemma 1 it follows that I(Fa) = extremumF,{Efl*(n ,Y,A) I(F).  Thus 
the desired extreme is attained at a step-wise cdf. The omitted details explain 
the impossibility of attaining the extremumx E[Yk,Yk+il C(x) outside of the "in-
tervals" [Yk,Yk+l] (note that Yk can be arbitrarily chosen points in /Rn ) . 

Theorem 2 determines the form of the extremal cdf F a  ( x), where the sought 
extremum is attained. We name this cdf either the most favorable or the most 
v.nfavorable cdf, pending on the meaning of extremum, whether it is desirable,
or not. The practical problem of finding the extremes of any given functional
I( F)' and F a  ( X) itself is now transferred from a variational calculus question
into a deterministic optimization problem, due to the following equation (we
write it for the maximization case):

f 00 A(t)dF(t)
sup 0 0  FE!l(N,Y,A) f _00 B(t)dF(t) 

I : f=o  A(xk)(1rk+l - 'Irk) - sup N 
Xk E [yk, Yk+il I:k=D B(xk)(1rk+l - 'Irk) 
k = 0,1, . . .  , N

(20) 

Thus, by referring to (19), the extremal cdf F a  is found from the solution of 
(20). 
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Some peculiarities for the case of optimal inspections of technical mainte-
nance simplify the problems for determination of the extremes in (20). They 
are based on the contrasts of monotonic behavior of A(x) and B(x) in x. The 
extreme points for the right hand side of (20) are located at xZ = Yk ± 0. 

The results of Theorem 2 are used to determine the optimal inspection in-
terval Y under information that the cdf Fx (x) is in the class D(N, Y, A) ( cdf's 
with known quantiles), where Ai = {1ri}, i = 1, . . .  , N. If we assume immediate
discovery of the failures, i.e. if P{Z = O} = 1, then the optimization problem
is as follows: Find the cdf G*(y) of the optimal inspection time Y* which is 
uniformly good for all the cdf's F* E D(N, Y, ii') of the life times of the system. 
Mathematically it is expressed by the equation 

R(z,F*,G*)=sup inf R(z), 
GEfl FEfl(n,Y,ii') 

where the reliability coefficient R(z) is defined by (3) - (6). A detailed solution 
can be found ( Gnedenko et al. 1983, p.293 - 296). More complicated applications 
with consideration of semi-Markovian models in technical maintenance up to 
certain extent are also known (Kashtanov, 1987). 

2.3. On the optimal control of a non-reliable process 

A series of studies (1981-1994), finalized by Kolev (1994), have been devoted to 
optimal control of unreliable processes by introducing external influence. Let us 
suppose that one has to perform a job of duration T on an unreliable processor 
(server). The up and down times of the server form an alternating renewal 
process. { Xn , Yn}, n = l ,  2, . . . .  The interruptions and necessity to restart the
job from the origin prolong the actual total processing time of the job. After 
any server failure the incomplete job must start anew, and it continues until a 
successful end in some of the up times of duration greater then T occurs. 

The external control is introduced by a sequence of checkpoints. Each check-
point is an action of saving parameters (job status, copies, forms, models etc.) 
that make possible repetitive job start from the attained level of job perfor-
mance, and thus save the job already done. A checkpoint needs some time 0 
to be completed. It is usually scheduled for a moment 'r/k when the accumu-
lated job volume attains a certain level, measured since the preceding ( k - 1 ) - s t  
checkpoint, if no interruption occurs. The job restarts after a failure begining 
from the job level collected up to the nearest previous checkpointed state. The 
total execution time of a job that needs time T to be completed when served 
on a non-reliable server without checkpoint  is (set Yo = 0 below)

N 

T(T) =  ) X n + Yn+1), (21) 
n=l 

where 
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When checkpoints are introduced, the total execution time is given by the equa-
tion 

M T  M T  

T(T; {17k}) = L [T(1Jk) + 0k] + T(T - L 1Jk), 
n=l k=l 

where { 0k} are the checkpoint durations, the random variable 

Mr=max{n; 1]1+ . . .  +17ns ;T} .  
n;:,:l 

(22) 

represents the number of checkpoints to be scheduled in time of duration T, and 
T(.) is defined by (21). An intensive, explicit study of the total execution time 
T(T; { 1]k}) under various assumptions about the nature of failures, and several 
reliability structures, is made by Dimitrov, Khalil, Kolev, and Petrov in a series 
of papers (1986 - 1994). The profit function due to external influence can be 
defined by the expected duration to complete the job with checkpoints. This is 

where G 1 , G2, . . .  are the cdf's of the intervals between two consecutive check-
points. Using Theorem 1 one can see that the optimal checkpoint schedule is 
deterministic, not a random one, since any G k ( x) must be a degenerate cdf. 
This fact simplifies the study of optimal checkpointing. This is usually assumed 
in this kind of studies without proof (as in Dimitrov and Petrov, 1987). Kolev 
(1994) proves this fact clearly. Moreover, the checkpoint schedule is uniform 
(equidistant) when the failure rate of the server is constant and job duration 
T is either deterministic or exponential. The optimal checkpoint schedule is 
not uniform when the failure rate vary in time. Nothing is known about the 
influence of the distribution of T o n  the form of the checkpoint schedule. 

3. Optimization problems under moment restrictions
3.1. General theory 
Here we give a brief review of the Markov-Tchebysheff moments problem us-
ing notations and terminology from Carlin and Studden (1968) and Krein and 
Nudelman (1973). Let {uk(t)H'.= o be a system of continuous linearly inde-
pendent functions on the interval [a, b]. We say that this sequence forms a 
Tchebysheff system on [a, b], briefly T-system iff the determinant of order n + 1

uo (to ) uo(t1) . . .  uo (tn ) 

u( 0, 1, . . .  , n
to , t1, . . .  , tn )= 

u1(to) v,1(ti) . . .  u1(tn )
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is strictly positive for any a   to < ti < ... < tn   b. The moment space M n+l
is the set of vectors in the form c = ( c o , ,  c1, . . .  , en ) E Rn+l , where

j,b 

Ci = 
a 

V,i (t)dCJ(t), i = 0, 1, . . .  , n, (23) 

and CJ(t) belongs to the set of all non-decreasing right-continuous functions with 
bounded variation. We say the measure CJ(t) belongs to the class V(c) iff for 
the chosen and fixed c E M n+l it satisfies the conditions (23).

The Markov-Tchebysheff optimization problem (MTOP) is stated as follows: 
For a given function D.(t) and c E  M n + i , find two measures CJ* and CJ** in V(c) 
for which there is either 

or 

l b 

; · b  sup D.(t)dCJ(t) = D.(t)dCJ**(t), 
a-EV(c) a • a 

l b 1,
b 

inf D.(t)dCJ(t) = D.(t)dCJ*(t) 
a-EV(c) a a 

correspondingly. 

(24) 

(25) 

Remark 1 The fv,nctions v,i(t) = ti , i = 0, 1, . . .  , n form a T-system. With 
them and with CJ(t) a probability measure, the M T O P  transforms into an im-
portant problem in probability theory and mathematical statistics with a lot of 
interesting applications. V(c) is a class of cdf 's with .first n moments given. 
Functionals of type {24-) and {25) appear as criterions of effectiveness under 
conditions of incomplete information abov,t probability distributions. 

A general solution of the problems (24), (25) is given by the following two 
theorems: 

Theorem 3 (Carlin and Studden, 1916, p.88) I f  {uk(t)}k=O and the enlarged 
system {v,o,v,1,--· ,un ; D(t)} are T-systems then {24-) is attained only for the 
measures CJ** corresponding to the upper principal representation of the point 
c, and {25) is attained only for the measures CJ* corresponding to the lower 
principal representation of c. 

The concept of principal representation of points in R n is given in the cited 
source. 

Theorem 4 (Krein and Nudelman, 1913, p.115) Under the conditions of The-
orem 3: 
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i) The following equations hold 

inf ; · b  O(t)da-(t) = sup (t akv,k(t); t akv,k(t) 2 O(t)) ;
a-EV(c) a {ak} k=O k=O 

sup r
b 

O(t)da-(t) = inf (t Ci'.kUk(t); t Ci'.k'11,k(t) ::; O(t)) '
a-EV(c) Ja {ak} k=O k=O 

ii) The necessary and sufficient condition for a measure a-* E V(c) to be ex-
tremal in (24) is the existence of a generalized polynomial P0 (t) = a.0u0 (t)+
... + CV.n un (t), which satisfies the inequality P0 (t) ::; O(t), and coincides
with O(t) at all the points of growth of the measure a-0 (t) (for the extremal 
measure of (25) the inequality P0(t) 2 O(t) is requested) for all t E [a, b]. 

The last two theorems give the form of all optimal measures a-** and a-*, 
and also propose methods for its determination. However, in applications even 
the smallest deviations from the above theoretical conditions generate specific 
problems which need specific techniques to get efficient explicit final results. 
Several such applications are presented in Carlin & Studden (1968), and in 
Krein & Nudelman (1973), (e.g. applications to approximation theory, to sums 
of random variables, to inequality problems, to experimental design and others). 
Our experience shows that reliability related problems offer other specifics where 
general theoretical results barely work. 

3.2. Applications 

Here we give some results related to the warranty analysis and inventory theory 
under incomplete information, analogous to MTOP. 

A Warranty Analysis Problem: 
The newly formed branch of Operations Research known recently as War-

ranty Analysis, is an intensively developing area of optimization methods (see 
Blischke and Murthy, 1996). However, there are very limited studies in this area 
which discuss optimization problems under the restrictions existing in practice, 
and which are of the above described area. In 1986 Chukova considered the 
following model in warranties: A product has random life time with cdf F(t), 
net cost c, market price d and a warranty period (WP) of duration T. The 
probability for this product to be sold is Pr, and depends on the assigned WP. 
If the product fails during the warranty existence, then the user claims the item, 
and this costs the producer an amount e. The expected producers profit is then 
given by the expression 

E[g(T)] = dpr - prF(T) - c. (26) 

The incompleteness of information means that the cdf F(t) is known only 
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through its first n initial moments, i.e. F(t) satisfies 

1 = ( dF(x) and mk = r xk dF (x), k = l, . . .  , n 
lo lo 

(27) 

The optimal warranty problem is in most cases stated as follows: To assign 
that duration To to the WP, which gives maximal producer's profit under the 
'worst' feasible cdf F(t) that fits the available information. Mathematically To 
is defined as the maximal solution to the equation 

To = arg m ; x  m)n E[g(T)], 

where E[g(T)] and the class of feasible cdf's are defined by (26) and (27) corre-
spondingly. 

Here the general theory does not help. Chukova applied a direct approach 
and got the following results: The most unfavorable distribution function F(t) 
has the form 

r F*(t) = a., 
1, 

for  

for  

for  

t < m1 T - m 2 = a(T)· 
T - m 1  '

a(T):::; t < T; 
t;::: T, 

where a . =  (T-m1) 2 /T-2m1T+m2 ). The optimal value o f T  is either T0 = a(t), 
when [p7 - Pa (7 J]/ ( a.p7 ) < e/ d, or To = T otherwise.

Inventory Control Problems: 
Every inventory problem is an optimization problem. Usually all partici-

pating probability distributions are assumed completely known. Models with 
limited information are rare. In the classical inventory theory (non-periodic 
models, models homogeneous in time) one can frequently observe expressions of 
the form 

R(Q, F) = C 1 Q 
(Q - x)dF(x) + D[E(X) - Q] (28) 

which must be optimized in Q (the quantity to be supplied). Here F(x) is 
the cdf of the demand X during the considered time interval, C and D are 
known cost coefficients. Usually F(x) is assumed known. However, under in-
complete information the cdf F(x) is determined by the knowledge that it be-
longs to a class V(m.) of cdf's where the only known is a set of initial moments 
rn. = (m.1, . . .  , mn ), mi being the i-th moment of F(x). The inventory optimiza-
tion problem is how to find the optimal supply Q*, under the "worst" demand 
(according to the best of our knowledge about it). Therefore, it then turns info 
the following mathematical optimization problem: To find 

Q* = arg min max R(Q,F). 
Q JEV(m,) 
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Here we also have a deviation from the theoretical conditions given in Theorems 
3 and 4, since the functions 1, t, t2 , ... , tn , ( Q - t) do not form a T-system. 
Moreover, the integral and the integrand in (28) are mutually dependent ( case 
not discussed in the theory). 

In _Fu (1987) some theoretical elements for that case are developed. One of 
his results is the following: 

Let P n (x ) = an xn + ... + a1x + ao be a polynomial with real coefficients, 
and let K [ Pn , Q] be the maximal number of points of intersection for P n (x ) 
and the function (Q - x)+ = max (0, Q - x), for x > 0, when the condition 
P n ( x) 2: ( Q - x) is fulfilled. Then the following is true. 

Theorem 5 For any Q 2:0, n 2:2 and an > 0 there is 
K[Pn , Q] :=::; (n + 1)/2, when P n (0) # Q;
K[Pn , Q] :=::; (n + 1)/2 + 1, when P n (O) = Q.

For ai = mi, i = 1, . . .  , n this theorem brings additional precision to Theo-
rem 4, and formally solves the problem of how to obtain the extremal cdf F*(x)  
for the functionals of type ( 28), when F E V (m1 , . . .  , mn ) . Explicit results are 
obtained for the case n=2 as stated in the next theorem. 

Theorem 6 The most unfavomble demand distribv.tion function in the class 
V(m1 , m2 ) which maximizes (28), has one of the following forms:
(i) In the case of  Q < m2 / (2m1 ):

{ 

0, f o r  x < O; 

F*(x)  = (m2 - mi)/m,i, for O :=::; x < m2 / (2m1 ); 
l ,  f o r  x 2: m2 / (2m1 )-

(ii) In the case o f  Q 2: m2 / (2m1) :

{ 

0, for x < a; 
F*(t)  = p, for a :s; x < b; 

l ,  for x 2: b, 

where a =  Q - (Q 2 - 2Qm1 + m2 )112 , b = Q + (Q2 - 2Qm1 + m2 )112 ,
p = a / ( b - Q ) ;  

(iii) I f  F E  V(m1 , . . .  ,mn ), and n 2: 3, then F*(x)  is a step-wise cdf with
[(n + 1)/2] + 1 points of  growth. In addition, when n is an odd number,
then F*(x)  has a jump (point of growth) at x=O.

The solution of the inventory optimization problem stated by (28), and under 
demand obeying the cdf F*(x)  is Q*=O, when (C - D)/(C + D) > mifm2 , and 
Q* = m1 +w[k(l- k)], otherwise, where a 2 = m2 - m 1 , k = [ ( C - 2D)/C] 2 , 
and E = sgn(2D - C). 

Other results concerning the noted inventory models under incomplete in-
formation (reduced to knowledge of the class V(m1 , m2 ) of cdf's), are reported 
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in Dimitrov and Fu (1987), and were explicitly studied by Fu (1987). In addi-
tion, stability problems related to the IFR class of distributions are considered 
in continuation of the original optimization inventory problems. However, the 
problem still exists for a number of inventory models, waiting for an explicit 
analysis. 

4 .  F u r t h e r  d e v e l o p m e n t s  

The methods of solution related to MTOP essentially use the convex properties 
of the considered class of distributions. However, the applications offer a number 
of optimization problems (in particular with restrictions on the moments), where 
these properties do not hold. Thus the classical methods of analysis cannot be 
applied to these cases. This is probably the reason for seeing considerations 
in the literature concerning mainly the particular cases where low number of 
moments is involved. Important classes of distributions like the IFR and the 
DFR classes do not form any convex class. 

An extension exists of Markov-Tchebysheff problem of the classical theory 
to a class of cdf's called by Danielian and Tatalian (1987a, 1987b, 1988, 1994) a 
majorizing class. They assume, a cdf F to be k-majorizing (k > 0 is an integer) 
to another cdf G and write G --<k F if there exist k subsets A1 < . . .  < Ak 
(notation A< B means that any x E A  is less than any y E B) such that 
(i) ( - l ) i - l [G(t) - F(t)] > 0 fort E Aa U . . .  U Ak , i = l ,  . . .  , k, and 
(ii) G(t) - F(t) = 0, fort E /R1 \ {A1 U . . .  U Ak}.

For F = G i t  is true that G --<o F .  A superscript of a cdf F(x) is introduced
as the minimal integer k for which F E { G : G --<k F, k 2: 1} is fulfilled. The
inverse relation F --<k G defines the lower index of F(x). 

This definition is extended to classes of cdf's, say D1 --<k D2 , iff for any 
G E  D1, and for any F E  D2, there is G --<m F for all m = 0, 1, . . .  , k. 

The optimization problem is: To find the extremes (maximum or minimum) 
of the integral 

J (F)  l b 
D(t)dF(t)

with respect to the cdf F(x) from the class V(c,d) defined by the conditions j,b 
Ci ::; a ui(t)dF(t) ::; di, i = 0, 1, . . .  , n. 

Here the continuous functions v,o(t) = l,u1(t), . . .  ,v,n(t),D(t), are given and 
fixed. 

Danielian and Tatalian (1988) give the solution of this problem in the case 
when V(c, d) is a majorizing class, i.e. when it satisfies the following: 

l. V(c, d) consists of uniformly bounded cdf's;
2. There exist distributions in V(c, J) with arbitrarily large indices; 
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3. For any given cdf in V(c, d) the corresponding index cannot be simulta-
neously an upper and lower one; 

4. For any cdf F of index k > 1 there exists a continuous (k - 1)-parametric
family of cdf's { Fa } , a E V C 3tk- l , and all of them are of index k, so 
that F E  { Fa } , and V(c,d) is an open set in 3tk- l _

The same authors show in (1988) that: 
a) If the functions ua(t), . . .  , 'll,n(t), D(t) form a special type of Tchebysheff sys-

tem, then the extreme of J(F) is attained for a unique cdf F*(x) in V(c, d);
b) There exists a majorizing structure in the class of IFR cdf's, and the extreme

cdf F* ( x) has as index n+ 1 with specified construction;
c) The same qualitative results as in b) are valid also in the case of IFRA class

of cdf's. 

5. Concluding remarks
Stochastic optimization problems with restrictions on distribution functions are 
important and frequently occur in practice. Their solution can be found in 
a narrow class of cdf's of simple construction, depending on the type of re-
strictions and on target functions. Where known general methods do not work 
specific approaches are applied. However, the forms of those cdf's which give 
the optimal solution are the same as that of the narrowed class, have some 
piece-wise structure, and change the original variational calculus problem into a 
conventional optimization problem. This leads us to believe that there must be 
some common general approach to these problems which contains all particular 
results. 
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