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Abstract: The general framework of this paper is the control
design of complex nonlinear systems. The proposed approach is
demonstrated with the use of a case study regarding a typical mecha-
tronic system - control design of inverted pendulum on the cart. The
methodology used for the solution of this problem is based on two-
degree of freedom control structure (2-DOF) with feed-forward and
feedback terms. Feed-forward term represents a solution of trajec-
tory generation problem and feedback term stands for a state con-
troller. Both of these parts generally fall into the category of optimal
control problems. The article focuses on the design of a finite-horizon
linear quadratic controller and its application in 2-DOF structure
with the use of customized LQR computation procedure, showing all
necessary steps of the design, including source codes. It is proposed
that the developed methodology is general and can be adopted for
most of other nonlinear mechatronic systems, including unstable or
non-minimum phase systems. This has been already tested success-
fully for models of both double and triple inverted pendulums. The
functionality of the concept under real conditions can also be seen in
Ozana (2018a) and Ozana (2018b) showing preliminary experiments
with real apparatus.
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1. Introduction

The problem of inverted pendulum control is among the most popular in the
field of technical cybernetics. It has been known for a long time and is still being
used in laboratory conditions due to its complexity, especially in education of
control theory. These properties predetermine it to be an appropriate subject
for testing various new approaches and methods regarding modern control the-
ory. Over the years, the inverted pendulum has become a benchmark in the
field of control theory and robotics. At the same time, this problem is very
attractive both for the lay public and experts.

Regarding the description of the respective laboratory setup, it is usually
composed of a cart that can move along a certain form of linear guidance, and
a pendulum arm that is connected to the cart via a free joint, so as to be able
to rotate. The system is equipped with a single actuator capable of moving
the cart. At the same time, this movement also influences the pendulum arm
(its angle). Since the system has two degrees of freedom (linear movement of
the cart and rotary movement of the pendulum arm), but only one actuator, it
belongs to the category of the so called underactuated systems.

The problem of inverted pendulum control can be divided into two parts.
The first and the easiest one is to stabilize the pendulum arm in the upright
unstable position. In this situation, the system can be classified as a balance
system. The task is to keep the pendulum arm in the upright position by the
use of the cart moving to the sides. This is the equivalent of balancing the rod
(or brush) on your finger or palm, but in one axis only in the case of the inverted
pendulum.

This task can be handled in different ways, including the classic PD con-
troller, the fuzzy or the state controller. Most of the solutions proposed and
used all over the world refer to infinite-horizon LQR for this particular job.

The second part relates to transitions between the states, namely between
the lower steady position, which is stable and the upper unstable position. In
technical terms this is called a swing-up, in the opposite direction it would be
a swing-down. These tasks are much more difficult to solve, especially in the
case of complex nonlinear systems. There are more possibilities to solve this
problem, as well. The most crucial factor is the decision regarding the concept
of control (both open-loop and closed-loop approaches can be considered).

All control principles used for the control design of the inverted pendulum
can also be used for a lot of other systems, appearing in practice. A typical
example is the control of Segway balance vehicle, or its equivalent in the form
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of a unicycle. Algorithms used to control such systems are also used, for exam-
ple, for the so-called self-balancing robots, known as Acrobot, Pendubot, or a
humanoid robot. In aerospace industry, this concept can be adopted for control
design of a space rocket in which a tilting nozzle with a Cardan gimbal is used at
the bottom of the rocket for stabilization purpose. Other aircraft (helicopters,
aircraft, satellites) or vessels (boats, ships, submarines) are also included in the
same category. An example of the medical technology is, for example, consti-
tuted by the iBOT wheelchair. In automotive industry, a back-up assistance
system with a trailer is a typical application example.

2. Motivation

The basic motivation for the idea, which is proposed and described in this pa-
per, was to find and verify a reliable and widely applicable method for control of
nonlinear systems, represented by an inverted pendulum in this case. For these
systems, more advanced methods are required for precise control to ensure the
robustness and stability of the respective solution, as the classical methods usu-
ally appear insufficient.

A common problem that needs to be solved for complex systems is the
transition between different states, often tracking a certain predefined trajectory.
It may be a trajectory that meets some of the optimization criteria, where
deviations lead, for example, to greatly increased costs or fuel consumption.
Such a situation may in some cases be critical if we deal with a system featuring,
in general terms, a limited amount of fuel or energy. For these and other reasons,
it is necessary to ensure that these trajectories are maintained by using the
feedback control that will provide a feedback along the trajectory.

3. Basic research concerning the categories of methods

used for inverted pendulum

Due to the popularity of the inverted pendulum system, there have been a large
number of papers that deal with its control. Not only conventional approaches,
but also algorithms involving methods of modern control theory have been tried
out, such as LQ control, model predictive control, adaptive control or H-∞. Last
but not least, fuzzy control or neural networks play an important role in control
of such complex systems as this is described in Ichtev (2008). The use of fuzzy
controllers may not only involve stabilization in the upright position, for which
the Mamdani-based controller is used, but it also makes it possible to solve
the swing-up problem by introducing appropriate rules to make the pendulum
swing, as this can be seen in Ichtev (2008). In a way, this is a technique for
switching two control elements connected to one element, which is described



102 T. Docekal, S. Ozana, A.P. Singh and A. Kawala-Sterniuk

below. Regarding the neural network, it is necessary to let it learn how the
inverted pendulum behaves and in essence to copy the attitude of a person who
would manually move the pendulum to the upright position, see Hercus, Wong,
Shee, and Ho (2013).

This paper focuses on approaches related to modern control theory. These
approaches involve several general ways of providing solutions, which then differ
in the implementation of individual parts.

Trajectory tracking

This is the approach described in this paper and in Tum, Gyeong, Park, and
Lee (2014). First, there comes the computation of feed-forward trajectory that
the system is supposed to follow and then the finite-horizon LQR controller
provides the feedback control. In upright position, the steady-state of the time-
varying finite-horizon LQR corresponds to the infinite-horizon LQR controller
computed in this particular operation point.

Reference feed-forward control + switching stabilizing controller

This approach uses the design of the control signal to perform a swing-up, which
is then applied to the system as open-loop (feed-forward) control. As soon as
the pendulum reaches the proximity of upright position, the control structure
is switched to a controller that provides stabilization in the upright position,
designed for a single operation point. Various methods can be used for this,
from PID controller to the LQR. Design of control signal can also be done in
different ways, by solving dynamic optimization job (Ozana, Pies and Hajovsky,
2014) or, as in Kennedy and Conlon (2011), by experimental adjustment of the
harmonic waveform.

Swaying controller + switching stabilizing controller

This is another approach that uses the switching mechanism between the two
control parts. The distinction lies in the implementation of the swing-up. In this
case, a certain control term is used to provide a swinging of the pendulum. The
different methods are described in Durand, Castellanos, Marchand and Sanchez
(2013) and Yang and Zheng (2018). It may be a P-controller connected in an
unstable mode or simply a term which, when passing through the lower posi-
tion, moves the pendulum cart to increase the pendulum’s energy and increase
the amplitude of its oscillation. More advanced approaches from this category
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calculate the amount of the pendulum energy, which consists of a potential and
kinetic component, based on the measured quantities. Once this value is equal
to the potential energy corresponding to the upright position, it is not necessary
to increase the pendulum’s energy and it is simply sufficient to let it traverse to
the inverse position.

4. Novelty

The search has shown that the overwhelming majority of solutions with a con-
ventional or fuzzy controller use two separate control terms with switching be-
tween the corresponding two modes. The swing-up itself is solved either in an
open loop with a predetermined control signal, or by gradual swinging of the
pendulum. The here presented approach differs, in particular, by the fact that
for both jobs regarding the inverted pendulum, i.e. the swing-up and stabiliza-
tion in upright position, the only one common time-varying controller will be
used, with the help of predefined trajectories to be tracked down during the
swing-up and afterwards. This approach is much better suited to the general
needs of control of non-linear systems. With its use it is also possible to assume
a better repeatability of the entire swing-up process, as any disturbing influ-
ences that can vary will be compensated by the feedback controller, instead of
changing the entire character of the control signal for the swing-up.

Also, it can be said that applicability of such a proposed solution is very
high, because once this approach works for unstable and non-minimum phase
nonlinear systems, considered as a worst-case, it will also work for other cate-
gories of cyberphysical systems.

The approach, presented in this paper, has been developed completely in-
dependently of Tum, Gyeong, Park and Lee (2014), who have used the same
concept. One of the distinctions is that the proposed solution focuses on the de-
sign of time-varying controller in a deep level of details, showing all key parts of
Matlab source codes as there is no embedded function for a finite-horizon LQR.
Anyone interested in this problem can easily adopt the proposed solution for
their own system. Moreover, controller design was improved by an additional
optimization procedure. It is used for selecting optimal weights for finite-horizon
LQR, which are significantly important for resulting time-varying controller.

Also, the work of Tum, Gyeong, Park and Lee (2014) uses a PD position
controller to generate the required acceleration. In our paper, we use a speed
controller, and so the acceleration does not have to be integrated twice but just
once. It is a similar concept as in Yokoyama, Mihara, Suemitsu and Matsuo
(2011), who use acceleration of the cart as the input of the pendulum. Note
that most of the papers related to inverted pendulum consider the force as
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constituting the input to the system. This is fine for simulation results, but the
respective authors mostly do not mention how they actually achieve feedback
law under real conditions, in which one has to apply a speed controller, or a
position controller, or a torque controller.

5. Description of the proposed solution

The two-degrees of freedom structure

The here described problem falls into a trajectory tracking category of problems.
It is assumed that the reference trajectories, to be tracked down, are already
known and the tracking process is ensured by the feedback control term. A
control structure with two degrees of freedom can be used to solve this kind of
problem (Fig. 1).

-

+

K(t)
∆x(t) ∆u(t) u(t)

IP
x(t)

x(t)

 x (t)ref

 u (t)ref

Figure 1. Two-degrees of freedom control structure schematic

As this is depicted in Fig. 1, the system contains two control parts – feed-
forward and feedback. The feed-forward part is implemented by the reference
(permissible) control signal uref(t), which has been computed in order to pro-
vide a transition of the inverted pendulum system (IP) from the initial state to
the final one. For the case study, considered in this paper, it is represented by
the swing-up, where the initial state is the lower stable position and in the final
state it is the upright unstable position. The second part is a feedback term,
providing the tracking of the reference trajectories xref (t), which are commonly
obtained during the design of the control signal. These are basically the wave-
forms arising at the output of the system once reference control input uref (t) is
applied (to the ideal system with no disturbances, or for a perfect model). The
deviation between the state variables of the real system x(t) and the reference
xref (t) is used as an input to the time-varying controller K(t). This generates
an additional part of the control signal ∆u(t), which compensates for any pos-
sible deviations of the states ∆x(t) and forces the system back to the reference
trajectory.
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Linear Quadratic Control

For reasons of keeping the integrity of this paper, a very brief overview of finite-
horizon LQR theory is provided in the following paragraph.

For a state-space description of linear system

x′ = A · x+B · u (1)

y = C · x+D · u (2)

the finite-horizon LQR uses the following cost function:

J =
1

2
xT (tf ) · S · x(tf ) +

1

2

tf
∫

t0

[

xT (t) ·Q · x(t) + uT (t) · R · u(t)
]

dt (3)

In order to solve an optimal control problem, Hamiltonian function is con-
structed and then solved to obtain the optimal control signal u*(t).

H = − 1
2

[

xT (t) ·Q · x(t) + uT (t) ·R · u(t)
]

+
+λT (t) · [A · x(t) +B · u(t)]

(4)

Upon fulfilling the necessary condition for the optimal solution

∂H

∂u
= 0 (5)

we get

−R · u (t) +BT · λ (t) = 0 (6)

and thus

u∗ (t) = R−1 ·BT · λ (t) . (7)

The Lagrangian multiplier can be written down in the form of

λ (t) = −P (t) · x (t) (8)

where P (t) represents the solution to the differential Riccati equation

P ′ (t) = −P (t) ·A−AT · P (t) + P (t) ·B ·R−1 ·BT · P (t)−Q (9)

and where

P (tf ) = S (10)
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represents its final value.
Note: S corresponds to the solution of the algebraic Riccati equation used

to compute the infinite-horizon LQR (applied in upright position of the inverted
pendulum).

Finally, optimal control signal u*(t) can be expressed as time-varying state
feedback:

u∗ (t) = −R−1 · BT · P (t) · x (t) = K (t) · x (t) . (11)

Physical HW setup

The photo of the physical setup used for testing the proposed solution is shown
in Fig. 2.

Figure 2. The photo of the real HW setup

The actuator of the system is physically represented by the DC motor, driven
by the PWM (pulse width modulation) signal, provided by electronic unit. The
value of the PWM signal is determined by the speed control loop, based on
the original acceleration signal u(t), generated by time-varying state controller
K(t). Notation of the signals used in this chapter corresponds to the state-space
description given by (19)-(22). The feedback to the controller is represented by
two incremental encoders providing information on pendulum arm angle x1 and
cart position x3. The remaining unmeasured states, representing pendulum an-
gular speed x2 and cart speed x4, are approximated by numeric derivatives.

The control scheme for the real hardware setup is shown in Fig. 3. The
control system (C) generates acceleration u(t), which is integrated in time and
turned into the speed v(t). This signal is brought to the input of the regulated
plant (S), formally denoted as the speed setpoint vsp(t). The speed control
loop, which is a part of the regulated plant (S), contains actuator (DC motor
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and electronic unit), connected to the moving cart with pendulum arm via belt
pulley, and speed controller (Rv). The speed control loop is approximated by a
fast first-order system GRV = 1

τs+1
. The time constant τ has been identified ex-

perimentally. It represents dynamical behavior of the entire speed control loop
that uses a fast PI controller Rv applied for DC motor connected to the moving
cart with pendulum arm via belt pulley. The information on the current output
cart speed x4, used for the feedback, is calculated via numerical approximation
of the derivative based on cart position x3.

x

x

3

1

x1 x3

d
dt

x2

d
dt

x4

K(t)

C S

I/O
Regulated plantControl system

vsp

u v

+

-
R ACT.

vsp x3

d/dt
x4

=

v

GRv

GRv

speed control loop
τs+1

1

Figure 3. The control scheme for the real HW setup

For the simulation and control design purposes, the control scheme including
the idea of approximation of the speed control loop is explained in Fig. 4.

The DC motor drives the cart using the speed controller, which induces ap-
propriate acceleration uc(t). This signal then enters the input of the block IP,
whose dynamics is described by (19)-(22). If the drive is strong enough, we
approximately suppose that u(t) ≈ uc(t). This assumption is used in this pa-
per and therefore the speed control loop remains unmodelled for the purpose of
trajectory planning. It is also possible to incorporate this unmodelled dynamics
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x1 x3

d
dt

x2

d
dt

x4

K(t)

vsp
C

S

1/τ

uC

v

Regulated plantControl system

vsp

GRv

u

xx 13

IP

Figure 4. The control scheme for the simulation purposes

into trajectory planning problem, but it is not necessary. We repeatedly veri-
fied that this does not lead to improvement of the closed-loop control quality.
Hence, all of the simulation results in this paper are associated with the scheme
presented in Fig. 5.

x1 x3

d
dt

x2

d
dt

x4

K(t)
u

xx 13

IP

Figure 5. Simplified control scheme for the simulation purposes

Nonlinear model of inverted pendulum

The situation scheme used for identification of the system is introduced in Fig. 6.
The differential equation, describing the movement of the inverted pendulum
on the cart considering friction has been adopted from Yokoyama, Mihara,
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Suemitsu and Matsuo (2011) and modified to the ultimate form of Eq. (12).
The modification is formal: apart from using different symbols for physical vari-
ables, the second derivative of pendulum arm angle is multiplied by the moment
of inertia, denoted “I”.

I · ϕ′′ −m · g · l · sinϕ+ c · ϕ′ = m · l · u · cosϕ. (12)

The I term in this equation represents moment of inertia of pendulum with
respect to the pivot P, by which the axis of rotation passes through. It can be
computed according to Steiner’s formula:

I = J +m · l2 (13)

where J represents the moment of inertia of the pendulum arm with respect to
the center of mass, and l =|MP| is the distance from the pivot P to the center
of mass. For a homogeneous cylindrical rod of the length L, where l = L/2, the
moment of inertia I can be computed as follows:

I =
1

12
m · L2 +m · l2 =

1

12
m · (2 · l)2 +m · l2 =

=
4

12
m · l2 +m · l2 =

16

12
m · l2 =

4

3
m · l2. (14)

By substitution of I into Eq. (12) we get

4
3
m · l2 · ϕ′′ −m · g · l · sinϕ+ c · ϕ′ =

= m · l · u · cosϕ
(15)

or, in another form,

ϕ′′ −
3

4
·
g

l
· sinϕ+

3

4
·

c

m · l2
· ϕ′ =

3

4
·
1

l
· u · cosϕ (16)

where ϕ is the pendulum arm angle with respect to the vertical axis, u is the
acceleration of the cart and g is gravity acceleration. Due to the way of iden-
tifying the friction coefficient, we introduce a new term b (still representing a
friction) as follows:

b =
3

4
·

c

m · l2
. (17)

The final form of the differential equation, to be used for modelling, identifica-
tion and control design purposes and further computations, is as follows:

ϕ′′ −
3

4
·
g

l
· sinϕ+ b · ϕ′ =

3

4
·
1

l
· u · cosϕ (18)
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u

l 

P

M

,x1

 x3

0

π

ϕ

Figure 6. Situation scheme for analytical identification

This equation can be rewritten into a state-space description by (19)-(22),
considering four state variables. Note that this state-space description corre-
sponds to the block IP, referred to in Figs. 4 and 5.

x′

1 = x2 (19)

x′

2 =
3

4
·
g

l
· sinx1 +

3

4
·
1

l
· u · cosx1 − b · x2 (20)

x′

3 = x4 (21)

x′

4 = u (22)

where
x1[rad] pendulum arm angle,
x2[rad/s] pendulum angular speed,
x3[m] cart position,
x4[m/s] cart speed.

Algorithm for computation of finite-horizon LQR

The first step in the overall solution is the calculation of the solution to the al-
gebraic Riccati equation for the upright position, i.e. the unstable steady state.
This is the procedure used when calculating the LQR controller at an infinite
horizon for a linear system or a linearized system at one operating point. Mat-
lab has the corresponding ‘care’ function as a part of Control System Toolbox:

[Plqr,L,G] = care(A0,B0,Q,R).
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Parameters A0 and B0 are the matrices of state-space description of in-
verted pendulum linearized in the upright position. Weights Q and R are se-
lected by the expert to reflect the importance of the individual state variables
and the control signal. They contain non-zero elements on the main diagonal
only. Thanks to these values it is possible to balance the different physical units
of the state variables. For example, the deviation of the state x1 (pendulum
angle) by 0.1 rad (approximately 5.7) has a smaller weight than the equally
large displacement of state x3, i.e. change of position by 0.1 m. Based on these
assumptions, the basic setting of weights Q and R was selected. After several
iterations of slight modifications in the weights, the following setting was used
for computations:

Q = [10 0 0 0; 0 10 0 0; 0 0 50 0; 0 0 0 180];

R = 1.

The obtained solution of the algebraic Riccati equation serves as an initial con-
dition for solving the differential Riccati equation. This will go back in time,
i.e. it will come out of the final state, for which there is already the solution at
disposal, and it will proceed towards the initial state (the lower position of the
pendulum). Solution of the differential equation itself can be done via ‘ode45’.
available in Matlab.

S=reshape(Plqr,16,1)

opt = odeset(’AbsTol’,. . .

1.0e-08,’RelTol’,1.0e-08)

[t,P] = ode45(@riccatiEquation,. . .

tf:-0.001:ti,S,opt)

t=flipud(t)

P=flipud(P)

As seen in the second parameter, the time vector is created from the end
time towards the beginning with the step of 1 ms. Another parameter repre-
sents the initial conditions obtained in the previous step by solving the algebraic
Riccati equation. The ‘ode45’ function requires returning of the results from the
individual steps of the solution in the form of column vectors, not square ma-
trices. Therefore, the initial conditions are rearranged from a 4 × 4 matrix to
a 16-element column vector. As a result, the time vector t and the vector with
the solutions at the given time P are obtained. Since both of them are oriented
backwards in time (t goes from the end time to zero), they have to be reverted
for further use.
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The first parameter of ‘ode45’ is a reference to the ”riccatiEquation” func-
tion in which the differential Riccati equation is formulated. It also contains
matrices of the state description of the system to be controlled. These are ob-
tained by linearization of the inverted pendulum description, valid for a certain
general operating point. For the specified time t, the values of the state variables
are obtained from the trajectory, along which the feedback control process has
to be performed, and a linearization is computed in this particular operating
point subsequently.

function dP = riccatiEquation(t,P)

[A,B]=getlinsys(t);

global Q R

Z=reshape(P,4,4); % rear. into 4× 4 matrix

dZ=-(Z*A+A’*Z-Z*B*inv(R)*B’*Z+Q); % solut.

dP=reshape(dZ,16,1); % rear. to col. vect.

end

In the Riccati equation itself the solution P is obtained (from the previous
step), which was modified in the initial conditions to a column vector. In order
to solve the equation and to fit the matrix dimensions, it is necessary to rear-
range it into the 4× 4 square matrix and, after solving the equation, rearrange
the solution back to the column vector.

At this point there is a solution of differential Riccati equation for the entire
used trajectory with 1 ms time step. Another part of the procedure is to calcu-
late the state controller for each point of the solution of the differential Riccati
equation according to equation (11).

for k=1:length(t)

[A,B]=getlinsys(t(k));

Ptmp=reshape(P(k,:),4,4)

K(k,:)=-inv(R)*B’*Ptmp;

end

This process is performed in a cycle for all time points, at which the en-
tire control process was divided up. The solution that is used to calculate the
controller has again to be converted to a 4×4 matrix to maintain the correct di-
mensions. The procedure for obtaining a linearized description of the controlled
system at the required operating point is the same as for the differential Riccati
equations. The result of this operation is a matrix with four columns, in which
the values for the four components of the time-varying controller are stored to
provide the feedback control to the system along the reference trajectories.
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function [A,B]=getlinsys(t)
global u opt x1 opt x2 opt
uopt current=interp1(u opt.Time,. . .
u opt.Data,t); %reference control (u)
x1opt current=interp1(x1 opt.Time,. . .
x1 opt.Data,t); %reference trajectory (x1)
x2opt current=interp1(x2 opt.Time,. . .
x2 opt.Data,t); %reference trajectory (x2)
l=0.15;b=0.07;g=10;
%A,B: Jacobi matrices
A=[0 1 0 0;
3/4*g/l*cos(x1opt current)-. . .
3/4*1/l*uopt current*sin(x1opt current)
-b 0 0;
0 0 0 1;
0 0 0 0];
B=[0;3/4*1/l*cos(x1opt current);0;1];

Optimization procedure for Q and R weight determination

One of the innovations of the present paper lies in the way, in which we choose
the weight matrices Q and R. We designed an optimization procedure for this
purpose. It acts as an extension to the described algorithm for finite-horizon
LQR computation. The optimization changes the main diagonal elements of
matrix Q and the elements of matrix R based on a cost function. In one iteration
the time-varying controller K(t) is calculated based on actual weight matrices
Q and R. The controller is then used in MIL (model in the loop) simulation to
control the system along the reference state trajectories. The cost function J ,
given in (23), is composed of sums of square differences between the simulated
state values and the reference trajectories. The energy of the control signal u(t)
is also added to the cost function with small weight to improve the selection of
the weight matrices:

J =

4
∑

i=1

N
∑

k=0

(xi [k]− xi−ref [k])
2
+

N
∑

k=0

(u [k])
2

(23)

where N is number of signals from simulation samples.

We implement the optimization procedure in Matlab with the use of ‘fmin-
con’ function in GlobalSearch form. Lower bounds for the optimized parameters
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were selected on the basis of the fact that weight matrices must be positive, up-
per bounds were selected as several times higher values than the initial setting
of weight matrices, described before.

We tested the described solution in two cases. In the first case, all five
parameters were optimized, while in the second case the value of R was fixed
to 1 and four remaining parameters were optimized. The results are shown in
Table 1 together with the initial setting and relevant cost function.

Table 1. Weight optimization procedure results
variant q11 q22 q33 q44 R J

Initial 10.0 10.0 50.0 180.0 1.0 67.50
Optimization 78.7 98.7 417.6 364.3 0.12 38.83
With fixed R 71.8 97.8 342.8 91.3 1.0 41.83

6. Example of application

To show the calculation of the controller for the solution of the above-mentioned
problem, it is first necessary to have a reference trajectory and a reference con-
trol signal. We call this problem the trajectory generation problem. Generally,
the framework for this problems is provided by the methods of solving the gen-
eral optimal control problem, either with Mayer term only, or with both Mayer
and Lagrange terms, according to what kind of cost function it is desired to
minimize. It can be minimizing of the final state only, or adding a penalty
on the trajectories along the path. In case of minimizing the final state only,
this state-transition problem can be effectively solved as a TPBVP (two point
boundary value problem) with free parameters. However, the analysis of this
issue is beyond the scope of the article. The issue of the TPBVP, related to the
inverted pendulum has been thoroughly analyzed in Ozana and Schlegel (2018).
Apart from this, a lot of tools are available for the trajectory generation prob-
lem. In this article, the PyTrajectory tool was used to design the trajectories
for transition between the states for non-linear systems. After formulation of
the dynamics of the controlled system, containing constraints at the beginning
and the end of the solution interval, the reference trajectories and the control
signal shown in Figs. 7 and 8 were obtained.

The PyTrajectory tool provides solution with the time step of 10 ms. For the
purpose of calculating the time-varying LQR controller, the obtained waveforms
were interpolated to obtain signal values with 1 ms time step. They are used in
the ”getlinsys” function, which returns matrices A and B of the state descrip-
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tion of a linearized system at a particular point of the trajectory, according to
the time point specified as an input parameter.

Using the described algorithm, the time-varying controller with four com-
ponents was designed for the reference trajectory so that K(t) = [K1(t), K2(t),
K3(t), K4(t)].

Verification of the proposed feedback control for the given reference trajec-
tories and reference control signal was first carried out by the MIL simulation,
performed in Simulink environment, while the simple inverted pendulum system
has been modelled according to state-space description (19-22). The simulation
contains two parts, both for open-loop and closed-loop control. Firstly, only
reference signal enters the system. Theoretically, the same waveforms as the
reference trajectories should be obtained from the state variables of this model.
The second part of simulation experiment is connected to the 2-DOF control
structure with the feedback term representing the calculated controller K(t).
After the swing-up, that is, for a time bigger than the horizon, for which the
LQR controller was calculated, the last values (steady-state) of the gains ap-
ply in the feedback, corresponding to the infinite-horizon LQR controller. The
whole simulation has been performed with the fixed 1 ms time step. Since the
primary indicator of a success with the swing-up is the waveform of the pendu-
lum position, Fig. 9 compares this value (x1) from both parts of the simulation
experiment.

It is obvious that open loop control does not meet the basic requirement
for the transition between the two states. The pendulum deviates from the
reference trajectory during the elevation despite the fact that the feed-forward
control was calculated for the same model as that used in the simulation.

The problem is caused by several facts. Firstly, generation of reference tra-
jectory with 10 ms time step may be insufficient in terms of accuracy. Between
the respective particular values, the used values are interpolated because the
simulation works with 1 ms increments. Secondly, simulation experiment uses
some numerical method, so the found solution is always inaccurate compared to
what would be obtained in case of analytical solution (if possible to compute).
There is also some inaccuracy, given by the final resolution of the numerical
values, with which the computer can work. These deviations gradually accumu-
late, and in case of highly nonlinear and unstable systems, like here, this results
in significant violation of constraints given at the final time.

When looking at the waveform, representing the pendulum position from
the closed-loop part of the model, it becomes clear at the first glance that the



116 T. Docekal, S. Ozana, A.P. Singh and A. Kawala-Sterniuk

(a)

(b)

(c)

Figure 7. Reference trajectories and control signal: (a) pendulum angle, (b)
pendulum angular speed, (c) cart position

transition condition between states is fulfilled. Only this closed-loop, contain-
ing time-varying LQR controller, will be further discussed. A more detailed
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(d)

(e)

Figure 8. Reference trajectories and control signal: (d) cart speed, (e) cart
acceleration

overview of the situation is given in Fig. 10(a), which compares the reference
trajectory of the pendulum angle, i.e. the x1ref (t) signal, and the correspond-
ing signal obtained from the simulated model x1sim(t) and real output x1real(t).
Differences between these patterns are really small. In this case, the fact that
the non-linear system has been replaced by a linear time-varying system (LTV),
which keeps changing every 1 ms, has a certain influence on the calculation of
the time-variable controller. However, at this time point the controlled system
is considered as linear, this causing a deviation from the previously described
non-linear model (equations (19-22)), which is cumulative again, too. Supposing
an infinitely small period, it would be possible to eliminate this inaccuracy, but,
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Figure 9. Comparison of the pendulum angle responses from the open and
closed loop model

of course, such a situation is hypothetical. The used value of 1 ms time step is
sufficiently small to demonstrate reliable functionality. The resulting deviations
are then compensated by the feedback controller as shown in Fig. 10 (b). The
difference is especially evident in about 1.5 seconds when the pendulum arm
passes through the horizontal position (the angle is π/2 rad). This is a singu-
larity, where it is not possible to affect the states of the system by any value of
the control signal, and in its neighborhood it is possible, but it is very difficult.

7. Discussion

The real physical apparatus, representing a single pendulum on the cart is con-
trolled by the cart speed (inducing its acceleration) instead of the acceleration
signal itself, however, the control design and computation of the trajectories can
be performed for the acceleration control input without being affected by this
assumption. The relationship and the context regarding this issue are briefly
introduced in Ozana and Docekal (2017) and explained in detail within our
paper.

Both trajectory generation and LQR design fall into the framework of the
optimal control problems, but each time these issues are handled differently,
once as a feed-forward optimal control problem, for the second time as a feed-
back control problem.
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(a)

(b)

Figure 10. Comparison of signals: (a) real, reference, and simulated signal x1(t),
(b) reference and simulated signal u(t)

Apart from Ozana and Schlegel (2018) and other similar proposals for solv-
ing the trajectory generation problem, there are many different libraries and
toolboxes for different software environments and languages.
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Thus, PyTrajectory (Kunze, 2016), Dynopt (Cizniar, Fikar and Latifi, 2017)
and OptimTraj (Kelly, 2018) are three examples of very advanced tools with
efficient and very promising results, mainly due to the capability of solving a
general optimal control problems including constraints, and all of them have
been tried for a single inverted pendulum. It is planned to use them for further
work regarding double and triple inverted pendulums.

The proposed solution is based on Matlab, but it can be adopted to a dif-
ferent software environment – the crucial and most challenging part of the pro-
cedure would be the adoption of the care function.

For the trajectory planning in this paper, we chose PyTrajectory which does
not allow the time step below 10ms. With this time periodicity, the computed
reference trajectories can be considered as worst-case, yet the time-varying state
controller is capable of dealing with the considered situation. Of course, it is
always possible and recommended to reduce the period as much as possible with
the use of a different trajectory generator. From the technical point of view,
deviation between open-loop and closed-loop waveforms will always occur, no
matter how precisely the numerical algorithms are set up, but this is efficiently
handled by the feedback controller. With appropriate control design within the
2-DOF concept, feasibility of the solution is never broken.
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