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Abstract: We consider the generalized Nash equilibrium as a
solution concept for multiobjective optimal control problems gov-
erned by elliptic partial differential equations with constraints not
only for the control but also for the state variables. In the first part,
we present a constructive proof of the existence of a generalized Nash
equilibrium via an approximating sequence of suitable finite dimen-
sional discretizations. In the second part, we propose a variant of a
potential reduction algorithm for the numerical solution of these dis-
cretized problems. In contrast to the existing numerical approaches
ours does not require the computation of the control–to–state map-
ping. Instead we introduce different state variables and guarantee
that they become equal at a solution. We prove sufficient conditions
for the convergence of our algorithm to a solution. Furthermore,
some numerical results showing the applicability are provided.
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1. Introduction

Many physical, economic or financial problems are modeled using partial differ-
ential equations (PDEs) and this also is often the setup for different objectives
to be commonly optimized. This leads to multiobjective optimal control prob-
lems. We want to consider those problems where the different objectives are
pursued independently, and hence we introduce for each objective one player
who chooses a strategy to optimize his objective function without cooperating
with any of the other players. To model this, we use the Nash equilibrium con-
cept for a solution of the multiobjective optimal control problem. However, since
the optimization problems of the players are coupled by the common PDE and
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458 A. Dreves

we may have further common constraints, we get a dependence on the variables
of other players not only in the objective function but also in the feasible set of
a player, and hence we do not have standard but generalized Nash equilibrium
problems (GNEPs), which were first introduced in a finite dimensional setting
in Arrow and Debreu (1954).

While for the multiobjective optimal control problems the concept of Pareto-
optimal solutions is used in a number of publications, see, e.g., Lions (1986),
Liu, Yang and Whidborne (2001), there is currently not much literature on
multiobjective optimal control problems and generalized Nash equilibria. A
specific unconstrained setting and a conjugate gradient method for its solution
is considered in Ramos, Glowinski and Periaux (2002a,b). Building up on this,
Borzi and Kanzow (2013) develop a semismooth Newton method for the solution
of a class of multiobjective optimal control problems governed by a linear elliptic
PDE. Moreover, an existence result for the solution of such problems, which are
standard Nash equilibrium problems, is provided. In Hintermüller and Surowiec
(2013), more general problems are considered, since constraints also for the state
variables and not only for the control variables are allowed, which leads to an
additional coupling in the constraints and hence to GNEPs. In their approach,
they suggest to solve a sequence of pure Nash equilibrium problems by adding
the state constraints via penalty terms to the objective functions. Thus, they
are able to prove an existence result and to derive Karush-Kuhn-Tucker (KKT)-
like optimality conditions. Furthermore, the recent papers, Dreves and Gwinner
(2016) and Hintermüller, Surowiec and Kämmler (2015), use a Nikaido-Isoda
function approach to discuss variational Nash equilibria in the context of GNEPs
for multiobjective optimal control problems. The first one develops a relaxation
method, and the second one uses a path-following method, which can even deal
with parabolic PDEs.

Like the here mentioned articles we will consider linear PDEs only, since
we will require convexity for our feasible set. There also exist, however in a
different context of special 2-player games, some analyses for problems involving
nonlinear PDEs, see Ramos and Roubiček (2007).

All the existing approaches use the so called reduced problem, by defining
the solution function of the PDE as a function of the control variables, and
inserting this into the objective function. Then, the reduced problem is a prob-
lem in the control variables only. This leads to the necessity of computing the
derivatives of the reduced objective functions and to the introduction of adjoint
variables. In our numerical approach we will not use the adjoint approach, but
in a new approach we introduce different state variables for each player and we
will guarantee that these states become equal at the solution. This can be used
to extend an algorithm for finite dimensional GNEPs to the discretized optimal
control problem. Our general strategy here is ”first discretize then optimize”.
Finally, we would like to refer to Hinze et al. (2009) and Tröltzsch (2010)
for some standard theory on optimal control problems with a single objective
function and PDE constraints.

This paper is organized as follows. In Section 2 we formulate the considered
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problem and describe a finite element discretization of it. Section 3 examines
the relation between the original and the discretized problem and provides con-
vergence of the discretized solutions to a solution of the continuous problem.
In Section 4 we suggest a potential reduction algorithm for the solution of the
discretized problem, and in Section 5 we discuss sufficient conditions for the
convergence of the algorithm. Finally, in Section 6 we present some numerical
results obtained by our approach, before we conclude with Section 7.

2. Multiobjective Optimal Control Problems and

their discretization

In this paper we consider multiobjective optimal control problems of the follow-
ing form:

Let V be a Hilbert space and Q a nonempty, closed and convex subset of
V . Let Uν , ν = 1, . . . , N be reflexive Banach spaces and Uν

ad ⊆ Uν closed,
bounded, and convex subsets. Define their product spaces U := U1 × . . .× UN

and Uad := U1
ad × . . .×UN

ad, respectively. For ν = 1, . . . , N let Jν : V ×Uν → R

be N objective functions. Let a linear elliptic PDE constraint be given, which
is stated in variational form as follows. Assume we have f ∈ V ′, linear compact
operators Bν : Uν → V ′, ν = 1, . . . , N, the duality pairing 〈·, ·〉 between V ′ and
V, and a bilinear form a : V × V → R such that

Find y ∈ V : a(y, v) =

〈

N
∑

ν=1

Bνuν + f, v

〉

∀v ∈ V

is the weak formulation of the elliptic PDE constraint. To emphasize the role
of the variable uν , we use the notation u = (u1, . . . , uN ) = (uν , u−ν), but we
do not express a permutation by this notation. Then our multiobjective control
problem reads

min
y,uν

Jν(y, uν) s.t. a(y, v) =

〈

N
∑

ν=1

Bνuν + f, v

〉

∀v ∈ V,

uν ∈ Uν
ad, (1)

y ∈ Q,

for all ν = 1, . . . , N . A state ȳ together with a vector of controls (ū1, . . . , ūN)
is called a solution of (1), if they are feasible for all N problems, i.e., ūν ∈ Uν

ad

for all ν = 1, . . . , N, ȳ ∈ Q and a(ȳ, v) =
〈

∑N
ν=1B

ν ūν + f, v
〉

for all v ∈ V,

and if Jν(ȳ, ūν) ≤ Jν(y, uν) for all other feasible y and (u1, . . . , uN) and for all
ν = 1, . . . , N.

A widely used setting is an open, bounded and convex polyhedral set Ω ⊂ R
2,

the Hilbert space V = H1
0 (Ω) with its dual V ′ = H−1(Ω) and the Banach spaces
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Uν = L2(Ω) for all ν = 1, . . . , N . There, the assumed compactness of the
operators Bν : Uν → V ′, ν = 1, . . . , N is justified by the compact embedding of
L2(Ω) in H−1(Ω). This is the setting considered in Hintermüller and Surowiec
(2013) and it is more general than the one given in Borzi and Kanzow (2013),
since it includes state constraints.

Throughout the paper we will assume that the variational equation

Find y ∈ V : a(y, v) =

〈

N
∑

ν=1

Bνuν + f, v

〉

∀v ∈ V

has a unique solution for every given control u, which can be guaranteed by
the Lax-Milgram Theorem if the bilinear form a is bounded and coercive. This
solution map will be denoted by u ∈ U 7→ y(u) ∈ V . However, we will use this
solution map for the theoretical parts only and we will not compute it in our
numerical approach.

In order to solve the infinite dimensional problem (1) we will use a finite
element discretization to obtain finite dimensional approximations, and the ap-
proximations must satisfy a number of assumptions to be introduced in the next
section. We introduce for every h ∈ (0, 1)

• finite-dimensional subspaces Vh ⊆ V, V ′
h ⊆ V ′, Uν

h ⊆ Uν and

Uh := U1
h × . . .× UN

h ;

• nonempty, closed and convex subsets Qh ⊆ Vh;
• nonempty, closed and convex subsets Uν

ad,h ⊆ Uν
h ,

Uad,h := U1
ad,h × . . .× UN

ad,h;

• bilinear forms ah : Vh × Vh → R;
• fh ∈ V ′

h, linear operators B
ν
h : Uν

h → V ′
h, ν = 1, . . . , N ;

• the duality pairing 〈·, ·〉h between V ′
h and Vh;

• objective functions Jν
h : Vh × Uν

h → R for all ν = 1, . . . , N .

Then, the discretized problem reads

min
yh,uν

h

Jν
h (yh, u

ν
h) s.t. ah(yh, vh) =

〈

N
∑

ν=1

Bν
hu

ν
h + fh, vh

〉

h

∀vh ∈ Vh,

uνh ∈ Uν
ad,h, (2)

yh ∈ Qh,

for all ν = 1, . . . , N . A solution of (2) is a state ȳh together with a vector of
controls (ū1h, . . . , ū

N
h ) that is feasible for all N problems and further satisfies

Jν
h (ȳh, ū

ν
h) ≤ Jν

h (yh, u
ν
h) for all other feasible yh and (u1h, . . . , u

N
h ) and for all

ν = 1, . . . , N.
Note that in our numerical examples 〈·, ·〉h will be an approximation of the

L2(Ω) scalar product using a quadrature formula.
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3. The relation of the original and the discretized

problem

Here we will clarify the relation between the problems (1) and (2). Furthermore,
we will present a constructive existence result for a generalized Nash equilibrium
of (1). Note that one can also use the approach from Hintermüller and Surowiec
(2013) to obtain a solution of the problem (1) by a sequence of penalized Nash
equilibrium problems.

Let yh := yh(uh) be the unique solution of the discretized variational equa-
tion

Find yh ∈ Vh : ah(yh, vh) =

〈

N
∑

ν=1

Bν
hu

ν
h + fh, vh

〉

h

∀vh ∈ Vh. (3)

Introducing the sets

Xν(u−ν) := {uν ∈ Uν
ad | y(uν, u−ν) ∈ Q},

Xν
h(u

−ν
h ) := {uνh ∈ Uν

ad,h | yh(u
ν
h, u

−ν
h ) ∈ Qh}.

leads to a compact reduced form of our original problem (1):

min
uν

Jν(y(u), uν) s.t. uν ∈ Xν(u−ν) ∀ν = 1, . . . , N, (4)

which only depends on the control variables. Analogously, we obtain for the
discretized problem (2)

min
uν
h

Jν
h (yh(uh), u

ν
h) s.t. uνh ∈ Xν

h(u
−ν
h ) ∀ν = 1, . . . , N. (5)

Now we can introduce the assumptions that we need for the analysis of
the relation between these problems. We adapt and weaken the assumptions
given in Haslinger and Neittaanmäki (1996) in the context of our setting. In
the following, yh → y means strong convergence, while weak convergence is
denoted by yh ⇀ y. By ‖ · ‖ we denote the norm in V, by ‖ · ‖U the norm in U.
For the families {Vh}, {Uad,h}, {Qh}, {ah}, {fh}, {Bh} and {Jν

h} we assume the
following

(H1) ∃m > 0 : ah(vh, vh) ≥ m‖vh‖2 ∀vh ∈ Vh, ∀h ∈ (0, 1);
(H2) ∃M > 0 : |ah(yh, vh)| ≤M‖yh‖ ‖vh‖ ∀yh, vh ∈ Vh, ∀h ∈ (0, 1);
(H3) for any {vh}, {yh} with vh, yh ∈ Vh such that yh ⇀ y, vh → v in V we

have ah(yh, vh) → a(y, v) and ah(vh, yh) → a(v, y) as h→ 0+;
(H4) ∀v ∈ V ∃{vh}, vh ∈ Vh : vh → v in V ;
(H5) ∃C > 0 : |〈fh, vh〉h| ≤ C‖vh‖ ∀vh ∈ Vh, ∀h ∈ (0, 1);
(H6) for any {vh}, vh ∈ Vh such that vh ⇀ v in V we have 〈fh, vh〉h → 〈f, v〉 as

h→ 0+;
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(H7) for any {uh}, uh ∈ Uad,h such that ‖uh‖U is bounded, ∃C̄ > 0 such that
∣

∣

∣

〈

∑N
ν=1B

ν
hu

ν
h, vh

〉

h

∣

∣

∣
≤ C̄‖vh‖ ∀vh ∈ Vh, ∀h ∈ (0, 1);

(H8) for any {uh}, {vh}, where uh ∈ Uad,h, vh ∈ Vh such that uh ⇀ u in Uad and

vh ⇀ v in V , we have
〈

∑N
ν=1B

ν
hu

ν
h, vh

〉

h
→
〈

∑N
ν=1B

νuν, v
〉

as h→ 0+;

(H9) for any {yh}, yh ∈ Qh such that yh → y in V we have y ∈ Q;
(H10) for arbitrary ν = 1, . . . , N and for all uν ∈ Xν(u−ν) and all sequences

{u−ν
h } with u−ν

h ⇀ u−ν in U−ν
ad and Xν

h(u
−ν
h ) 6= ∅, there exists a sequence

{uνh} with uνh ∈ Xν
h(u

−ν
h ) such that uνh → uν in Uν

ad as h→ 0+;
(H11) for all ν = 1, . . . , N and any {uνh}, {yh}, where u

ν
h ∈ Uν

h , yh ∈ Vh such
that uνh ⇀ uν in Uν

ad and yh → y in V we have lim infh→0+ J
ν
h (yh, u

ν
h) ≥

Jν(y, uν) and moreover Jν
h (yh, u

ν
h) → Jν(y, uν) as h → 0+, if uh → u in

Uad.

Note that in (H8) we already exploited the compactness assumption on Bν ,
ν = 1, . . . , N in order to assume only uh ⇀ u instead of uh → u. Using
a standard finite element approach, i.e., defining Vh and Uad,h via piecewise
polynomial functions and using some quadrature formula for the discrete scalar
product including the function f , one can show (H1) to (H8) as in the single
objective case of PDE optimization for a number of commonly used settings,
including the ones in the numerical section. Furthermore, (H9) can be obtained
by using linear interpolation of the discrete pointwise defined state constraints.
This can also be used to show the most critical assumption (H10) for our nu-
merical examples, where we use piecewise linear functions for the discretization
and the controls are active on disjoint subregions of Ω only. For (H11) we can
choose Jν

h ≡ Jν for all ν = 1, . . . , N , and we need some continuity properties
of these functions, which are satisfied for the objective functions used in our
examples in the numerical part.

Next we show a result, which is motivated by Haslinger and Neittaanmäki
(1996, Theorem 10.3), and the proof uses the same techniques but with weaker
assumptions.

Lemma 1 Let (H1)-(H8) hold, and let a sequence {uh}, uh ∈ Uh be given, such
that uh ⇀ u as h→ 0+. Then yh(uh) → y(u) in V .

Proof By assumptions (H1), (H2) and the Lax-Milgram Theorem, yh :=
yh(uh) is the unique solution of the discretized variational equality (3). With
(H1), (H5) and (H7) we can find positive constants m,C, C̄ such that

m‖yh‖
2

(H1)

≤ ah(yh, yh) =

〈

N
∑

ν=1

Bν
hu

ν
h + fh, yh

〉

h

(H5),(H7)

≤ C̄‖yh‖+C‖yh‖.

This implies

‖yh‖ ≤
C̄ + C

m
,
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and hence the sequence {yh} is bounded in V . Therefore, we can find a y ∈
V and a subsequence, which will be denoted by {yh(uh)} again, that weakly
converges to y, i.e., yh(uh)⇀ y as h→ 0+.

Next, we will show that y = y(u), meaning a(y, v) =
〈

∑N
ν=1B

νuν + f, v
〉

for all v ∈ V . For arbitrary v ∈ V we get by (H4) a sequence {vh}, vh ∈ Vh
such that vh → v. With uh ⇀ u, vh → v, yh(uh) ⇀ y we can use (H3), (H6)
and (H8) to obtain

a(y, v)
(H3)
= lim

h→0+
ah(yh, vh) = lim

h→0+

〈

N
∑

ν=1

Bν
hu

ν
h + fh, vh

〉

h

(H6),(H8)
=

〈

N
∑

ν=1

Bνuν + f, v

〉

.

Since v ∈ V was arbitrary, we have y = y(u). By the uniqueness of the solution
y(u) the whole sequence {yh(uh)} converges weakly to y(u).

To finish the proof we have to show strong convergence. For y(u) ∈ V we
can find by (H4) a sequence {zh}, zh ∈ Vh with zh → y(u). Then, using (H1)
we have

m‖yh(uh)− zh‖
2

(H1)

≤ ah(yh(uh)− zh, yh(uh)− zh)

=

〈

N
∑

ν=1

Bν
hu

ν
h + fh, yh(uh)− zh

〉

h

− ah(zh, yh(uh)− zh).

Since uh ⇀ u, yh(uh) ⇀ y(u) and zh → y(u), the first term on the right hand
side has by (H6) and (H8) the limit

〈

N
∑

ν=1

Bνuν + f, y(u)− y(u)

〉

= 0.

The limit of the second second term is, by (H3)

a(y(u), y(u)− y(u)) = 0.

Therefore, we have

‖yh(uh)− y(u)‖ ≤ ‖yh(uh)− zh‖+ ‖zh − y(u)‖ → 0,

as h→ 0+, which proves the strong convergence of {yh(uh)} to y(u) in V . �

With this Lemma we can show the following approximation result for the
finite element discretization which extends Haslinger and Neittaanmäki (1996,
Theorem 10.4) to the multiobjective case.
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Theorem 1 Let (H1)-(H11) hold and let (û1h, . . . , û
N
h , ŷh) be a solution of the

discretized problem (5). Then there exists a subsequence (û1h′ , . . . , ûNh′ , ŷh′) and
further (û1, . . . , ûN ) ∈ Uad and ŷ ∈ V such that ŷh′ → ŷ, ûνh′ → ûν for all
ν = 1, . . . , N and (û1, . . . , ûN , ŷ) is a solution of the problem (4).

Proof Let (û1h, . . . , û
N
h , ŷh) be a solution of the discretized problem (5). Since

U is bounded and Uad,h ⊆ Uh ⊆ U, we can find a weakly convergent subsequence

ûh′ := (û1h′ , . . . , ûNh′)⇀ (û1, . . . , ûN ) =: û ∈ Uad.

Now, using Lemma 1 we obtain

ŷh′ = yh′(ûh′) → y(û) =: ŷ

in V . Furthermore by (H9) we have ŷ = y(û) ∈ Q, and hence also

ûν ∈ Xν(û−ν) = {uν ∈ Uν
ad | y(uν , û−ν) ∈ Q}

for all ν = 1, . . . , N . (û1h′ , . . . , ûNh′ , ŷh′) being a solution of the discretized prob-
lem (5) implies for all ν = 1, . . . , N :

Jν
h′(yh′(ûνh′ , û−ν

h′ ), û
ν
h′) ≤ Jν

h′(yh′(wν
h′ , û−ν

h′ ), w
ν
h′ ) ∀wν

h′ ∈ Xν
h′(û−ν

h′ ). (6)

Let ν ∈ {1, . . . , N} be fixed. Using (H10) we can find for any uν ∈ Xν(û−ν)
and the sequence û−ν

h′ ⇀ û−ν, which satisfies ûνh′ ∈ Xν
h′(û

−ν
h′ ) 6= ∅, a sequence

{uνh′} with uνh′ ∈ Xν
h′(û

−ν
h′ ) and uνh′ → uν . Using Lemma 1 once again, we get

yh′(uνh′ , û
−ν
h′ ) → y(uν, û−ν).

Now, taking the limit h′ → 0+ in (6) and using uνh′ ∈ Xν
h′(û

−ν
h′ ) together

with (H11) we obtain

Jν(y(ûν , û−ν), ûν)
(H11)

≤ lim inf
h′→0+

Jν
h′(yh′(ûνh′ , û−ν

h′ ), û
ν
h′)

(6)

≤ lim inf
h′→0+

Jν
h′(yh′(uνh′ , û−ν

h′ ), u
ν
h′)

(H11)
= Jν(y(uν , û−ν), uν).

Since uν ∈ Xν(û−ν) was arbitrary, and the arguments hold for all ν =
1, . . . , N , this implies that (û1, . . . , ûN , ŷ) is a solution of the problem (4) and
hence completes the proof. �

Note that instead of (H1) - (H8) we can also assume the assertion of Lemma
1 to prove this theorem. Therefore we get the following existence result.

Proposition 1 Let (H9)-(H11) hold and assume that for any given sequence
{uh}, uh ∈ Uh with uh ⇀ u in U as h→ 0+ we have yh(uh) → y(u) in V . Then
there exists a solution of (4), if every discretized problem (5) has a solution.
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It remains to prove the existence of a solution for the discretized finite-
dimensional GNEP (5). Here we can use some known results, see Facchini and
Kanzow (2007, Theorem 4.1) going back to Arrow and Debreu (1954) and Ichishi
(1983), which we state in our notation.

Lemma 2 Let a finite dimensional GNEP be given. Assume that the functions
Jν
h are continuous and Jν

h (yh(·, u
−ν
h ), ·, u−ν

h ) are quasi-convex on Xν
h(u

−ν
h ) for

every ν = 1, . . . , N . Further, let nonempty, convex, and compact sets Kν ⊆
R

dim(Uν
ad,h) for ν = 1, . . . , N exist, such that for every uh with uνh ∈ Kν for

every ν, the sets Xν
h(u

−ν
h ) are nonempty, closed, and convex subsets of Kν .

Moreover let Xν
h , as a point-to-set map, be upper and lower semicontinuous.

Then there exists a generalized Nash equilibrium.

Note that the notation of upper and lower semicontinuity is in the sense of
Berge, see Berge (1963). Using this Lemma we can prove the following existence
result.

Theorem 2 Assume that the functions Jν
h are continuous and Jν

h (yh(·, u
−ν
h ), ·)

are quasi-convex on Xν
h(u

−ν
h ) for every ν = 1, . . . , N . Let Uν

ad,h be nonempty,
convex, and compact and assume that there is a continuous and in each uνh,
ν = 1, . . . , N (separately not jointly) convex function gh : Uad,h → R

ℓ for some
ℓ ∈ N such that

Xν
h(u

−ν
h ) = {uνh ∈ Uν

ad,h | gh(u
ν
h, u

−ν
h ) ≤ 0}.

Further, let for all ν = 1, . . . , N the sets Xν
h(u

−ν
h ) satisfy a Slater condition for

all u−ν
h ∈ U−ν

ad,h, i.e.,

∀u−ν
h ∈ U−ν

ad,h ∃uνh ∈ Uν
ad,h : gh(u

ν
h, u

−ν
h ) < 0.

Then the GNEP (5) has a solution.

Proof We want to use Lemma 2 with Kν := Uν
ad,h. By assumption, the sets

Uν
ad,h are nonempty, convex and compact and Xν

h(u
−ν
h ) ⊆ Uν

ad,h. By the con-

tinuity and convexity of g, the set Xν
h(u

−ν
h ) is closed and convex and by the

assumed Slater condition also nonempty. Furthermore, the continuity of gh im-
plies the closedness of the point-to-set map Xν

h by Hogan (1973, Theorem 10)
and by the compactness of Uad,h this implies upper semicontinuity. By Hogan
(1973, Theorem 12) the Slater condition and the continuity and convexity of gh
imply that the point-to-set map Xν

h is an open mapping in the sense of Hogan
(1973), which is equivalent to lower semicontinuity. Therefore, Lemma 2 shows
the existence of a solution of the GNEP (5). �

To close this section let us remark on two issues:
• Let us consider the case, where the discretized variational equation is a
linear equation system, the discretized objective functions are quadratic
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and the feasible sets Uν
ad,h for the controls are box constrained, hence

nonempty, convex and compact. Further assume that the constraints on
the state can be expressed by yh(uh) ≥ ψ. Then we only need the Slater
condition to be satisfied, which becomes

∀u−ν
h ∈ U−ν

ad,h ∃u
ν
h ∈ Uν

ad,h : yh(u
ν
h, u

−ν
h ) > ψ.

By the compactness of Uad,h, this is similar to the strict uniform feasible
response constraint qualification SUFR from Hintemüller and Surowiec
(2013) in our particular context of this finite dimensional GNEP. However,
it does not imply SUFR, since we do not have a uniform bound here.

• One can also consider the more general setting, where the objective func-
tions may depend directly on the control variables of the other players,
i.e., Jν(y, uν , u−ν). Introducing the additional assumption that u−ν oc-
curs in the objective function only together with a compact linear operator
C−ν , meaning that we actually have Jν(y, uν , C−νu−ν), we can obtain all
the results above, with a simple modification at the end of the proof of
Theorem 1.

4. The algorithm

In this section we are interested in a method to solve the discretized problems.
We propose a variant of a potential reduction algorithm, which was earlier used
to solve finite dimensional GNEPs, see Dreves et al. (2011), or quasi-variational
inequality problems, see Facchinei, Kanzow and Sagratella (2014). Since we
have the same state variable y for all players, we are not in the standard form
of a GNEP. Now, the idea is to introduce a state variable yν for each player
ν = 1, . . . , N, which will be all equal at a solution, since we assume a unique
solution of the variational equation. By this approach we can use some concepts
and ideas from the GNEP theory.

Since we always use the discretized problem for some fixed h in this and the
next section, we will skip the discretization index h from now on, i.e., we will
write y, uν , . . . instead of yh, u

ν
h, . . ..

Let u1, . . . , uN , y1, . . . , yN be discretized so that uν ∈ R
nν and yν ∈ R

n′

for
all ν = 1, . . . , N . Define also n := N · n′ +

∑N
ν=1 nν as the total number of

primal variables. Let the discretization of the variational equality result in an
equation of the form h̄(yν , uν , u−ν) = 0 for a function h̄ : Rn′+n1+...+nN → R

p′

.
If we use, for example, a Ritz-Galerkin ansatz with nodal basis functions, i.e.,
basis functions φi that are 1 at node i and zero at all the other nodes, we get
an affine linear function h̄ here. Furthermore, we assume the existence of a
function gν : Rn′+nν → R

mν that describes the constraints uν ∈ Uν
ad, y

ν ∈ Q by
gν(yν , uν) ≤ 0. Hence, our discretized problem becomes
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min
yν ,uν

Jν(yν , uν) s.t. h̄(yν , uν, u−ν) = 0, (7)

gν(yν , uν) ≤ 0,

for ν = 1, . . . , N . We will use the notation ∇uν h̄(yν , uν , u−ν) ∈ R
nν×p′

for the
matrix that has in column i the partial gradient of the component function hi
with respect to uν , whereas the notation Juν h̄ ∈ R

p′×nν is used for the Jacobian
of h̄ with respect to uν. Upon setting p := Np′ and m := m1 + . . . +mN we
can define the function H : Rn+p+m+m → R

n+p+m+m by

H((u1, y1, . . . , uN , yN), (µ1, . . . , µN ), (λ1, . . . , λN ), (w1, . . . , wN )) :=










[

∇(uν ,yν)J
ν(yν , uν) +∇(uν ,yν)h̄(y

ν , uν , u−ν)µν +∇(uν ,yν)g
ν(yν , uν)λν

]N

ν=1
[

h̄(yν , uν , u−ν)
]N

ν=1

[gν(yν , uν) + wν ]
N
ν=1

[λν ◦ wν ]
N
ν=1 ,











with the componentwise Hadamard product w ◦ λ. For a short notation we
define

x := (u1, y1, u2, y2, . . . , uN , yN ),

µ := (µ1, . . . , µN ),

λ := (λ1, . . . , λN ),

w := (w1, . . . , wN ),

z := (x, µ, λ, w),

h(x) :=
[

h̄(yν , uν, u−ν)
]N

ν=1
,

g(x) := [gν(yν , uν)]
N
ν=1 ,

F (x, µ, λ) :=
[

∇(uν ,yν)(J
ν(yν , uν) + h(yν , uν , u−ν)µν + gν(yν , uν)λν)

]N

ν=1

Λ := diag(λ),

W := diag(w),

Eh(x) :=







∇(u1,y1)h̄(y
1, u1, u−1)

. . .

∇(uN ,yN )h̄(y
N , uN , u−N)






.

Note that we do not define Eg(x) similarly to Eh(x), since by the structure
of the function g we have Eg(x) = Jg(x)⊤. Using our notation we obtain

H(x, µ, λ, w) =









F (x, µ, λ)
h(x)

g(x) + w
λ ◦ w









.
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Now, every solution of the concatenated KKT system of the problem (7) is a
solution of the constrained equation

H(z) = 0, z ∈ R
n × R

p × R
m
+ × R

m
+ . (8)

For the solution of this constrained equation we want to give a short descrip-
tion of the interior point algorithm from Dreves et al. (2011), which is based
on the algorithm first proposed in Monteiro and Pang (1999). In contrast to
Dreves et al. (2011), we now have equality constraints in our setting. Let

ZI := {z = (x, µ, λ, w) ∈ R
n × R

p × R
m
++ × R

m
++ | g(x) + w > 0}

denote the set of all strictly feasible points, for which the last 2m components
of H are positive. Then we define for a given real number ζ > m the potential
function ψ : ZI → R by

ψ(z) := ζ log(‖H(z)‖2)−

n+p+2m
∑

i=n+p+1

log(Hi(z)).

With a⊤ := (0⊤n+p, 1
⊤
2m) we can now present the algorithm from Dreves et al.

(2011) including equality constraints.

Algorithm 1: Inexact Potential Reduction Algorithm for GNEPs

(S.0): Choose z0 ∈ ZI and β, γ,∈ (0, 1), ζ > m. Set k := 0.

(S.1): If H(zk) = 0 then STOP.

(S.2): Choose σk ∈ [0, 1), ηk ≥ 0 and compute a solution dk of

∥

∥

∥
H(zk)− JH(zk)d− σk

a⊤H(zk)
‖a‖2 a

∥

∥

∥
≤ ηk‖H(zk)‖ and

∇ψ(zk)⊤dk < 0.

(S.3): Compute a stepsize tk := max{βi | i = 0, 1, 2, . . .} such that

zk + tkd
k ∈ ZI and

ψ(zk + tkd
k) ≤ ψ(zk) + γtk∇ψ(zk)⊤dk.

(S.4): Set zk+1 := zk + tkd
k, k := k + 1, and go to (S.1).

If JH(zk) is nonsingular, we can always find a solution dk of the linear
equation system in (S.2). By Monteiro and Pang (1999) this solution is a direc-
tion of descent for the potential function ψ, which leads to the name Potential
Reduction Algorithm. Since ZI is an open set and dk is a direction of de-
scent, according to the line search rule, and hence the entire Algorithm 1 is
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well-defined, if JH(zk) is nonsingular for all zk. The next result follows from
Dreves et al. (2011, Theorem 4.3), whose proof can be extended to our setting
with the additional equations. It requires a non restrictive technical assumption
lim supk→∞ σk < 1, which guarantees some uniform descent.

Theorem 3 Assume that JH(z) is nonsingular for all z ∈ ZI and that the
sequences {σk} and {ηk} satisfy the conditions

lim sup
k→∞

σk < 1 and lim
k→∞

ηk = 0.

Let {zk} be any sequence generated by Algorithm 1. Then the following asser-
tions hold:
(a) The sequence {H(zk)} is bounded.
(b) Any accumulation point of {zk} is a solution of (8).

By z0 ∈ ZI and due to the step size rule in (S.3) of Algorithm 1 all it-
erates zk are contained in ZI . Therefore, the nonsingularity of JH(z) on ZI

guarantees that Algorithm 1 is well defined. Note that none of the solutions of
the system H(z) = 0 does belong to ZI , so that the nonsingularity of JH(z)
on ZI does not imply the nonsingularity of the Jacobian JH at a KKT point.
Further, note that setting ηk = 0 for all k ∈ N0 we have an exact version of this
algorithm. In our numerical section we observe that such a version is faster for
our test problems than using an iterative solver, like gmres, for the approximate
solution of the equation system in (S.2). However, if the discretized problems
are very large, but manageable by the memory constraints, this may change.
Beside some weak technical assumption, the convergence of the inexact algo-
rithm requires only the nonsingularity of JH(z). Furthermore, let us mention
that if one aims to solve the discretized problem at a high precision, one can
use the hybrid method suggested in Dreves et al. (2014), which combines the
potential reduction algorithm with an LP-Newton method to inherit its local
quadratic rate of convergence.

5. Nonsingularity conditions

Algorithm 1 is well defined only, if the Jacobian of the function H is nonsingular
for all iterates z ∈ ZI . The Jacobian of H is in our setting given by

JH(z) =









JxF (x, µ, λ) Eh(x) Jg⊤(x) 0
Jh(x) 0 0 0
Jg(x) 0 0 Im

0 0 W Λ









,

and we are interested in conditions guaranteeing the nonsingularity of this ma-
trix only for all z ∈ ZI . For an easier reading we often drop the arguments
of the functions in the following, if they are clear from the context. As a first
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step we want to use the condition given in Dreves et al. (2011), where, how-
ever, no equality constraints were used. To do so, we repeat the definition of a
P0-matrix.

Definition 1 A matrix M ∈ R
n×n is called a P0-matrix if det(Mαα) ≥ 0 for

all α ⊆ {1, 2, . . . , n}.

Note that the class of P0-matrices strictly includes the positive semidefinite
matrices, see Cottle, Pang and Stone (1992).

Lemma 3 The matrix JH(z) is nonsingular for all z ∈ ZI, if the matrices JxF
and Jh(JxF )

−1Eh are nonsingular and the matrix

Jg [(JxF )
−1 − (JxF )

−1Eh (Jh (JxF )
−1Eh)

−1 Jh (JxF )
−1] Jg⊤

is a P0-matrix.

Proof If we use the function F̄ (x, µ, λ) =

(

F (x, µ, λ)
h(x)

)

to describe all

equalities in the KKT system, we are in the setting of Dreves et al. (2011,
Theorem 4.6). Therefore the matrix JH(z) is nonsingular for all z ∈ ZI , if
J(x,µ)F̄ is nonsingular and

(Jg, 0)(J(x,µ)F̄ (x, µ, λ))
−1

(

Jg⊤

0

)

is a P0-matrix. Let us first show that the matrix J(x,µ)F̄ =

(

JxF Eh

Jh 0

)

is

nonsingular. If we consider the equation system

(

0
0

)

= J(x,µ)F̄

(

d1
d2

)

=

(

JxF Eh

Jh 0

)(

d1
d2

)

,

and use the nonsingularity of JxF , we get from the first equation

d1 = −(JxF )
−1 Eh d2

and hence from the second one

0 = Jh d1 = −(Jh (JxF )
−1Eh)d2.

The assumed nonsingularity of Jh (JxF )
−1Eh implies d2 = 0 and thus also

d1 = 0 follows. This proves that J(x,µ)F̄ is nonsingular.

Furthermore, we have to show that (Jg, 0)(J(x,µ)F̄ (x, µ, λ))
−1

(

Jg⊤

0

)

is

a P0-matrix. For this purpose, we will make use of the following general alge-
braic representation of the inverse of a special blockmatrix, which can be easily
verified:
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(

A B
C 0

)−1

=

(

A−1 −A−1B(CA−1B)−1CA−1 A−1B(CA−1B)−1

(CA−1B)−1CA−1 −(CA−1B)−1

)

. (9)

With this formula, we obtain

(Jg, 0)

(

JxF Eh

Jh 0

)−1(
Jg⊤

0

)

= Jg[(JxF )
−1 − (JxF )

−1Eh(Jh(JxF )
−1Eh)

−1Jh(JxF )
−1]Jg⊤.

By assumption, this is a P0-matrix, which completes the proof. �

It is possible to reduce the equation system JH d = b to a smaller one, in
the following way: by splitting the system we obtain

JxF d1 + Eh d2 + Jg⊤ d3 = b1,

Jh d1 = b2,

Jg d1 + d4 = b3,

W d3 + Λ d4 = b4.

Now, the third equation gives

d4 = b3 − Jg d1

and, since we assume that we are in ZI and hence all entries of the diagonal
matrix W are positive, we get from the last equality

d3 =W−1(b4 − Λ d4) =W−1b4 −W−1Λ b3 +W−1Λ Jg d1.

By inserting this into the first equality we get a system in d1 and d2 only, namely

(

JxF + Jg⊤W−1 Λ Jg Eh

Jh 0

)(

d1
d2

)

=

(

b1 − Jg⊤(W−1 b4 −W−1 Λ b3)
b2

)

.

Hence, we have shown the following

Lemma 4 The matrix JH(z) is nonsingular for all z ∈ ZI, if and only if

(

JxF + Jg⊤W−1 Λ Jg Eh

Jh 0

)

is nonsingular for all z ∈ ZI .

Now we are in the position to show a further nonsingularity result.

Theorem 4 The matrix JH(z) is nonsingular for all z ∈ Ω, if the matrices
JxF + Jg⊤W−1 Λ Jg and Jh (JxF + Jg⊤W−1 Λ Jg)−1Eh are nonsingular.
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Proof The assertion follows from the previous Lemma 4 and the formula of
the inverse given in (9), which can be used since, by assumption

A = JxF +Jg⊤W−1 Λ Jg and CA−1B = Jh (JxF +Jg⊤W−1Λ Jg)−1Eh

are nonsingular. �

Corollary 1 Assume that JxF is positive semidefinite and

d⊤JxF d > 0 ∀d ∈ {d ∈ R
n \ {0} | Jg d = 0}.

Then, nonsingularity of Jh (JxF + Jg⊤W−1 Λ Jg)−1Eh implies that JH(z) is
nonsingular for all z ∈ ZI .

Proof Since W and Λ are diagonal matrices with positive entries, the matrix
Jg⊤W−1Λ Jg is positive semidefinite for all z ∈ ZI . Then, positive semidefi-
niteness of JxF , together with

d⊤JxF d > 0 ∀d ∈ {d ∈ R
n \ {0} | Jg d = 0}

is sufficient for nonsingularity of JxF + Jg⊤W−1 Λ Jg. Thus, the assertion fol-
lows from Theorem 4. �

For the rest of this section let us consider problems with objective functions
of the form

Jν(yν , uν) =
1

2
‖yν − zν‖2L2(Ω) +

1

2
‖uν‖2L2(Ω)

for given zν ∈ L2(Ω). Further, we will assume that we have a Ritz-Galerkin
discretization, resulting in the discrete objective functions of the form

Jν(yν , uν) =
1

2
(yν − zν)⊤Py(y

ν − zν) +
1

2
(uν)⊤Pνu

ν

with symmetric positive definite matrices Py, Pν , ν = 1, . . . , N, and the varia-
tional equality from the constraints is an affine linear equation

Ayν =

N
∑

ν=1

Mν u
ν + F

for some matrices A,Mν , ν = 1, . . . , N with A being positive definite.

Corollary 2 For discrete problems having the above form, the Jacobian JH(z)
is nonsingular for all z ∈ ZI .
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Proof By the properties of the discretization, the matrices Py , P1, . . . , PN are
symmetric positive definite and therefore also

JxF = blockdiag(P1, Py , P2, Py, . . . , PN , Py)

is symmetric positive definite. Together with the positive semidefiniteness of
Jg⊤W−1Λ Jg this shows that JxF + Jg⊤W−1 Λ Jg is symmetric positive defi-
nite. Since Jg⊤W−1 Λ Jg has the same blockdiagonal structure as JxF , we can
define the inverse

(JxF + Jg⊤W−1Λ Jg)−1 =: blockdiag(Q1, Qy, Q2, Qy, . . . , QN , Qy),

which has also symmetric positive definite blocks Qy, Q1, . . . , QN . By Corollary
1 we only have to show that Jh (JxF + Jg⊤W−1 Λ Jg)−1Eh is nonsingular.
Using the fact that A is symmetric we can compute

Jh =











−M1 A −M2 0 . . . . . . −MN 0
−M1 0 −M2 A . . . . . . −MN 0
...

...
...

...
...

...
−M1 0 −M2 0 . . . . . . −MN A











,

Eh =























−M⊤
1

A
−M⊤

2

A
. . .

−M⊤
N

A























and then

M̂ := Jh (JxF + EgW
−1 Λ Jg)−1Eh =











M1Q1M
⊤
1 +AQyA M2Q2M

⊤
2 . . . MNQNM

⊤
N

M1Q1M
⊤
1 M2Q2M

⊤
2 +AQyA . . . MNQNM

⊤
N

...
...

...
M1Q1M

⊤
1 M2Q2M

⊤
2 . . . MNQNM

⊤
N +AQyA











.

Now, let a vector v = (v⊤1 , . . . , v
⊤
N )⊤ be given, such that M̂v = 0. By subtracting

the i-th row from the first one we get

AQyA(v1 − vi) = 0 ∀i = 2, . . . , N,

and therefore, by the positive definiteness of A and Qy, we obtain v1 = vi for
all i = 2, . . . , N . This implies

0 = v⊤M̂v = Nv⊤1 AQyAv1 +N
N
∑

ν=1

v⊤1 MνQνM
⊤
ν v1.
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Since Qy, Qν and A are positive definite and MνQνM
⊤
ν is positive semidefi-

nite, v1 = 0 must hold. Hence we have v = 0 and this shows that the matrix
Jh (JxF + Jg⊤W−1 Λ Jg)−1Eh is nonsingular and by Corollary 1 the matrix
JH is nonsingular for all z ∈ ZI . �

At the end of this section we want to show that for the exact version of
Algorithm 1, i.e., the version with ηk = 0 for all k ∈ N, the states yν , ν =
1, . . . , N, are equal at all iterates, provided they are equal at the beginning.
When we solve the linear equation system in (S.2) of Algorithm 1, one part to
consider is

Jh(x) d = h(x) ⇔ Adyν−
N
∑

ν=1

Mνduν = Ayν−
N
∑

ν=1

Mνu
ν−F ∀ν = 1, . . . , N.

Subtracting the i-th equation from the first one for all i = 2, . . . , N , yields

A(dy1 − dyi) = A(y1 − yi),

and by the nonsingularity of A we obtain dy1 −dyi = y1−yi for all i = 2, . . . , N .
Hence, we have shown the following

Lemma 5 If the starting values for all yν , ν = 1, . . . , N are equal, these values
stay equal at all iterates of the exact version of Algorithm 1. In particular, we
get equal values y1 = . . . = yN at the solution of the discretized problem.

6. Numerical results

To show the numerical applicability of our approach we made a straightforward
implementation of our Algorithm 1 in Matlab. As parameters we choose β = 0.5,
γ = 0.01, ζ = 2m and σ0 = 0.9, and σk = 0.1, k ∈ N. Further, we set ηk = 0
for all k ∈ N0, since we observed that for our test problems this exact version is
faster. We used a minimum value of 10−14 for λ,w to ensure feasibility. As a first
test example we used the one described in Borzi and Kanzow (2013). Although
we do not have state constraints here and hence more efficient methods for
the solution of this problem exist, we used it since it has a known analytical
solution, and hence the computed errors are observable. Further, we tested a
problem coming from a preprint version of Hintermüller and Surowiec (2013),
which is described to have one of the major difficulties that can arise when
solving GNEPs, meaning nontrivial biactive sets, and a third example having
low multiplier regularity for the state constraints. As starting vectors we always
used x0 = 0, µ0 = 0, λ0 = 10 and w0 = max{10, 5− g(x0)} and we stopped the
algorithm if ‖H(z)‖∞ < 10−10.



Nash equilibrium for multiobjective optimal control with elliptic PDEs 475

The problems always have the form

min
yν ,uν

1

2
‖yν − zν‖2L2(Ω) +

αν

2
‖χBν

uν‖2L2(Ω) s.t. −∆yν =

N
∑

ν=1

χBν
uν + f in Ω,

yν = 0 on ∂Ω,

lν ≤ uν ≤ rν a.e. in Ω,

ψl ≤ yν ≤ ψr a.e. in Ω,

for ν = 1, . . . , N. The weak formulation of the PDE is given by: Find y ∈
H1

0 (Ω) :

∫

Ω

∇yν · ∇v dx =

∫

Ω

(

N
∑

ν=1

χBν
uν

)

· v dx+

∫

Ω

f · v dx ∀v ∈ H1
0 (Ω).

We discretize the problem by a regular triangulation of Ω ⊂ R
2 using linear

functions on each triangle. Let Nh
I be the set of interior nodes in Ω and Nh

T be
the set of all nodes and further φhi , i = 1, . . . , Nh

T be the nodal basis functions,
i.e., the functions φhi are 1 at node i and 0 at all the other nodes. Then we define
the matrices Ah =

(∫

Ω∇φhi · ∇φhk dx
)

i,k∈Nh
I

and Mh =
(∫

Ω φ
h
i · φhk dx

)

i,k∈Nh
T

.

Further, we compute

F i
h ≈

∫

Ω

f · φhi dx ∀i = 1, . . . , Nh
I

by a quadrature formula, which is exact for polynomials up to degree 2. Hence,
our discretized version of the weak formulation of the PDE becomes a linear
equation system with Nh

I equations

Ah y
ν
h −

N
∑

ν=1

(Mh)Nh
I
×Nh

ν
uνh − Fh = 0,

where Nh
ν contains all nodes in Bν for ν = 1, . . . , N. Furthermore, the objective

functions become quadratic and are given by

Jν
h (y

ν
h, u

ν
h) =

1

2
(yνh − zνh)

⊤(Mh)Nh
I
×Nh

I
(yνh − zνh) +

αν

2
(uνh)

⊤(Mh)Nh
ν ×Nh

ν
uνh,

where the i-th component of zνh is zν evaluated at the node i.

Example 1 This is the example from Borzi and Kanzow (2013). Here we have
N = 2, α1 = α2 = 1, Ω = (0, 1) × (0, 1), l1 = l2 = −0.5, r1 = r2 = 0.5, ψl =
−∞, ψr = +∞. Further, B1 =]0, 1[×]0, 0.5[ , B2 =]0, 1]×]0.5, 1[ , and

z1(x) = sin(πx1) sin(πx2) + 8π2 sin(2πx1) sin(2πx2),

z2(x) = sin(πx1) sin(πx2) + 18π2 sin(3πx1) sin(3πx2),

f(x) = 2π2 sin(πx1) sin(πx2)− χB1
max{l1,min{r1, sin(2πx1) sin(2πx2)}}

−χB2
max{l2,min{r2, sin(3πx1) sin(3πx2)}}.
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Table 1. Iteration numbers for Examples 1, 2 and 3

h = 1/16 h = 1/32 h = 1/64 h = 1/128
Example 1 21 22 25 25
Example 2 26 31 30 33
Example 3 39 47 50 53

Table 2. Error in the discrete L2(Ω)-norm for Example 1

h = 1/16 h = 1/32 h = 1/64 h = 1/128
|ū1 − u1h|0 0.0240 0.0080 0.0030 0.0010
|ū2 − u2h|0 0.0258 0.0119 0.0059 0.0035
|ȳ − yh|0 1.4e− 3 3.7e− 4 1.0e− 4 3.1e− 5

The solution of this problem can be computed analytically, see Borzi and Kanzow
(2013), and is given by

ū1(x) = max{l1,min{r1, χB1
sin(2πx1) sin(2πx2)}},

ū2(x) = max{l2,min{r2, χB2
sin(3πx1) sin(3πx2)}},

ȳ1(x) = ȳ2(x) = sin(πx1) sin(πx2).

Table 1 shows the iteration numbers for different values of h and Table 2
summarizes the errors (measured in the discrete L2(Ω)-norm | · |0) between the
computed discretized and the exact solution. As suggested in Borzi and Kanzow
(2013) one can extend the existing results from Meyer and Rösch (2004), Rösch
(2006), and Tröltzsch (2010) to obtain the convergence order O(h2) for the state
variable and O(h3/2) for the controls, if there are no constraints. However, we
have active constraints for our controls and we observe in Table 2 a lower rate,
in particular, for the control u2. This might be improved by a more accurate
solution of the discretized problem, which can be achieved by including the hybrid
strategy suggested in Dreves et al. (2014). A detailed analysis of this is part of
a future work. Note that also a finite differences discretization as in Borzi and
Kanzow (2013) can be used, but the finite element method is more flexible when
it comes to more complicated domains.

Example 2 This is the example from the preprint version of Hintermüller and
Surowiec (2013). We have N = 4,Ω = (0, 1) × (0, 1), ψr = +∞, αν = 1.1 ·
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10−3, lν = 0 for all ν = 1, . . . , 4. Further, define

B1 =

]

0,
1

2

[

×

]

0,
1

2

[

, B2 =

]

1

2
, 1

[

×

]

0,
1

2

[

,

B3 =

]

0,
1

2

[

×

]

1

2
, 1

[

, B4 =

]

1

2
, 1

[

×

]

1

2
, 1

[

and then

B̃1 =

]

1

4
,
1

2

[

×

]

1

4
,
1

2

[

, B̃2 =

]

1

2
,
3

4

[

×

]

1

4
,
1

2

[

,

B̃3 =

]

1

4
,
1

2

[

×

]

1

2
,
3

4

[

, B̃4 =

]

1

2
,
3

4

[

×

]

1

2
,
3

4

[

.

Let A := B̃1 ∪ B̃2 ∪ B̃3 ∪ B̃4 and

rν = χBν
−

1

2
χB̃ν

, ν = 1, . . . , 4,

zν(x1, x2) = 500min{max{0, ψ(x1, x2)}, 0.2}, ν = 1, . . . , 4,

ψl(x1, x2) = cos
(

2
√

(x1 − 0.5)2 + (x2 − 0.5)2
)

− 0.7,

f(x1, x2) = −∆(ψ)+ −
1

2
χA − χ(Ω\A).

The total number of iterations until convergence is reported in Table 1. Figure
1 shows the computed optimal controls, the optimal state and the optimal mul-
tiplier for the state constraints for player 1 for h = 1/64. Note that in some
vertices of the domain we obtain uν = 0, which is a result of the used triangula-
tion. Despite of this, the discrete controls uν64, ν = 1, . . . , N look very similar to
the solution given in the preprint of Hintermüller and Surowiec (2013). With
our unsophisticated implementation of Algorithm 1 we were not able to solve
the problem with mesh size up to h = 1/512 as it was done in the preprint
of Hintermüller and Surowiec (2013). However, exploiting the sparsity struc-
ture of the problem and using a computer with more memory this should also
be possible with our approach. In contrast to the approach of Hintermüller and
Surowiec (2013) we do not use a penalty term and therefore do not have to find
an appropriate penalty parameter.

Example 3 Here we have the data N = 2,Ω = (0, 1)×(0, 1), αν = 0.1, lν = −1,
rν = 1 for ν = 1, 2. Further, we have ψl = −∞, ψr = 0,

B1 =]0, 1[×]0, 0.5[ , B2 =]0, 1]×]0.5, 1[ ,

f ≡ 0, and

z1(x1, x2) = 10(sin(2πx1) + x2), z2(x1, x2) = 10(sin(2πx2) + 2x1).
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u164 u264

u364 u464

y64 λ164

Figure 1. Computed optimal controls, state and multiplier for h = 1/64 for
Example 2
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The total number of iterations until convergence is reported in Table 1. Figure
2 shows the computed optimal controls, the optimal state and the optimal multi-
plier for the state constraints for player 1 for h = 1/64. Here we can see that the
multiplier enjoys only low regularity. As one might have expected, this results
in some stronger mesh dependence of the algorithm than what was observed in
Example 2, where the multiplier is more regular.

7. Conclusion

We considered multiobjective optimal control problems governed by elliptic
PDEs with pointwise constraints on the controls and on the state variables. Us-
ing the control-to-state mapping these problems are transformed into GNEPs.
We proved convergence of a sequence of solutions of the discretized GNEPs to
a solution of the infinite dimensional GNEP. Further, by introducing different
state variables for each objective, one can also reformulate the problem as a
GNEP. This was exploited in our numerical approach, where we proposed a po-
tential reduction algorithm to find a generalized Nash equilibrium of the finite
element discretization of the GNEP, and proved its convergence to a solution,
where the introduced state variables are all equal. We presented some numerical
results, showing the applicability of our method. In a future research project
we are interested in a more efficient implementation that exploits the sparsity
structure.
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