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Abstract: We consider an optimal control problem in the Mayer
form with an autonomous control system, a bounded control set
U, endpoint equality constraints, and one pointwise state inequal-
ity constraint. We analyze the case when the starting point of the
optimal trajectory belongs to the state boundary. A nontrivial max-
imum principle was obtained for this case by A.Ya. Dubovitskii and
V.A. Dubovitskii about 40 years ago, but the proof was written in
an extremely condensed form. Here we offer a new proof of their
result.

Keywords: optimal control, normed space, state constraint,
Pontryagin function, Lebesgue–Stieltjes measure, singular measure,
costate equation

1. Introduction

We consider an autonomous optimal control problem in the Mayer form on a
non-fixed time interval [t0, t1]:

J (x, u) := J(x(t0), x(t1)) → min, (1)

K(x(t0), x(t1)) = 0, (2)

ẋ(t) = f(x(t), u(t)) for a.e. t ∈ [t0, t1], (3)

u(t) ∈ U for a.e. t ∈ [t0, t1], (4)
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Φ(x(t)) 6 0 for all t ∈ [t0, t1], (5)

where the mappings J : R2d(x) → R, K : R2d(x) → R
d(K), and f : Rd(x)+d(u) →

R
d(x) are continuously differentiable, the mapping Φ : Rd(x) → R is twice con-

tinuously differentiable, and U ⊂ R
d(u) is a bounded set. By d(a) we denote

the dimension of the vector a, and we also denote x0 = x(t0), x1 = x(t1),
p = (x0, x1). Problem (1)–(5) will be called Problem A.

We emphasize that in this problem the state variable x and the control u
must be optimally chosen together with their common domain [t0, t1], since the
latter is not fixed.

We say that a process (x(t), u(t) | t ∈ [t0, t1]) is admissible if the function
x : [t0, t1] → R

d(x) is Lipschitz continuous, the function u : [t0, t1] → R
d(u)

is measurable and essentially bounded, and all constraints (2)–(5) are satisfied
on [t0, t1]. A process that gives the minimal value to the functional J among
all admissible processes is called (globally) optimal. A process (x̂(t), û(t) | t ∈
[t̂0, t̂1]) that gives the minimal value to the functional J among all admissible
processes (x(t), u(t) | t ∈ [t0, t1]) such that

|t0 − t̂0| < ε, |t1 − t̂1| < ε, max
t∈[t̂0,t̂1]∩[t0,t1]

|x(t)− x̂(t)| < ε,

with some ε > 0, is called a strong minimum.

Let us recall the formulation of the maximum principle (MP) for a strong
minimum process (x̂(t), û(t) | t ∈ [t̂0, t̂1]). For a while, we additionally assume
that

Φ(x̂(t̂0)) < 0, Φ(x̂(t̂1)) < 0, (6)

i.e., roughly speaking, the endpoints of the optimal trajectory x̂(t) do not belong
to the boundary of the state constraint.

Denote by R
n∗ the space of row vectors of dimension n.

By definition, the maximum principle for the process (x̂(t), û(t) | t ∈ [t̂0, t̂1])
means that there is a tuple λ = (α0, β, ψ, dµ) of Lagrange multipliers, where
α0 ∈ R, β ∈ R

d(K)∗, ψ : [t̂0, t̂1] → R
d(x)∗ is a function of bounded variation∗,

dµ is a Lebesgue–Stieltjes measure on [t̂0, t̂1], such that the following conditions
are satisfied

(i) non-negativity conditions α0 > 0, dµ > 0,

(ii) non-triviality condition α0 + |β|+

∫ t̂1

t̂0

dµ > 0,

(iii) complementary slackness condition Φ(x̂(t)) dµ(t) = 0, t ∈ [t̂0, t̂1],

∗Below we denote by dψ the corresponding Lebesgue–Stieltjes measure on [t̂0, t̂1].
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(iv) adjoint equation, understood as equality between measures

− dψ(t) = ψ(t)fx(x̂(t), û(t)) dt− dµ(t)Φ′(x̂(t)), t ∈ [t̂0, t̂1],

(v) transversality conditions

ψ(t̂0) = lx0
(p̂), −ψ(t̂1) = lx1

(p̂),

where l(x0, x1) = α0J(x0, x1) + βK(x0, x1) is the endpoint Lagrange
function, and p̂ = (x̂(t̂0), x̂(t̂1)),

(vi) the constancy of the Pontryagin function H = ψf(x, u) :

ψ(t)f(x̂(t), û(t)) = 0 a.e. on [t̂0, t̂1],

(vii) the maximality of the Pontryagin function:

ψ(t)f(x̂(t), u) 6 0 ∀u ∈ U, ∀ t ∈ [t̂0, t̂1].

Under assumptions (6), the following theorem is valid, see Dubovitskii and
Milyutin (1965).

Theorem 1 If (x̂(t), û(t) | t ∈ [t̂0, t̂1]) is a strong minimum in Problem A, then
there exists a tuple λ = (α0, β, ψ, dµ) of Lagrange multipliers that satisfies all
conditions (i)–(vii) of the maximum principle.

Assumptions (6) and the complementary slackness condition (iii) imply that
the measure dµ is equal to zero in some neighborhoods of the points t̂0 and
t̂1, whence the adjoint equation (iv) yields that the function ψ is Lipschitz
continuous in those neighborhoods.

Now, let us abandon assumptions (6). Then, one of the endpoints of the
process (x̂(t), û(t) | t ∈ [t̂0, t̂1]) may violate them. For definiteness, suppose that

Φ(x̂(t̂0)) = 0. (7)

In this case, one can easily note that the tuple of multipliers

α0 = 0, β = 0, ψ(t) ≡ 0, dµ = δ(t− t̂0),

where δ(t) is the δ-function, satisfies all conditions (i)–(vii) of the maximum
principle (MP). This tuple is nontrivial only because dµ 6= 0, and actually
the maximum principle holds trivially in this case for any admissible process
satisfying (7), thus giving no information about the optimal process.

A.Ya. Dubovitskii and V.A. Dubovitskii (father and son) proposed in Dubovit-
skii and Dubovitskii (1985, 1987, 1995) quite simple conditions that guarantee
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the non-triviality of MP without assumptions (6). However, the proof they pro-
posed for Problem A in Dubovitskii and Dubovitskii(1987) (which is practically
the only available proof of their result), is far from being simple; moreover,
it was given in an extremely concise form with a number of confusing typos.
So, their proof is hardly accessible even for specialists. We have revised and
partially changed that proof, and here we aim to present it in detail.

The theorem in question is as follows. Let (x̂(t), û(t) | t ∈ [t̂0, t̂1]) be a
process that is a strong minimum in Problem A. Suppose the following:

(a) there is an element u∗ ∈ U such that

Φ′(x̂(t̂0))f(x̂(t̂0), u
∗) < 0, (8)

(b) for any pair (x0, x1) ∈ R
2d(x) the following implication is true

K(x0, x1) = 0 =⇒ Φ(x0) = 0. (9)

(c) the mapping, R2d(x) → R
d(K), defined by (x̄0, x̄1) 7→ Kx0

(p̂)x̄0+Kx1
(p̂)x̄1,

is onto; i.e., the rank of matrix K ′(p̂) is equal to d(K).

Condition (a) is called the controllability assumption, (b) is the consistency
assumption†, and (c) is the regularity of endpoint constraints.

In view of (b) we have Φ(x̂(t̂0)) = 0 (that is, the endpoint constraints force
the left endpoint of the trajectory to lie on the “state boundary”). For the right
endpoint of the trajectory, we assume for simplicity that Φ(x̂(t̂1)) < 0. Then,
the adjoint variable ψ (which is a function of bounded variation) is continuous
at t̂1.

For definiteness, it will be convenient to assume in what follows that the
function ψ(t) of bounded variation is right continuous at all t ∈ [t̂0, t̂1), and also
has some value ψ(t̂0 − 0). Then, this function defines a measure

dψ({t̂0}) = [ψ](t̂0) := ψ(t̂0)− ψ(t̂0 − 0)

of the one-point set {t0}, where [ψ](t̂0) denotes the jump of the function ψ
at t̂0. This also applies to the non-decreasing function µ(t), which defines the
measure dµ.

The main result is the following

Theorem 2 If a process (x̂(t), û(t) | t ∈ [t̂0, t̂1]) is a strong minimum in Prob-
lem A, and assumptions (a), (b), (c) hold true, then there is a tuple of Lagrange
multipliers (α0, β, ψ, dµ) such that all conditions (i) – (vii) of the maximum
principle are fulfilled and dµ({t̂0}) = 0.

†Before the papers of Dubovitskii and Dubovitskii (1985, 1987), assumption (a) was used
in Arutynuov and Tynyanskiy (1984), but assumption (b) was missing there, without which
the result is incorrect.
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The last relation means that the tuple of multipliers is non-trivial not for
the reason that dµ({t̂0}) 6= 0, i.e., the non-triviality condition has the form

α0 + |β|+

∫

(t̂0, t̂1]

dµ > 0.

2. Proof of the main result

The proof will be made in several steps.

Index θ

Let a process (x̂(t), û(t) | t ∈ [t̂0, t̂1]) be a strong minimum in Problem A. With
this process, we associate a family of optimization problems {Bθ} and their
optimal solutions, labeled by a certain “index” θ.

Without loss of generality, we set t̂0 = 0.

By the “index” we mean a finite set of time instants ts and control values
us, i.e.,

θ = {(t1, u1), . . . , (td, ud)},

where 0 < t1 6 . . . 6 td < t̂1, and us ∈ U , s = 1, . . . , d are arbitrary. The
"length" d of the index depends on θ. For convenience, we set t0 = 0 and
td+1 = t̂1.

Next, let us define a segment [0, τ1] as follows: take the segment [0, t̂1] and,
at the points 0, t1, . . . , td, insert segments of unit length, always preserving the
position of the initial point 0. As a result, we obtain the segment [0, τ1] with
τ1 = t̂1 + d+ 1, while the inserted segments have the form

∆0 = [0, 1], ∆1 = [t1 + 1, t1 + 2], ∆2 = [t2 + 2, t2 + 3], . . . ,

. . . , ∆d = [td + d, td + (d+ 1)].

Set

E0 =
d⋃

k=0

∆s, E+ = [0, τ1] \ E0 ,

and define the functions

vθ(τ) =

{
0, τ ∈ E0,

1, τ ∈ E+,
tθ(τ) =

τ∫

0

vθ(r)dr, τ ∈ [0, τ1]. (10)
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Then we have

dtθ(τ)

dτ
= vθ(τ) a.e. on [0, τ1], tθ(0) = 0 , tθ(τ1) = t̂1 .

Thus, tθ(τ) is a piecewise linear, continuous, non-decreasing function that maps
[0, τ1] onto [0, t̂1] being constant on each ∆s. Moreover, tθ(∆s) = ts for all
s = 0, 1, . . . , d, where t0 = 0.

τ

tθ(τ)

0 1 τ1∆1

t̂1

t2 = t3

∆2 ∆3∆0

t1

Figure 1: Function tθ(τ) for the case of d = 3 and t1 < t2 = t3

For convenience in notation, we also set u0 = u∗, where the value of u∗ is
the same as in the controllability assumption (a). For a given index θ we define
the functions

uθ(τ) =

{
û(tθ(τ)), τ ∈ E+,

us, τ ∈ ∆s, s = 0, 1, . . . , d,
xθ(τ) = x̂(tθ(τ)). (11)

Obviously, the function uθ(τ) is measurable and essentially bounded with uθ(τ) ∈
U a.e. in [0, τ1], and the function xθ(τ) is Lipschitz continuous. Moreover,

dxθ(τ)

dτ
= vθ(τ) f(xθ(τ), uθ(τ)) a.e. on [0, τ1], xθ(0) = x̂(0), xθ(τ1) = x̂(t̂1),
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hence, the endpoints of the new trajectory xθ(τ) are the same as those of the
original trajectory x̂(t). Note also that

xθ(τ) = x̂(0) ∀ τ ∈ [0, 1]. (12)

Note that some points ts > 0 may coincide, for example, ts
′

= . . . = ts
′′

=
t∗, therefore, at such a point t∗ several segments of unit length are inserted
sequentially, on each of which we have vθ(τ) = 0 and uθ(τ) = us, where the
value us corresponds to the segment ∆s. Note that the segment ∆0 = [0, 1] is
separated from ∆1 because t0 = 0 < t1.

The set E0 is a finite union of closed intervals ∆s, s = 0, 1, . . . , d, and the set
E+ is a finite union of intervals or semi-intervals. Consider the collection of all
the intervals and semi-intervals of the sets E0 and E+, order it, and denote the
elements of this collection by σk, k = 0, 1, . . . ,m. Thus, [0, τ1] = σ0∪σ1∪· · ·∪σm,
where σ0 = ∆0 = [0, 1] and different σk do not overlap.

Denote by χk(τ) the characteristic function of the set σk, k = 0, 1, . . . ,m.

Problem Bθ of the index θ

Given the index θ, we fix the constructed interval ∆ = [0, τ1] and the function
uθ(τ), which will not be varied.

We introduce the space

W = Lip (∆,Rd(x))× L∞(∆0,R)× R
m

of elements w = (x(·), v0(·), z), where

x(·) ∈ Lip (∆,Rd(x)), v0(·) ∈ L∞(∆0,R), z = (z1, . . . , zm) ∈ R
m.

The functions v0, formally defined only on ∆0 = [0, 1], will be also considered
on the whole interval ∆ = [0, τ1], assuming that v0(τ) = 0 a.e. on [1, τ1]. We
will apply this remark to all functions from L∞(∆0,R) that will be used.

For brevity, let us put L∞(∆0) := L∞(∆0,R) and L∞(∆) := L∞(∆,R), and
let L−

∞(∆) be the cone of nonpositive functions in the space L∞(∆).

Given an element w = (x(·), v0(·), z), we define the function

v(τ) = v0(τ) +

m∑

k=1

zk χk(τ), (13)

i.e., v0(τ) defines the values of v(τ) on the interval ∆0, and zk is the value of
v(τ) on the set σk , k = 1, . . . ,m.
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In the space W, consider the following Problem Bθ:

J(x(0), x(τ1)) → min, (14)

v0(·) > 0, z > 0, (15)

S(x)
∣∣∣
τ
:=

Φ(x(τ))− Φ(x(0))

τ
∈ L−

∞(∆), (16)

dx

dτ
− v(τ)f(x(τ), uθ(τ)) = 0, (17)

K(x(0), x(τ1)) = 0, (18)

where v(τ) is defined by (13). We call it the associated problem, which corre-
sponds to the index θ and the control uθ(·).

The quite unexpected representation of the state constraint in the form (16),
proposed in Dubovitskii and Dubovitskii (1987), is the key point of the proof.
This is what made it possible to perform a variational analysis of the situa-
tion with “endpoint at the state boundary” and obtain a non-trivial maximum
principle for it.

Define the optimal point wθ = (xθ, vθ0 , z
θ) ∈ W of the Problem Bθ. Set

vθ0(τ) ≡ 0 and zθ = (zθ1 , . . . , z
θ
m), where

zθk =

{
0, σk ∈ E0

1, σk ∈ E+,
k = 1, . . . ,m.

Then, according to (13),

vθ(τ) =

m∑

k=1

zθk χk(τ).

It is easy to prove that, since (x̂, û | t ∈ [0, t̂1]) is a strong minimum in
Problem A, the point wθ = (xθ, vθ0 , z

θ) ∈ W is a local minimum in Problem
Bθ. (We leave this to the reader.) The optimality conditions of the latter can
be derived from the general Lagrange multipliers rule (see the below Theorem
3 in Appendix), and so, first we have to check its assumptions.

The operator S : Lip (∆,Rd(x)) → L∞(∆,R) is a composition of operators

Φ : Lip (∆,Rd(x)) → Lip (∆,R), x(τ) 7→ y(τ) = Φ(x(τ)),

and

P : Lip (∆,R) → L∞(∆,R), y(τ) 7→
y(τ)− y(0)

τ
,
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that is, S(x) = P (Φ(x)). Obviously both Φ and P are Fréchet differentiable.
Therefore, S is also Fréchet differentiable with the Fréchet derivative at the
point xθ of the form

S′(xθ) x̄
∣∣∣
τ
=

Φ′(xθ(τ)) x̄(τ)− Φ′(xθ(0)) x̄(0)

τ
∀ x̄ ∈ Lip (∆,Rd(x)).

Here xθ(0) = x̂(0). For brevity, we put x̂0 = x̂(0).

The equality operator defined by equations (17) and (18) maps the space W
to the space L∞(∆,Rd(x)) × R

d(K). As is known, the image of its derivative is
closed, since the derivative of operator (17) is surjective, and operator (18) is
finite-dimensional‡.

Recall that Φ(xθ(0)) = Φ(x̂(0)) = 0. For every δ > 0, we define a measurable
set

Mδ = {τ ∈ ∆ : S(xθ(τ)) > −δ }.

Local maximum principle for the index θ

The point (xθ(·), vθ0(·), z
θ) of local minimum in problem Bθ satisfies the local

maximum principle (LMP), which we will formulate using Lagrange multipliers
α0, β, ρ, ξ, η, ν. Here, the multiplier α0 corresponds to the cost (14), the row
vector β – to the endpoint equality (18), the functional ν and the row vector η
– to the inequality constraints (15), the functional ρ refers to the control system
(17), and the functional ξ – to the “state constraint” (16).

Let L∗
∞(∆) be the dual to the space L∞(∆), and L∗

∞(∆0) be the space of
functionals in L∗

∞(∆), concentrated on ∆0 = [0, 1] (i.e. vanishing on [1, τ1].)

By Theorem 3, for the point (xθ, vθ0 , z
θ) there exists a tuple (α0, β, ρ, ξ, η, ν),

where

α0 ∈ R, β ∈ R
d(K)∗, η ∈ R

m∗, ρ ∈ L∗
∞(∆,Rd(x)), ξ ∈ L∗

∞(∆), ν ∈ L∗
∞(∆0),

α0 > 0, η > 0, η zθ = 0, ξ > 0, ν > 0, (19)

the functional ξ is concentrated on the set Mδ for any δ > 0, the functional ν is
concentrated on the interval [0, 1], such that the normalization condition holds:

α0 + |β|+ |η|+ ‖ρ‖+ ‖ξ‖ = 1, (20)

and the Lagrange function

L(w) = l(x0, x1) − η z − 〈ν, v0〉 +
〈
ρ,

dx

dτ
− v(τ)f(x(τ), uθ(τ))

〉
+

‡In this case, the equality operator of problem Bθ is said to satisfy the weakened regularity

condition, which is a minimal assumption concerning the equality constraints.
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+
〈
ξ,

Φ(x(τ))− Φ(x(0))

τ

〉

is stationary at the point (xθ, vθ0 , z
θ), i.e. for any test element w̄ = (x̄, v̄0, z̄) ∈

W, the following equality holds:

l′(p̂) p̄ − η z̄ − 〈ν, v̄0〉 +
〈
ρ, ˙̄x− v̄fθ − vθfθx x̄

〉
+

+
〈
ξ,

1

τ

(
Φ′(xθ(τ)) x̄(τ)− Φ′(xθ(0)) x̄(0)

)〉
= 0, (21)

where
l = α0J + βK, p̂ = (x̂(0), x̂(t1)), p̄ = (x̄(0), x̄(τ1)),

l′(p̂)p̄ = lx0
(p̂) x̄(0) + lx1

(p̂) x̄(τ1), v̄(τ) = v̄0(τ) +
m∑

k=1

z̄k χk(τ),

fθ = f(xθ, uθ), fθx = fx(x
θ, uθ).

Here and below we omit the dependence of L and l on the Lagrange multipliers.

Note that condition (20) ensures that not all multipliers α0, β, ρ, ξ, η, ν are
zero. Indeed, if α0 + |β|+ |η|+ ‖ρ‖+ ‖ξ‖ = 0, then ν = 0 by (21).

Preliminary analysis of LMP for the index θ

By putting x̄ = 0 into equation (21), we get ηz̄ + 〈ν, v̄0〉 + 〈ρ, v̄fθ〉 = 0 for all
v̄0 , z̄; in more detail,

m∑

j=1

ηj z̄j + 〈ν, v̄0〉+ 〈ρ, (v̄0 +

m∑

j=1

z̄j χj)f
θ〉 = 0 ∀ v̄0, z̄,

whence

ηj + 〈ρ, χjf
θ〉 = 0, j = 1, . . . ,m, (22)

and

〈ν, v̄0〉 + 〈ρ, v̄0f
θ〉 = 0 ∀ v̄0 ∈ L∞(∆0). (23)

Let us note that conditions (22) allow us to exclude |η| from the normaliza-
tion condition (20). Indeed, if α0+ |β|+ ‖ρ‖+ ‖ξ‖ = 0, then by (22) also η = 0.
Therefore, we will further use the following equivalent normalization:

α0 + |β|+ ‖ρ‖+ ‖ξ‖ = 1. (24)
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Since η > 0 and η zθ = 0, we have: ηk = 0 if zθk > 0, and ηk > 0 if zθk = 0.
In other words, ηk = 0 if σk ⊂ E+ and ηk > 0 if σk ⊂ E0. Note also that
χkf

θ = f(xθ, uk) on σk ⊂ E0. Therefore, condition (22) implies

〈ρ, χkf(x
θ, uθ)〉 = 0 if σk ⊂ E+ ,

〈ρ, χkf(x
θ, uk)〉 6 0 if σk ⊂ E0 ,

k = 1, . . . ,m. (25)

Condition (23) will be analyzed later.

Now, upon putting v̄0 = 0 and z̄ = 0 (hence v̄ = 0 as well) in (21), we have

l′(p̂) p̄ + 〈ρ, ˙̄x−vθfθx x̄〉 +
〈
ξ,

1

τ

(
Φ′(xθ(τ)) x̄(τ)−Φ′(xθ(0)) x̄(0)

)〉
= 0 (26)

for all x̄ ∈ Lip (∆,Rd(x)).

In the next few steps of the LMP analysis, up to the end of the proof of
Lemma 2, we basically follow Dubovitskii and Dubovitskii (1987), with minor
modifications. These steps, especially Lemmas 1 and 2, can be definitely called
the “pearls” of optimal control theory.

Functional ρ

Consider first the functional ρ ∈ L∗
∞(∆,Rd(x)) related to the control system (17).

For any small ε ∈ (0, 1) we define the interval ∆ε := [ε, τ1], and (for p = ∞
or p = 1) denote by Lp(∆ε,R

d(x)) the subspace of functions ω ∈ Lp(∆,R
d(x))

that vanish on the interval [0, ε] (as usual, L1(∆,R
d(x)) stands for the space of

summable functions ω : ∆ → R
d(x) with the norm ‖ω‖1 =

∫
∆
|ω(τ)| dτ).

For any small ε > 0 we denote by ρε the restriction of the functional ρ to the
interval ∆ε, more precisely, the restriction to the space L∞(∆ε,R

d(x)). Take an
arbitrary ω̄ ∈ L∞(∆ε,R

d(x)) and let x̄ ∈ Lip (∆,Rd(x)) be such that ˙̄x = ω̄ and
x̄(0) = 0. Note that x̄(τ) = 0 on [0, ε] and ‖x̄‖∞ 6 ‖ω̄‖1. As we substitute this
x̄ in the relation (26), we get

〈ρε, ω̄〉 = −l′x1
(p̂) x̄(τ1) + 〈ρε, v

θfθx x̄〉 −
〈
ξ,

1

τ
Φ′(xθ) x̄

〉
,

whence

|〈ρε, ω̄〉| 6 K(ε) ‖x̄‖∞ 6 K(ε)

∫

∆ε

|ω̄| dτ ∀ ω̄ ∈ L∞(∆ε,R
d(x))

with some K(ε). By the Hahn–Banach theorem, this estimate implies that ρε
can be extended to a functional over the space L1(∆ε,R

d(x)), therefore there is
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a function ψε ∈ L∞(∆ε,R
d(x)∗) such that

〈ρε, ω〉 =

∫

∆ε

ψε ω dτ ∀ω ∈ L1(∆ε,R
d(x)). (27)

Obviously, if ε′ < ε, then ∆ε ⊂ ∆ε′ and L1(∆ε,R
d(x)) ⊂ L1(∆ε′ ,R

d(x)),
hence ρε′ = ρε on L1(∆ε,R

d(x)) and the family {ψε} has a similar property, that
is, ψε′χ∆ε

= ψε. Therefore, there exists a measurable function ψ(τ), defined on
the entire segment ∆, such that ∀ω ∈ L∞(∆), ∀ ε > 0, for ωε = ω χ∆e

we have

〈ρ, ωε〉 =

∫

∆

ψ(τ)ωε(τ) dτ. (28)

From (27) it follows that, for any ε > 0
∫

∆ε

|ψ| dt =

∫

∆ε

|ψε| dt = ‖ρε‖ 6 ‖ρ‖,

whence ψ ∈ L1(∆,Rd(x)∗) and ‖ψ‖1 6 ‖ρ‖.

Let a functional ρ0 ∈ L∗
∞(∆,Rd(x)) be such that

〈ρ, ω〉 = 〈ρ0, ω〉+

∫

∆

ψ(τ)ω(τ) dτ ∀ω ∈ L∞(∆,Rd(x)), (29)

that is, ρ = ρ0 + ψ (here ψ is the functional over L∞(∆,Rd(x)), defined by the
function ψ). Later we will show that ρ0 = 0, but for now we just note that, due
to (28), ρ0 is concentrated on any interval [0, ε].

Functional ξ

Now, let us deal with the functional ξ ∈ L∗
∞(∆) related to the state constraint

(16). Consider its restriction to the subspace

C0 := {y ∈ C(∆) : y(0) = 0},

where C(∆) is the space of continuous functions y : ∆ → R. Using the Riesz
theorem, we find that there is a measure dm ∈ C∗(∆) such that

〈ξ, y〉 =

∫

∆

y(τ) dm(τ) ∀ y ∈ C0, and dm({0}) = 0. (30)

On the entire space L∞(∆), we have the equality

〈ξ, y〉 = 〈ξ0, y〉+

∫

∆

y(τ) dm(τ) ∀ y ∈ L∞(∆) (31)
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with some ξ0 ∈ L∗
∞(∆). We will briefly write this equality as ξ = ξ0 + dm.

Condition (30) implies that for any ε > 0 we have ξ = dm on ∆ε; the latter
means that

〈ξ, χ∆ε
y〉 =

∫

∆ε

y(τ) dm(τ) ∀ y ∈ L∞(∆).

Consequently, ξ0 = 0 on ∆ε for all ε > 0, and therefore ξ0 is concentrated on
any segment [0, ε]. Since ξ > 0, then ξ0 > 0 and dm > 0 as well. Moreover,
‖dm‖ 6 ‖ξ‖ 6 1, and

dm((0, δ]) → 0 as δ → 0 + . (32)

The latter is true, because dm({0}) = 0.

Note that notations ρ0 and ξ0 do not refer to the interval ∆0 (as might be
wrongly understood); both these functionals are concentrated on any segment
[0, ε] with ε > 0, and hence they are singular functionals.

An important step in the proof is the following

Lemma 1 Both ρ0 = 0 and ξ0 = 0.

Proof. a) Consider the interval σ0 = ∆0 = [0, 1] ⊂ E0 . Recall that

xθ(τ) = xθ(0) = x̂0 and uθ(τ) = u∗ on ∆0. (33)

Hence fθ(τ) := f(xθ(τ), uθ(τ)) = f(x̂0, u
∗) is a constant vector on ∆0.

Take any ε ∈ (0, 1) and put v̄0 = χ[0,ε] in equation (23). Recalling that
ν > 0, we get 〈ρ, χ[0,ε]f(x̂(0), u

∗)〉 6 0, and since ρ = ρ0 + ψ by (29), we have

〈ρ0, χ[0,ε]f(x̂0, u
∗)〉+

∫

[0,ε]

ψ(τ)f(x̂0, u
∗) dτ 6 0.

Since ρ0 is concentrated on [0, ε] for any ε > 0, we obtain

〈ρ0, f(x̂0, u
∗)〉 6 0. (34)

b) Let us get back to relation (26). It implies that, for any x̄ ∈ Lip (∆,Rd(x))
with x̄(0) = 0, we have

l′x1
(p̂) x̄(τ1) + 〈ρ, ˙̄x− vθfθx x̄〉+

〈
ξ,

1

τ
Φ′(xθ) x̄

〉
= 0. (35)

Note that here the function 1
τ
x̄(τ) is bounded, since the function x̄ is Lipschitz

continuous with x̄(0) = 0.
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We claim that

〈ρ0, ˙̄x〉 +
〈
ξ0,

1

τ
Φ′(xθ) x̄

〉
= 0. (36)

Indeed, fix any x̄ ∈ Lip (∆,Rd(x)) with x̄(0) = 0, and define the functions

x̄ε(τ) =

{
x̄(τ), τ ∈ [0, ε],

x̄(ε), τ ∈ [ε, τ1],
ε > 0.

Since ‖x̄ε‖∞ → 0 as ε→ 0, equality (35) yields

〈ρ, ˙̄xε〉 +
〈
ξ,

1

τ
Φ′(xθ) x̄ε

〉
→ 0 as ε→ 0. (37)

Since ˙̄xε = 0 on [ε, τ1], the first summand here can be replaced by 〈ρ0, ˙̄xε〉.

Now recall that ξ = ξ0 + dm. We claim that

∫ τ1

0+

1

τ
Φ′(xθ(τ)) x̄ε(τ) dm → 0 as ε→ 0. (38)

Since the function Φ′(xθ(τ)) is bounded, it suffices to prove that

∫ τ1

0+

1

τ
|x̄ε(τ)| dm → 0 as ε→ 0. (39)

Fix any δ > 0. Since |xε(τ)| 6 Bτ for some B (depending only on the
Lipschitz constant of the function x̄), we have

∫ δ

0+

1

τ
|x̄ε| dm 6 B · dm((0, δ]) for all ε > 0,

and since the function 1/τ is bounded on [δ, τ1], we have

∫ τ1

δ

1

τ
|x̄ε| dm→ 0 as

ε→ 0, whence

∫ τ1

0+

1

τ
|x̄ε(τ)| dm 6 B · dm((0, δ]) + o(1) as ε→ 0.

In view of (32), this obviously implies (39), and so, relation (38) is proven.

Therefore, in the second summand of (37) we can replace ξ by ξ0, thus
obtaining

〈ρ0, ˙̄xε〉 +
〈
ξ0,

1

τ
Φ′(xθ) x̄ε

〉
→ 0 as ε→ 0.
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But both ρ0 and ξ0 allows one to replace x̄ε by x̄, so that we get (36). Recall
that equality (36) is obtained for any x̄ ∈ Lip (∆,Rd(x)) with x̄(0) = 0.

c) Now, by setting x̄(τ) = f(x̂0, u
∗) τ in (36), we get

〈ρ0, f(x̂0, u
∗)〉 + 〈ξ0, Φ

′(x̂0) f(x̂0, u
∗)〉 = 0. (40)

By (34), the first summand here is non-positive. Since ξ0 > 0 and Φ′(x̂0) f(x̂0, u
∗) <

0 by the controllability assumption, the second summand is also non-positive.
Therefore, both these terms are equal to zero:

〈ρ0, f(x̂0, u
∗)〉 = 0,

〈
ξ0, Φ

′(x̂0) f(x̂0, u
∗)
〉
= 0.

Moreover, the last equality, in view of the controllability assumption, gives
ξ0 = 0, and then (36) obviously gives ρ0 = 0. Lemma 1 is proven. ✷

Thus, the functionals ρ and ξ have the form

〈ρ, ω〉 =

∫

∆

ψ(τ)ω(τ) dτ ∀ω ∈ L∞(∆,Rd(x)),

〈ξ, y〉 =

∫

∆

y(τ) dm(τ) ∀ y ∈ L∞(∆,R),

where ψ ∈ L1(∆,Rd(x)∗) and dm ∈ C∗(∆) with dm({0}) = 0.

In view of this, condition (25) means that, for k = 1, . . . ,m,

∫

σk

ψ(τ)f(xθ(τ), uθ(τ)) dτ

{
= 0, if σk ⊂ E+ ,

6 0, if σk ⊂ E0 .
(41)

As was already noted, since ξ > 0, then dm > 0. Moreover, since ξ is con-
centrated on the set Mδ for any δ > 0, we obtain the complementary slackness
condition

Φ(xθ(τ)) dm(τ) = 0 a.e. on ∆.

Finally, relation (23) now becomes

∫

∆0

ψ(τ)f(x̂0, u
∗) v̄0(τ) dτ + 〈ν, v̄0〉 = 0 ∀ v̄0 ∈ L∞(∆0).

Since ν > 0 by (19), then ν is in fact an integral functional defined by an
integrable function ν̃(τ) > 0 such that

ψ(τ)f(x̂0, u
∗) + ν̃(τ) = 0 for a.a. τ ∈ [0, 1].
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This relation is equivalent to the inequality

ψ(τ)f(x̂0, u
∗) 6 0 for a.a. τ ∈ [0, 1]. (42)

So, the collection of multipliers in LMP is now as follows:

α > 0, β ∈ R
d(K)∗ , ψ ∈ L1(∆,R

d(x)∗), dm ∈ C∗(∆),

and the following conditions are met:

dm > 0, dm({0}) = 0, Φ(xθ(τ)) dm(τ) = 0, conditions (41), (42),

normalization condition (see (24)):

α0 + |β| +

∫

∆

|ψ(τ)| dτ +

∫

∆

dm(τ) = 1, (43)

and, according to (26), for any x̄ ∈ Lip (∆,Rd(x))

l′(p̂) p̄ +

∫

∆

ψ( ˙̄x− vθfθx x̄) dτ +

+

∫

∆

1

τ

(
Φ′(xθ(τ)) x̄(τ)− Φ′(x̂0) x̄(0)

)
dm = 0. (44)

(We exclude the multiplier ν, since it brings no more information.)

Adjoint equation and transversality conditions in the LMP

Let us analyze condition (44). To do this, we introduce a right continuous
function γ(τ) as a solution to equation

dγ = − vθψfθx dτ +
1

τ
Φ′(xθ) dm, γ(τ1) = −lx1

, (45)

where lx1
= lx1

(p̂). Recall that by assumption, Φ(x̂(t̂1)) = Φ(xθ(τ1)) < 0,
therefore, dm(τ) = 0 in some neighborhood of the point τ1, and so, γ(τ) is
continuous at τ1.

Let BV (∆) denote the space of functions of bounded variation ϕ : [0, τ1] → R

for which the values ϕ(0−) and ϕ(τ1+) are defined. Hence, the jumps

[ϕ(0)] := ϕ(0+)− ϕ(0−), [ϕ(τ1)] := ϕ(τ1+)− ϕ(τ1−)
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are also defined. Each such function determines a Lebesgue–Stieltjes measure
dϕ on [0, τ1]. We will assume that ϕ is right continuous, so ϕ(0+) = ϕ(0) and
ϕ(τ1+) = ϕ(τ1).

Since ψ ∈ L1(∆,R
d(x)∗), and m ∈ BV (∆), then for any ε > 0 the function

γ has bounded variation on the segment ∆ε = [ε, τ1]. (But, perhaps, not on
the entire segment ∆ = [0, τ1], since, a priori, the measure 1

τ
dm can have an

infinite integral there.)

Fix any ε ∈ (0, 1] and consider equation (44) for all x̄ ∈ Lip [0, τ1] such that
x̄(t) = const on [0, ε]. Notice that since ˙̄x = 0 on [0, ε] and vθ = 0 on [0, 1], we
have ∫

[0,ε]

ψ
(
˙̄x− vθfθx x̄

)
dτ = 0.

Moreover, since xθ(τ) = x̂0 and x̄(τ) = x̄(0) on [0, ε], we also have
∫

[0,ε]

1

τ

(
Φ′(xθ(τ)) x̄(τ)− Φ′(x̂0) x̄(0)

)
dm = 0.

Therefore, both integrals in (44) should be taken over the interval [ε, τ1] only,
and so, we have the equality

l′x0
x̄(0) + l′x1

x̄(τ1) +

∫ τ1

ε

ψ ˙̄x dτ +

+

∫ τ1

ε

x̄ dγ −

∫ τ1

ε

1

τ
Φ′(x̂0) x̄(0) dm = 0.

The last integral here is finite, since τ > ε. Upon integrating the second
integral by parts and taking into account the terminal condition in (45), we
obtain

lx0
x̄(0)− γ(ε) x̄(ε) +

∫ τ1

ε

(ψ − γ) ˙̄x dτ −

∫ τ1

ε

1

τ
Φ′(x̂0) x̄(0) dm = 0.

Since x̄(0) = x̄(ε), we have

(
lx0

− γ(ε) −

∫ τ1

ε

dm

τ
Φ′(x̂0)

)
x̄(ε) +

∫ τ1

ε

(ψ − γ) ˙̄x dτ = 0.

This equation holds for any x̄ ∈ Lip [ε, τ1], that is, for any x̄(ε) ∈ R
d(x) and

˙̄x ∈ L∞[ε, τ1], independent each of the other. Therefore, the coefficients at both
of these variables should vanish, whence ψ = γ almost everywhere on [ε, τ1],
and so, changing ψ on a set of zero measure, we may assume that it is right
continuous and, in view of (45), satisfies the relations

dψ = − vθψfθx dτ +
1

τ
Φ′(xθ) dm, (46)
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ψ(τ1) = −lx1
, (47)

ψ(ε) = lx0
−

∫ τ1

ε

1

τ
Φ′(x̂0) dm, (48)

where equation (46) holds on the interval [ε, τ1]. But since ε ∈ (0, 1] is arbitrary,
this equation holds for all τ ∈ (0, t1], while relation (48) gives

ψ(τ) = lx0
−
(∫ τ1

τ

dm

s

)
Φ′(x̂0) ∀ τ ∈ (0, τ1]. (49)

Yet, we cannot assume that ψ(0+) is finite.

The measure 1
τ

dm

Now consider the measure 1
τ

dm. If we show that it is finite, then ψ(0+) would
be finite, and, by (46), ψ would also have a bounded variation. Recall that the
control set U in our problem is bounded, and that uθ depends on the choice of
values uk ∈ U on the intervals ∆k, k = 1, . . . , d.

Lemma 2 There exists a constant B, common to all values u ∈ U, such that

∫

∆

dm

τ
6 B and Var ψ

∣∣∣
∆

6 B.

Proof. According to (42), for almost all τ ∈ ∆0 = [0, 1] we have ψ(τ)f(x̂0, u
∗) 6

0. Then, by multiplying (49) by f(x̂0, u
∗), we obtain for a.a. τ ∈ ∆0:

ψ(τ)f(x̂0, u
∗) = lx0

f(x̂0, u
∗) −

(∫ τ1

τ

1

s
dm

)
Φ′(x̂0) f(x̂0, u

∗) 6 0.

By the controllability assumption, A := −Φ′(x̂0)f(x̂0, u
∗) > 0, and therefore,

A

∫ τ1

τ

dm

s
6 − lx0

f(x̂0, u
∗) for a.a. τ ∈ [0, 1].

Since α0 + |β| 6 1, the right hand side of this inequality is uniformly bounded
by some constant B, and hence

A

∫ τ1

τ

dm

s
6 B ∀ τ ∈ [0, 1],

which yields ∫ τ1

0

dm

s
6 B/A .
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This, and (46), imply (by the Gronwall lemma) the estimate ‖ψ‖∞ 6 B′,
whence also Varψ|∆ 6 B′′ for some constants B′, B′′ common for all choices
of u ∈ U.

Lemma 2 is proven. ✷

From this lemma and (49) it follows that ψ(0+) is finite and, since ψ is right
continuous, we obtain

ψ(0) = ψ(0+) = lx0
−
(∫ τ1

0

dm

τ

)
Φ′(x̂0). (50)

Thus, for the collection α0 > 0, β, ψ ∈ BV (∆,Rd(x)∗), dm ∈ C∗(∆), we
can impose, instead of (43), the normalization

α0 + |β| +

∫ τ1

0

dm(τ)

τ
= 1. (51)

Indeed, if α0 = 0, β = 0, and dm = 0, then l = 0 and equation (49) obviously
implies ψ(τ) ≡ 0, which contradicts (43).

Let us now define a measure dµ(τ) on [0, τ1] such that

dµ({0}) = 0, and dµ(τ) =
1

τ
dm(τ) on (0, τ1].

Then, relations (46), (47), and (50) transform, respectively, into

dψ = − vθψfθx dτ + Φ′(xθ) dµ, (52)

ψ(τ1) = −lx1
, (53)

ψ(0) = lx0
−

(∫ τ1

0

dµ

)
Φ′(x̂0) , (54)

while the normalization becomes

α0 + |β| +

∫ τ1

0

dµ(τ) = 1. (55)

From now on, the Lagrange multipliers ψ and dµ will be also marked by the
superscript θ.

As this was shown above, at the point (xθ, vθ0 , z
θ) ∈ W in Problem Bθ, the

following necessary optimality conditions hold:
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there exists a collection of Lagrange multipliers (α0, β, ψ
θ, dµθ) such that

α0 ∈ R, β ∈ R
d(K)∗, ψθ ∈ BV (∆,Rd(x)∗), dµθ ∈ C∗(∆),

α0 > 0, dµθ
> 0, Φ(xθ(τ)) dµθ(τ) = 0, dµθ({0}) = 0, (56)

α0 + |β| +

∫ τ1

0

dµθ(τ) = 1, (57)

dψθ = − vθψθfθx dτ + Φ′(xθ) dµθ, (58)

ψθ(0) = lx0
−

(∫ τ1

0

dµθ

)
Φ′(x̂0) , ψθ(τ1) = −lx1

, (59)

∫

σk

ψθ(τ)f(xθ(τ), uθ(τ)) dτ

{
= 0 if σk ⊂ E+ ,

6 0 if σk ⊂ E0 ,
k = 1, . . . ,m, (60)

ψθ(τ)f(x̂0, u
∗) 6 0, τ ∈ σ0 = [0, 1]. (61)

Recall that, by assumption, the functions ψθ and µθ are right continuous.
Since dµθ({0}) = 0, by the adjoint equation (58) we have dψθ({0}) = 0. Con-
sequently,

µθ(0−) = µθ(0) = µθ(0+) and ψθ(0−) = ψθ(0) = ψθ(0+).

Moreover, both functions ψθ and µθ are continuous at τ1.

Pre-maximality condition

Consider in more detail the second condition in (60), which refers to the set
E0. Take an arbitrary interval σk ⊂ E0 with k > 0, that is σk 6= [0, 1]. Let
us denote it as σk = [τ ′, τ ′′]. On this interval, uθ(τ) = uk is a constant vector,
and vθ(τ) = 0, whence the value xθ(τ) is also constant, which we denote by xk.
Then, by virtue of (58),

dψθ(τ) = Φ′(xk) dµθ(τ) on [τ ′, τ ′′].

Therefore, ψθ(τ) moves in the space R
d(x)∗ in a constant direction Φ′(xk) on

σk. According to the second condition in (60),

∫ τ ′′

τ ′

ψθ(τ)f(xk, uk) dτ 6 0. (62)
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There can be other intervals in E0, adjoining the interval [τ ′, τ ′′] on the left
or the right. (Under the mapping τ 7→ t, they all are taken to the same point
tk.) Let [τ ′∗, τ

′′
∗ ] be the union of the interval [τ ′, τ ′′] with all adjacent intervals

from E0, if any. Then, vθ(τ) = 0 on this whole united interval; so, as before,
xθ(τ) = xk is constant, dψθ(τ) = Φ′(xk) dµθ(τ), and therefore, ψθ(τ) still
changes in the same constant direction Φ′(xk) on [τ ′∗, τ

′′
∗ ].

Let us consider the integrand hk(τ) := ψθ(τ)f(xk, uk) from (62) on the
interval [τ ′∗, τ

′′
∗ ]. Note that, on this interval, the control uθ(τ), in general, is

not constant, but only piecewise constant. However, we fix the value uk and
consider the function hk(τ) with this value even on the “alien” intervals from
E0, adjacent to [τ ′, τ ′′]. Like ψθ(τ), it is a function of bounded variation. On
the whole interval [τ ′∗, τ

′′
∗ ], we have

dhk(τ) = dψθ(τ)f(xk, uk) = Φ′(xk) f(xk, uk) dµθ(τ).

For definiteness, let the constant Φ′(xk) f(xk, uk) be nonnegative. Then hk(τ)
does not decrease, whence (62) implies hk(τ ′+0) 6 0. Moreover, hk(τ ′∗+0) 6 0,
since τ ′∗ 6 τ ′ and dµ > 0.

We claim that in this case also hk(τ ′∗−0) 6 0. Indeed, by the adjoint equation
(58), the jump [hk](τ ′∗) of the function hk(τ) at the point τ ′∗ occurs in the same
direction:

[hk](τ ′∗) := hk(τ ′∗ + 0)− hk(τ ′∗ − 0) = Φ′(xk)f(xk, uk) [µθ](τ ′∗) > 0.

Hence hk(τ ′∗ − 0) = hk(τ ′∗ + 0)− [hk](τ ′∗) 6 0, q.e.d. ✷

The case, in which Φ′(xk) f(xk, uk) 6 0, similarly gives hk(τ ′′∗ + 0) 6 0.

So, we have shown that the second condition from (60) guarantees the ful-
fillment of at least one of the inequalities

hk(τ ′∗ − 0) 6 0 or hk(τ ′′∗ + 0) 6 0.

In other words, at least one of the inequalities §

ψθ(τ ′∗ − 0)f(xk, uk) 6 0 or ψθ(τ ′∗ + 0)f(xk, uk) 6 0 (63)

is satisfied, where [τ ′∗, τ
′′
∗ ] is the maximal interval containing the given interval

σk ⊂ E0 , on which the value vθ(τ) = 0 is preserved.

Let us now rewrite the obtained conditions (56)–(63) in terms of the original
time t. This will make it possible to consider the conditions obtained for different
indices θ on one and the same original interval [0, t̂1].

§Here we write ψθ(τ ′∗ + 0) for clarity, despite the fact that, by agreement, ψθ is right
continuous, so we could simply write ψθ(τ ′∗).
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A finite-valued maximum principle of index θ

Thus, on the interval ∆ = [0, τ1] we have a piecewise linear, continuous, non-
decreasing function tθ(τ), which maps it onto the interval [0, t̂1], being constant
on each segment σk ⊂ E0. In particular, tθ(τ) = 0 for τ ∈ σ0 = [0, 1].

Moreover, on [0, τ1] there exist functions uθ(τ) and xθ(τ), generated by the
original û(t) and x̂(t) according to formulas (11), there is also a right continuous
function of bounded variation ψθ(τ), there is a non-negative measure dµθ(τ),
corresponding to a non-decreasing right continuous function µθ(τ).

For each t ∈ [0, t̂1], let τθ(t) be the largest root of the equation tθ(τ) = t,
and let τθ(0−) = 0. Since σ0 = [0, 1] ⊂ E0, we have τθ(0) = τθ(0+) = 1, so

[τθ](0) := τθ(0+) − τθ(0−) = 1.

Clearly, the function τθ : (0, t̂1] → (1, τ1] is strictly increasing and right
continuous. It has discontinuities at the given points ts, s = 1, . . . , d (and only
at them):

[τθ](ts) = τ ′′s∗ − τ ′s∗ , s = 1, . . . , d,

where [τ ′s∗, τ
′′
s∗] is the above defined maximal segment corresponding to the point

ts. (Recall also that some points ts may coincide.)

It is easily seen that xθ(τθ(t)) = x̂(t) for all t ∈ [0, t̂1], and uθ(τθ(t)) = û(t)
for almost all t ∈ [0, t̂1], i.e., by the time transformation t 7→ τθ(t) we get back
to the original x̂(t) and û(t).

Further, we set

µ(t) = µθ(τθ(t)), ψ(t) = ψθ(τθ(t)), t ∈ [0, t̂1].

Then, µ(0−) = µθ(τθ(0−)) = µθ(0) and

ψ(0−) = ψθ(τθ(0−)) = ψθ(0) = lx0
−

(∫ τ1

0

dµθ

)
.

It is easy to check that µ(t) is still a non-decreasing function that has jumps
at the points ts:

[µ](ts) = µθ(τ ′′s∗+) − µθ(τ ′s∗−), s = 1, . . . , d,

[µ](0) = µθ(τθ(0+))− µθ(τθ(0−)) = µθ(1)− µθ(0) =

∫

[0,1]

dµθ,
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and ψ(t) is a function of bounded variation (with the value ψ(0−)) satisfying
the equation

dψ(t) = −ψ(t)fx(x̂(t), û(t)) dt+ Φ′(x̂(t)) dµ(t), t ∈ [0, t̂1],

and having the same terminal values as ψθ(τ). (Here we also took into account
the fact that for τ ∈ E+ and the corresponding t = tθ(τ), we have dµ(t) =
dµθ(τ)).

Clearly, the complementary slackness condition Φ(xθ(τ)) dµθ(τ) = 0, τ ∈
[0, τ1] for the measure dµθ implies the same condition for the measure dµ:

Φ(x̂(t)) dµ(t) = 0, t ∈ [0, t̂1].

Due to this condition and our assumption Φ(x̂(t̂1)) < 0, in the vicinity of t̂1 the
measure “does not work”: dµ(t) = 0, and so, the function ψ(t) is continuous at
t̂1.

Thus, conditions (56)–(61) can be rewritten in the original time t ∈ [0, t̂1] as
follows.

For any index θ, there is a tuple λ = (α0, β, dµ(t)) and a corresponding
function of bounded variation ψ(t), such that the following conditions are met:

(i) α0 > 0, dµ > 0,

(ii) α0 + |β|+
∫

[0,t̂1]

dµ = 1,

(iii) Φ(x̂(t)) dµ(t) = 0, t ∈ [0, t̂1],

(iv) dψ(t) = −ψ(t)fx(x̂(t), û(t)) dt+ Φ′(x̂(t)) dµ(t), dψ({0}) = 0,

(v) ψ(0−) = lx0
− Φ′(x̂(t̂0))

∫

[0,t̂1]

dµ, ψ(t̂1) = −lx1
,

(vi)
ts+1∫
ts

ψ(t) f(x̂(t), û(t)) dt = 0, s = 0, 1, . . . , d,

(vii) for any pair (ts, us) from the index θ, at least one of the inequalities is
satisfied

ψ(ts − 0)f(x̂(ts), us) 6 0 or ψ(ts + 0)f(x̂(ts), us) 6 0.

Condition (vi) is obtained here from the first condition (60) in view of the
fact that, on each σ = [ts, ts+1] ⊂ E+ with ts < ts+1, s = 0, 1, . . . , d, the
mapping τ → t is one-to-one, vθ(τ) = 1, and therefore dτ = dt.



100 A. V. Dmirtuk and N. P. Osmolovskii

Condition (vii) follows from (63). The set of all conditions (i)–(vii) forms a
“partial maximum principle” corresponding to the given index θ.

Thus, for any θ, we have obtained a tuple of Lagrange multipliers which
generate the function ψ(t), so that conditions (i)–(vii) are satisfied. These
Lagrange multipliers, in general, depend on the index θ. Conditions (i)–(v)
are the same for all indices, and conditions (vi)–(vii) are connected with each
individual index. Our aim now is to pass to conditions (vi)–(vii) with a tuple
of multipliers independent of θ.

Passage to a global maximum principle

Now, we will “organize” the obtained family of partial maximum principles.

For a given index θ, denote by Λθ the set of all tuples

λ = (α0, β, dµ) ∈ R× R
d(K)∗ × C∗([0, t̂1],R),

for which there exists a function of bounded variation ψ such that conditions
(i)–(vii) of the “finite-valued maximum principle of index θ” hold. This is a set
in the space

Y ∗ = R× R
d(K)∗ × C∗([0, t̂1],R),

dual to the space Y = R× R
d(K) × C([0, t̂1],R).

The key fact in our proof is that the set Λθ is compact in the weak* topology
of Y (cf. the proof of the compactness of such a set in Dmitruk and Osmolovskii,
2018).

Lemma 3 Λθ is a weak* compact set, that is, a compact set with respect to the
usual convergence of finite-dimensional vectors (α0, β) and the weak* conver-
gence of measures dµ(t) in the space C∗([0, t̂1],R).

Proof. Let a tuple λ = (α0, β, dµ(t)) and the corresponding function of
bounded variation ψ(t) be given. First of all, we show that ψ(t) is uniquely
determined (up to values at its discontinuity points) by the vector (α0, β), the
adjoint equation (iv), and any of the end conditions (v), for example, the left
one.

Let W (t) be the fundamental matrix of the homogeneous equation

Ẇ = −Wfx(x̂, û) , W (0) = I,

where I is the identity matrix. Then, the Cauchy formula says that, for all t,

ψ(t− 0) =
(
ψ(0−) +

∫ t−0

0

Φ′(x̂(s))W−1(s) dµ(s)
)
W (t) (64)

and a similar formula is valid for ψ(t+ 0).
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Since the weak-* topology of the space Y ∗ is metrizable (because Y is sepa-
rable), then to establish compactness it is sufficient to consider an arbitrary
sequence of its elements λn. We can assume that the vectors (α0n, βn) converge
to some(α0, β).

Since the norms of all measures dµn are uniformly bounded due to (ii),
then it follows from (64) and the boundedness of all initial values ψn(0−), that
the functions ψn(t) are uniformly bounded by a common constant. Hence,
passing to a subsequence, we can assume that the measures dµn and dψn

weakly* converge to some measures dµ and dψ, respectively, the limit measures
are related by equations (iv), and, according to the Helly theorems (see, for
example, Kolmogorov and Fomin, 1999, Ch. 6), the corresponding functions
ψn(t) converges for each t to some function of bounded variation ψ(t). If needed,
we can change its values at a countable set of its discontinuity points t, so that
ψ would become right continuous on [0, t̂1]. Under this operation, the measure
dψ would not change, and now the limit pair ψ and µ would satisfy relation
(64) for all t.

Obviously, conditions (i)–(vi) are preserved when passing to the limit. In
particular, (iii) is equivalent to the fact that, for any continuous test function
ζ(t), we have ∫

[0,t̂1]

ζ(t) Φ(x̂(t)) dµ(t) = 0.

Obviously, this property is preserved when passing to the weak* limit.

Consider now condition (vii). Let us fix any s ∈ {1, . . . d}, where d cor-
responds to θ. We hope that there will be no confusion between this s and
numbering n within the sequence. Recall that us is any predetermined point in
U.

Consider the sequence of functions of bounded variation

hn(t) = ψn(t) f(x
s, us).

For it, we also have convergence

hn(t) → h(t) := ψ(t) f(xs, us) ∀ t

and, in addition, taking into account (iv) (which is written for ψ(t) = ψn(t) and
then multiplied by f(xs, us)), we get

dhn(t) = −ψn(t) fx(x̂(t), û(t)) f(x
s, us) dt + Φ′(x̂(t)) f(xs, us) dµn(t). (65)

Moreover, the jump at the point ts is

[hn](t
s) = Φ′(xs) f(xs, us) [µn](t

s).
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According to (vii), at least one of the inequalities holds:

hn(t
s − 0) 6 0 or hn(t

s + 0) 6 0.

Without loss of generality, we assume that Φ′(xs) f(xs, us) > 0. Then [hn](t
s) >

0, and therefore hn(t
s − 0) 6 0 for all n. Let us show that the limit function h

satisfies the same inequality: h(ts − 0) 6 0.

Fix any ε > 0. From the uniform boundedness of all ψn(t) and the continuity
of the function Φ′(x̂(t)) it follows, by virtue of (65), that there exist a δ > 0
and a constant c such that

dhn(t) > −c dt− εdµn(t) ∀n

on the interval (ts − δ, ts). Then, by integrating over interval (t, ts) and taking
into account normalization (ii), we have on this interval

hn(t
s − 0)− hn(t) > −c δ − ε

∫

(ts−δ, ts)

dµn(t) > −c δ − ε.

Reducing δ, if necessary, we have

hn(t
s − 0) − hn(t) > −2 ε,

i.e.,
hn(t) 6 hn(t

s − 0) + 2 ε.

Since hn(t
s − 0) 6 0, we obtain hn(t) 6 2 ε on the interval (ts − δ, ts).

Since ε and δ do not depend on the number n, the same inequality holds for
the pointwise limit: h(t) 6 2 ε on the same interval, and therefore h(ts−0) 6 2 ε.
Since ε > 0 is arbitrary, we get h(ts − 0) 6 0. Lemma 3 is proven. ✷

Thus, taking all possible indices θ, we have a nonempty compact set Λθ for
each of them. Let us show that the family of all these compacta form a centered
system (i.e., have the finite intersection property). To this end, we introduce a
partial order in the set of all indices. We say that θ1 ⊂ θ2 if each pair (ts, us) of
θ1 belongs to θ2. For any two indices θ1 and θ2, there is a third index containing
each of them, for example, their union. Obviously, when an index θ expands,
the set Λθ narrows, i.e., the inclusion θ1 ⊂ θ2 implies the inverse inclusion
Λθ1 ⊃ Λθ2 .

Now, let be given any finite collection of compacta Λθ1 , . . . , Λθr . Take any
index θ containing all indices θ1, . . . , θr. Then the nonempty compact set Λθ is
contained in each of compacta Λθ1 , . . . ,Λθr , and consequently, is contained in
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their intersection. Thus, the family {Λθ} is centered, and, therefore, its total
intersection is nonempty:

Λ∗ :=
⋂

θ

Λθ 6= .

Now, take an arbitrary tuple of multipliers λ = (α0, β, dµ) ∈ Λ∗ and let ψ
be the corresponding adjoint function. By definition, conditions (i)—(vii) hold
for this tuple.

The fulfillment of condition (vi) in any index means that for any interval
(t′, t′′) ∫ t′′

t′
ψ(t) f(x̂(t), û(t)) dt = 0,

(since there is an index containing the points t′, t′′) and this is equivalent to the
fulfillment of the equality

ψ(t) f(x̂(t), û(t)) = 0 a.e. on [0, t̂1]. (66)

Finally, the fulfillment of (vii) for the chosen “universal” tuple means that
for any point t ∈ (t′, t′′) and any u ∈ U, at least one of the inequalities holds:

ψ(t− 0) f(x̂(t), u) 6 0 or ψ(t+ 0) f(x̂(t), u) 6 0.

This is obviously equivalent to the statement that ψ(t)f(x̂(t), u) 6 0 for all
points of continuity of the function ψ on the interval (0, t̂1), and then for its
boundary points (since the function ψ is continuous at these points), while for
all discontinuity points both of the above inequalities are satisfied. Thus, for
any u ∈ U we have

ψ(t− 0) f(x̂(t), u) 6 0 and ψ(t+ 0) f(x̂(t), u) 6 0 ∀ t ∈ [0, t̂1]. (67)

Hence, the obtained tuple (α0, β, ψ) ensures the fulfillment of conditions (i)–
(v), and (66)–(67). The only point where all these conditions differ from those
claimed in Theorem 2 is the “incorrect” left transversality condition in (v). We
have to correct it.

To this aim, consider separately the costate equation

dψ = −ψfx(x̂, û) dt + Φ′(x̂) dµ, (68)

and the transversality conditions

ψ(0−) = lx0
− cΦ′(x̂0), ψ(t̂1) = −lx1

, where c =

∫

[0,t̂1]

dµ . (69)
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Refined optimality conditions

Now, let us take into account the consistency assumption (9). It means that

K(x0, x1) = 0 =⇒ Φ(x0) = 0

for all (x0, x1) sufficiently close to the reference point (x̂0, x̂1) := (x̂(0), x̂(t̂1)).
Linearizing at this point (with account of regularity assumption (c) of the end-
points constraints), we have the implication

K ′
x0
(x̂0, x̂1) x̄0 +K ′

x1
(x̂0, x̂1) x̄1 = 0 =⇒ Φ′(x̂0) x̄0 = 0

for all (x̄0, x̄1) ∈ R
2d(x). This, in turn, implies that there exists a row vector

β∗ ∈ R
d(K)∗ such that

Φ′(x̂0) x̄0 = β∗
(
K ′

x0
(x̂0, x̂1) x̄0 +K ′

x1
(x̂0, x̂1) x̄1

)
∀ (x̄0, x̄1) ∈ R

2d(x),

whence

Φ′(x̂0) = β∗K
′
x0
(x̂0, x̂1) and β∗K

′
x1
(x̂0, x̂1) = 0. (70)

Let us change the multiplier β to β̃ = β− c β∗ . Then, the endpoint function
l = α0J + βK will be correspondingly changed to l̃ = α0J + (β − c β∗)K =
l − c β∗K, while the endpoint conditions of the costate function ψ (the same
one, we do not change it!) will have the following “proper” form:

ψ(0−) = lx0
− cΦ′(x̂0) = lx0

− c β∗K
′
x0

= l̃x0
, ψ(t̂1) = −l̃x1

. (71)

Note that the new triple (α0, β̃, dµ) is nontrivial. Otherwise c = 0, then

β̃ = β, and so, the initial triple is trivial, which contradicts its normalization.

Finally, it remains to obtain the condition dµ({0}) = 0. First, we claim that

α0 + |β̃| +

∫

(0,t̂1]

dµ > 0.

Indeed, suppose it is equal to zero. Then l̃ = 0, so ψ(t̂1) = 0, and dψ = 0
on (0, t̂1], whence ψ(0+) = 0. By the left transversality, also ψ(0−) = 0, and
so [ψ](0) = 0. But (68) implies [ψ](0) = [µ](0)Φ′(x̂0). Since Φ′(x̂0) 6= 0 (by the
controlability assumption (a)), we have [µ](0) = 0, hence dµ ≡ 0 totally, and
all the new triple is trivial, a contradiction.

Now, we restrict the obtained ψ and dµ on the interval (0, t̂1], and consider

the right hand value of ψ at 0. Since ψ(0−) = l̃x0
, we have

ψ(0+) = l̃x0
+ [µ](0)Φ′(x̂0).
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Repeating once again(!) the above trick with changing β̃ by some
˜̃
β = β̃+ c′β′

∗ ,

we arrive at the triple (α,
˜̃
β, dµ), which is nontrivial and provides the endpoint

conditions

ψ(0+) =
˜̃
lx0

, ψ(t̂1) = −̃l̃x1
.

Finally, upon setting ψ(0−) := ψ(0) = ψ(0+) and µ(0−) := µ(0) = µ(0+),
we have the fulfillment of all the conditions of MP on the interval [0, t̂1] with
dµ({0}) = 0, q.e.d.

Theorem 2 is completely proven. ✷

3. Appendix: Lagrange multipliers rule

Let X, Y, and Zi , i = 1, . . . , ν be Banach spaces, D ⊂ X an open set, and
Qi ⊂ Zi, i = 1, . . . , ν closed convex sets with nonempty interiors. (Particularly,
the latter sets can be cones.) Let F0 : D → R, g : D → Y, and fi : D → Zi,
i = 1, . . . , ν, be given mappings. Consider the following optimization problem:

F0(x) → min,

fi(x) ∈ Qi , i = 1, . . . , ν,

g(x) = 0.





(72)

Let us impose the following

Assumptions. 1) The objective function F0 and the mappings fi are
Fréchet differentiable at x0 ; the operator g is strictly differentiable at x0 (smooth-
ness of the data functions), 2) the image of the derivative g′(x0) is closed in Y
(weak regularity of equality constraint).

For any i denote by Ti(zi) and by Ni(zi) the cones of tangent and outer
normal directions, respectively, to the convex set Qi at a point zi ∈ Zi . Obvi-
ously, Ni(zi) = −T ∗

i (zi) and Ti(zi) = −N∗
i (zi), where asterisk stands for the

conjugate cone. Moreover, intTi(zi) = con (intQi − zi). Clearly, if zi ∈ intQi ,
then Ti(zi) = Zi and Ni(zi) = {0}.

By 〈z∗i , z〉 we denote the duality pairing between Zi and its dual space Z∗
i .

The following theorem gives a generalized Lagrange multipliers rule for prob-
lem (72), see Dmitruk and Osmolovskii (2017, 2018, 2020).

Theorem 3 a) Let x0 be a local minimum in problem (72). Then there exist
Lagrange multipliers α0 > 0, z∗i ∈ Ni(fi(x0)), i = 1, . . . , ν, and y∗ ∈ Y ∗, not
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all equal zero, such that the Lagrange function

L(x) = α0F0(x) +
ν∑

i=1

〈z∗i , fi(x)〉+ 〈y∗, g(x)〉

is stationary at x0: L′(x0) = 0, i.e.,

α0F
′
0(x0) +

ν∑

i=1

z∗i f
′
i(x0) + y∗g′(x0) = 0, (73)

where y∗g′(x0) is a linear functional on X acting by the rule x̄ 7→ 〈y∗, g′(x0)x̄〉
and the expressions z∗i f

′
i(x0) have the similar sense.

b) If the equality constraint is regular at the point x0 , i.e. g′(x0)X = Y
(the Lyusternik condition), and ∃ x̄ such that g′(x0) x̄ = 0 and f ′i(x0) x̄ ∈
intTi(fi(x0)) for all i = 1, . . . , ν (a generalized Slater condition), then nec-
essarily α0 > 0.

Note that the usual complementary slackness conditions are absent here. If
we call the active indices those i for which fi(x0) ∈ ∂Qi , then for any inactive i
we have fi(x0) ∈ intQi , whence automatically z∗i = 0, since Ni(fi(x0)) = { 0},
so the inactive indices do not enter into the Lagrange function.

References

Arutyunov, A. and Tynyanskiy, N. (1984) The maximum principle in a
problem with phase constraints. Izv. Akad. Nauk SSSR Tekhn. Kibernet.,
0-060-68, 235.

Dubovitskii, A.Ya. and Dubovitskii, V.A. (1985) Necessary conditions
for a strong minimum in optimal control problems with degeneracy of the
end-point and phase constraints. Russian Math. Surveys, 40, 2, 209–210.

Dubovitskii, A.Ya. and Dubovitskii, V.A. (1987) The maximum princi-
ple in regular optimal control problems where the ends of the phase path
are on the boundary of the phase constraint. Avtomatika i Telemekhanika,
12, 25–33 (in Russian).

Dubovitskii, A.Ya. and Dubovitskii, V.A. (1995) A criterion for the
existence of a meaningful maximum principle in a problem with phase
constraints. Diff. Equat., 31, 10, 1595–1602.

Dubovitskii, A. Ya. and Milyutin, A.A. (1965) Extremum problems in
the presence of restrictions. USSR Comput. Math. and Math. Phys., 5,
3, 1–80.



Maximum principle when optimal trajectory endpoints lie on state boundary 107

Dmitruk, A. V. and Osmolovskii, N. P. (2018) Variations of the type of
v–change of time in problems with state constraints. Proc. of the Institute
of Mathematics and Mechanics, the Ural Branch of Russian Academy of
Sciences, 24, 76–92 (in Russian).

Dmitruk, A. V. and Osmolovskii, N. P. (2019) Proof of the maximum
principle for a problem with state constraints by the v-change of time
variable. Discrete and Continuous Dynamical Systems, Ser. B, 24, 5,
2189–2204. doi:10.3934/dcdsb.2019090.

Dmitruk, A. V. (2009) On the development of Pontryagin’s Maximum prin-
ciple in the works of A.Ya. Dubovitskii and A.A. Milyutin. Control and
Cybernetics 38, 4a, 923–958.

Dmitruk, A. V. and Osmolovskii, N. P. (2017) A General Lagrange Mul-
tipliers Theorem. Constructive Nonsmooth Analysis and Related Top-
ics (CNSA-2017). IEEE Xplore Digital Library. doi:10.1109/CNSA.2017.
7973951.

Dmitruk, A. V. and Osmolovskii, N. P. (2018) A General Lagrange Mul-
tipliers Theorem and Related Questions. In: G. Feichtinger et al., eds.,
Control Systems and Math. Methods in Economics. Lecture Notes in
Economics and Mathematical Systems, 687, 165–194, Springer.

Dmitruk, A. V. and Osmolovskii, N. P. (2020) Lagrange Multipliers Rule
for a General Optimization Problem with an Infinite Number of Con-
straints. In: A. Vasin and F. Aleskerov, eds., Recent Advances of the
Russian Operations Research Soc. Cambridge Scholars Publishing, 212–
232.

Kolmogorov, A. N. and Fomin, S. V. (1999) Elements of the Theory of
Functions and Functional Analysis. Dover Books on Mathematics, Rus-
sian 4th Edition: Nauka, Moscow.

Milyutin, A. A., Dmitruk, A. V. and Osmolovskii, N. P. (2004) Max-
imum Principle in Optimal Control. Moscow State University, Faculty of
Mechanics and Mathematics, Moscow (in Russian), 168.


