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Abstract: In this paper, experimental data, given in the form
of pairwise comparisons, such as distances or similarities, are consid-
ered. Clustering algorithms for processing such data are developed
based on the well-known k-means procedure. Relations to factor
analysis are shown. The problems of improving clustering quality
and of finding the proper number of clusters in the case of pairwise
comparisons are considered. Illustrative examples are provided.
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1. The cluster analysis paradigm

1.1. The idea of clustering

The well-known research paradigm proposes that a phenomenon under study
can be in one of a finite number of hidden states, and can be observed while
being in such different states. These states exert the influence on the values of
the measured characteristics (features, variables). Therefore, it is important to
understand how this influence is realized and how the set of states is organized.

According to the above, it can be assumed that all the observations, repre-
sented as points in a feature space are arranged in such a way that they form
local concentrations (clusters, classes, taxons, etc.) to be identified as corre-
sponding to the hidden states.

This assumption is also known as an informal so-called “compactness hypoth-
esis” (Aizerman, Braverman and Rozonoer, 1970), in the framework of which
such hidden states are named “patterns”. The compactness hypothesis can be
used as some sort of fundamental principle, establishing the condition for what
we can extract from experimental data in data analysis and, particularly, in
clustering. Such an understanding of the situation arose after the impressive
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investigation of F. Rosenblatt (Rosenblatt, 1962) and the post-analysis of his
“perceptron” failures.

On the other hand, the phenomenon under study can be not structured in-
ternally sufficiently to reveal its properties at a meaningful level. This means,
for example, that our measurement capabilities may not allow us to distinguish
between results for different hidden states. Unfortunately, in this case, the in-
vestigations carried out would be unsuccessful, because the hidden states cannot
be recognized.

In cluster analysis, objects ω ∈ Ω are explored simultaneously in order to
understand how close are they to each other and how the hidden states get ex-
pressed. Usually, this can be done on the basis of comparison of some character-
istics (features) of elements ω. The measurement results of these characteristics
are usually represented by the data matrix X(m,n) with m as the number of
the set elements ω (experiments, objects, etc.) and n as the number of measured
characteristics (features, variables, peculiarities, attributes, etc.).

According to the well-known model, used in cluster analysis, the data matrix
X is represented by rows, denoted xi = (xi1, ... xin), i = 1, ... m, representing
vectors in the n-dimensional feature (attribute) space, very often assumed to be
Euclidean. Here, xT

i is a column according to the notation above. Therefore,
each element ω ∈ Ω is represented by means of measurements xi = x(ωi) in the
corresponding feature space.

It is supposed that elements ωi ∈ Ω belong to non-intersecting subsets
Ωk, k = 1, ... K, Ωi ∩ Ωj = ∅, i 6= j. These subsets form the correspond-
ing sufficiently well-defined local concentrations in the feature space (clusters).
Our goal is to uncover the unknown cluster structure for known K, or, in the
more general and also more complex case, to determine K and uncover the
unknown cluster structure.

The present paper is organized in the following way. In Section 1 the basic
terms of cluster analysis are investigated, namely some criteria, data representa-
tion in the form of pairwise comparisons, and the peculiarity of clustering based
on pairwise comparisons.

In Section 2 operations on pairwise comparisons are introduced, based on
the law of cosines as a foundation for developing clustering algorithms. The
crucial idea consists in determining the averages as new objects, not present in
the set before.

Section 3 is devoted to the development of new versions of the k-means
algorithm for distances and similarities.

In Section 4 relations of cluster analysis to some other problems of data
analysis are investigated. Specifically, conditions are defined for solving the
problem of factor analysis as the one of clustering.

Section 5 deals with the problem of improving the clustering results. In
Owsiński (2020) in the framework of a general approach to clustering, a new
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bi-partial objective function was proposed. Based on it, in this section, we
investigate a specific case of improving the clustering results for the special
version of the permutable k-means algorithm.

Section 6 is devoted to the well-known problem of establishing the number
of clusters, here on the basis of the specially devised so-called quasi-hierarchical
procedure.

1.2. The clustering principle

The clustering principle that we shall refer to throughout the paper is as follows.
Let the cluster representatives x̃k, k = 1, ... K, be defined in some way. Let all
objects be allocated between clusters based on the closest representative for each
object xi ∈ Ω. After that, let the cluster centers be calculated as arithmetic
averages x̄k, k = 1, ... K.

If all representatives coincide with centers x̃k = x̄k, k = 1, ... K, the result is
the so-called unbiased clustering (Diday et al., 1979). Otherwise, one deals with
a biased clustering. Therefore, if representatives and centers for some clusters do
not coincide, the centers are appointed next as new representatives. After that,
clusters need to be redefined as above. In general, for unbiased clustering, the
center x̄k of the cluster Ωk may not match any element xi ∈ Ωk in this cluster.
The well-known and widely used k-means algorithm is directly developed based
on this principle (see, e.g., Hartigan and Wong, 1979).

As it is known, the k-means algorithm is a locally optimal procedure. The
quality of the initial solution (the initial set of representatives) in such proce-
dures is very important. It is known that finding the acceptable initial solution
is a standalone and sometimes no less complex problem, than the clustering
algorithm itself.

Here and below, we do not consider this problem, but simply assume one of
the suitable initial solutions when formulating new algorithms.

Let us remind that the arithmetic average as the cluster center ensures that
the cluster dispersion (variance) is minimized. Therefore, the dispersion of the
clustering as a whole is minimized, too. The dispersion of the cluster Ωk is
defined by squared distances between the cluster members and its center

σ2
k = (1/mk)

∑mk

i=1
|xi − x̄k|2 = (1/mk)

∑mk

i=1
d2(xi, x̄k).

The well-known criterion of clustering can also be defined as the weighted av-
erage dispersion of clusters to be minimized, in the following form:

J(K) =
1

m

K
∑

k=1

mk
∑

i=1

|xi − x̄k|2 =
1

m

K
∑

k=1

mkσ
2
k =

K
∑

k=1

mk

m
σ2
k. (1)

It is also known that the cluster dispersion can be calculated without the direct
use of the cluster mean, based on pair distances between vectors (see Friedman
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and Rubin, 1967; Späth, 1983) and can be determined as half of the average of
distances squared between the cluster members

ηk =
1

2m2
k

mk
∑

i=1

mk
∑

j=1

d2(xi,xj). (2)

Therefore, another criterion of clustering can be defined as the weighted average
distances in clusters to be minimized in the following form:

J̃(K) =
1

m

K
∑

k=1

mkηk =

K
∑

k=1

mk

m
ηk. (3)

It should be noted also that the well-known EM (expectation maximization)
procedure is considered as the probability-theoretical counterpart or justifica-
tion of the k-means algorithm. This procedure was also considered in one of the
early publications (Schlesinger, 1965). This iterative procedure consists of two
steps: the E-step (expectation) of finding the optimal a posteriori probabilities
of separating a mixture of distributions of observations with given parameter
distribution and the M-step (maximization) of determining the optimal param-
eter distribution to maximize the log-likelihood function. In the k-means algo-
rithm, the E-step corresponds to the assignment of observations among clusters
and the M-step corresponds to the calculation of new averages of clusters. As-
suming a mixture of normal distributions with the same variances, we obtain
linear boundaries between regions of disjoint clusters in the feature space. The
k-means algorithm implicitly defines exactly such boundaries as a special case
of the so-called hyper quadrics (see Duda and Hart, 1973).

1.3. Pairwise comparisons of the set elements

Dually to the representation through objects (rows), the data matrix can be
represented by columns Xj = (x1j , ... xmj)

T , j = 1, ... n. Here, XT
j is a row,

according to the notation above. This representation is usually admitted in
correlation, factor, etc., analysis in exploring the similarity of features (mea-
sured characteristics). Feature similarity means the similarity of their behavior
relative to the set of objects (acts of measurements).

Based on two representations, by rows and by columns, the data matrix
X(m,n) can be transformed into a distance matrix D(m,m) for objects and
D(n, n) for features, or the scalar products matrix S(m,m) for objects and
S(n, n) for features. Traditionally, D(m,m) and S(n, n) are commonly used,
since distances between objects are arising in a very natural manner as the result
of comparison in multidimensional space (like in our 3-dimensional world), and
normalized scalar products, leading to correlations R(n, n) between features are
very natural in the case of comparison of behavior of variation series.

As we can see, distances, as the results of pairwise comparisons, are being
usually applied to the set elements as objects. The pairs of objects can also be
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characterized by the non-negative similarity functions, as opposed to distances.
For example, many empirical similarity functions were developed as inverses
of the Euclidean distance. At the same time, based on the law of cosines, we
can characterize pairs of objects by their scalar products, instead of distances
between them. As a result, another “ad hoc” popular idea of similarity consists
in using modules or squared scalar products. Such “ad hoc” similarities allow us
to assume that the objects are located in the single quadrant of the coordinate
space.

If all objects are located only in the single quadrant of the coordinate space,
then all scalar products between them are represented by non-negative values.
Therefore, such scalar products can be used as similarities.

Here, with the purpose of solving the clustering problems, we talk about the
set elements ω ∈ Ω, without distinction whether they are objects or features.
Nevertheless, in the case of using the squared scalar products for clustering of
features, we face a class of algorithms other than based on the k-means algorithm
(Dvoenko, 2009a). We discuss below the issue why we get the biased clustering
in this case of similarity.

It should be noted also that our assumption of non-negative scalar products
between the set elements (objects or features) does not narrow the domain of
clustering at all. Indeed, as we show below, to calculate scalar products, it is
necessary to determine the position of the origin. It can always be arranged
in such a way that all scalar products become non-negative relative to it (for
example, the origin of coordinates can be moved outside the convex hull of the
set).

On the other hand, there are many cases, when data can be presented by
pairwise comparisons only, since, for instance, sometimes it is difficult to decide
what characteristics need to be measured for the complex structured entity un-
der investigation. In this case, it is suitable to measure pairwise similarities or
dissimilarities directly and use them, for example, in the form of positive scalar
products or Euclidean distances, respectively. Therefore, we suppose hypothet-
ical (unknown to us) features were measured, and pair distances or similarities
were calculated. Therefore, based on such a hypothetical measurement process,
the set of elements is immersed in some coordinate space.∗

This coordinate space can be characterized as follows. Usually, it is natural
to use it as the Euclidean metric space with the dimensionality not more than
the set Ω cardinality (e.g., m for objects or n for features themselves).

In the case the space dimensionality is exactly equal to the cardinality of the
set Ω, the similarity matrices S(m,m) or S(n, n) are positive definite with the
corresponding ranks (m or n, accordingly) (Mercer, 1909; Young and House-
holder, 1938).

∗It is obvious that there exist situations, in which pairwise data are the only data available
for the task at hand, like with railway distances or road distance in the city, with one-way
streets taken into consideration (eds.).



348 S. Dvoenko

In practice, the coordinate space can be formed by features measured in
scales of different types. Therefore, a problem of calculating distances or simi-
larities in such spaces can arise for multiple scale types. In the case of pairwise
comparisons, we suppose that the set elements are immersed in the metric space
with coordinate axes of the ratio type. Hence, distances or similarities are cal-
culated in the ratio scales.

It should be noted that if the similarity matrix is not positive definite,
then the set of elements cannot be correctly immersed in the respective co-
ordinate space. In this case, the similarity matrix has negative eigenvalues.
The corresponding immersing problem is discussed in more detail in Dvoenko
and Pshenichny (2018).

We should also remark that a similarity function can be represented by
some kind of a potential function (so-called “kernels” in modern analysis). It is
supposed in this case, according to Mercer’s statement (Mercer, 1909), that the
set of elements can be immersed in the countably-dimensional metric space in
general with a scalar product defined in it (so-called “straightened space”), see
Aizerman, Braverman and Rozonoer (1970).

Since pairwise comparisons are represented by distances and similarities, we
talk in the further course of this paper about clustering algorithms (here, those
based on classical k-means in a feature space) in two forms: as distance k-means
and in a dual form as similarity k-means. This is the basis for developing some
other new modifications of the procedure.

1.4. The peculiarity of clustering based on pairwise comparisons

The classical k-means algorithm is formulated for the set of objects represented
by feature vectors xi ∈ Ω. Let distances D(m,m) and similarities S(m,m)
be calculated based on the data matrix X(m,n) or simply given. We need
to develop the so-called distance (or similarity) k-means algorithm using only
distances D(m,m) or similarities S(m,m) without the reference to the matrix
X(m,n) at all.

First, to clarify the problem, let us build the natural, but somewhat näıve
clustering procedure (a):

(a) Step s = 0. Define representatives ω̃s
k, k = 1, ... K, perhaps as most

distant objects, s = s+ 1.

Step s. Allocate objects between clusters:

1. ωi ∈ Ωs
k, k = argminj=1,... Kd(ωi, ω̃

s
j ),i = 1, ... m.

2. Calculate new centers: ω̄s
k = argminωi∈Ωs

k

∑

ωj∈Ωs
k

d(ωi, ωj), k = 1, ... K.

3. Stop, if ω̃s
k = ω̄s

k, k = 1, ... K. Else ω̃s+1
k = ω̄s

k, k = 1, ... K, s = s+ 1.

As we can see, the problem consists of the following. Namely, in the algo-
rithm (a) we cannot represent objects ω ∈ Ω as vectors x = x(ω), we have only
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objects as ω = ω(x). The centers ω̄ = ω(x̄) are not present in the distance
matrix D(m,m) and we cannot calculate them yet. Hence, it is natural to use
as the unknown center ω̄k some object closest to all others in the cluster.

As a result, the algorithm (a) stops, when the unbiased clustering is reached
for ω̃k = ω̄k, k = 1, ... K. Nevertheless, the actually obtained clustering would
most probably be biased since in the feature space some cluster center may
not coincide with the corresponding mean vector x(ω̄k) 6= x̄k. This algo-
rithm calculates the criterion JD(K) = minω̄1,... ω̄K

J(K) instead of the criterion
JX(K) = minx̄1,... x̄K

J(K). Therefore, JD(K) ≥ JX(K) in general.

Each object is represented in the distance matrix D(m,m) by its distances to
others. In order to achieve JD(K) = JX(K) in the case the feature space is not
available, it is necessary to define cluster centers ω̄k as new objects, represented
by their distances to the other ones.

In the next section, we introduce the basic issues of immersion of a set
of observations in a metric space as a basis for developing the distance and
similarity versions of the k-means algorithm.

2. Immersion of a set in a metric space

2.1. The law of cosines and the origin

Let the elements ωi ∈ Ω be immersed in the metric space and let them be
represented by the distance matrix D(m,m). Let some triangle be formed by
the objects ωa ∈ Ω and ωb ∈ Ω as two points, and the third object ω0 being the
origin of the metric space, with distances

d0a = d(ω0, ωa), d0b = d(ω0, ωb), and

d2ab = d2(ωa, ωb) = d20a + d20b − 2sab

according to the law of cosines, where

sab = ωa ◦ ωb = (d20a + d20b − d2ab)/2

is the scalar product.

Since any element ωk ∈ Ω can be used as the origin, any pair of elements
ωi ∈ Ω, ωj ∈ Ω is represented relative to it by a scalar product

(ωi ◦ ωj)k = skij = (d2ki + d2kj − d2ij)/2,

where (ωi ◦ ωi)k = skii = (d2ki + d2ki − d2ii)/2 = d2ki .

Therefore, the non-normalized scalar products represent the set configura-
tion in the metric space with distances between the set elements and the origin.
As a result, we have different scalar product matrices Sk(m,m), k = 1, ... m,
with main diagonals, which represent distances squared from corresponding ori-
gins ωk, k = 1, ... m, to other elements ωi, i = 1, ... m.
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Unfortunately, in all cases, each origin ωk becomes the degenerated (“sin-
gular”) object since (ωk ◦ ωk)k = skkk = d2kk = 0. This is not suitable, since
the rank of the similarity matrix Sk(m,m) becomes less than its dimensionality
rank Sk < m. Therefore, the matrix becomes positive semidefinite with at least
one zero line and column for scalar products of ωk with the other elements.

On the other hand, let the elements ωi ∈ Ω be represented by the positive
definite scalar product matrix S(m,m). Therefore, such scalar products are
calculated relative to some (unknown to us) origin ω0. At any place in the
metric space as the location of the origin, we can get all distances

d2ij = d20i + d20j − 2s0ij = s0ii + s0jj − 2s0ij = sii + sjj − 2sij .

It is evident that

d2ii = sii + sii − 2sii = 0.

Therefore, it is suitable to define the origin as a new object ω0, not coinciding
with other objects ωi ∈ Ω.

2.2. Representation of the origin as a new object

Let the data matrix X(m,n) be given. It means that some initial origin ω0 has
been defined in the feature space. Let us define a new object ωα immersed in
the feature space as a linear combination

xα =
∑m

i=1
αixi,

∑m

i=1
αi = 1, αi ≥ 0

as it would be the result of some measurement process, xα = x(ωα).

Let us center the objects in the matrix X(m,n) relative to xα, used now as
the origin and define vectors xi − xα, i = 1, ... m. Let us define the new scalar
products of centered vectors as

sαij =
n
∑

l=1

(xil − xαl)(xjl − xαl) =
n
∑

l=1

(xilxjl − xilxαl − xjlxαl + x2
αl)

=
n
∑

l=1

xilxjl −
n
∑

l=1

xil

m
∑

p=1

αpxpl−
n
∑

l=1

xjl

m
∑

p=1

αpxpl+
n
∑

l=1

(

m
∑

p=1

αpxpl

)(

m
∑

q=1

αqxql

)

=
n
∑

l=1

xilxjl −
m
∑

p=1

αp

(

n
∑

l=1

xilxpl +
n
∑

l=1

xjlxpl

)

+
m
∑

p=1

m
∑

q=1

αpαq

n
∑

l=1

xplxql.

Finally,

sαij = sij −
m
∑

p=1

αp (sip + sjp) +

m
∑

p=1

m
∑

q=1

αpαqspq. (4)
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Basing on the law of cosines, scalar products relative to the initial origin ω0 are
defined as sij = (d20i+d20j−d2ij)/2. Substituting this in (4) gives scalar products
relative to the new origin ωα as

2sαij = d20i + d20j − d2ij −
m
∑

p=1

αp(d
2
0i + d20p − d2ip + d20j + d20p − d2jp)

+

m
∑

p=1

m
∑

q=1

αpαq(d
2
0p + d20q − d2pq).

After opening of brackets and bringing similar terms together, we get the fol-
lowing:

2sαij = −d2ij +

m
∑

p=1

αpd
2
ip+

m
∑

p=1

αpd
2
jp −

m
∑

p=1

m
∑

q=1

αpαqd
2
pq.

According to the law of cosines, sii = d20i for i = j. Therefore, distances squared
d2(ωα, ωi) = d2αi = sαii from the new origin ωα to the other elements in the set
Ω are finally defined as

d2(ωα, ωi) =

m
∑

p=1

αpd
2
ip −

1

2

m
∑

p=1

m
∑

q=1

αpαqd
2
pq, i = 1, ... m. (5)

2.3. The Torgerson’s origin

It is known that W.S. Torgerson did successfully develop the foundations of the
multidimensional scaling theory. Today, his method, constituting the basis for
his metric scaling is known as “principal projections” (Torgerson, 1958). His
idea consists in calculating the so-called “gravity center” ω̄ of the set Ω and
putting the origin in it. His scaling theory was criticized for too strong metric
limitations and started a new direction of development of methods of non-metric
scaling, as well as further-reaching research.

With our purpose in mind, we should like to generate the new object ω0 in
the metric space as the arithmetic average, in order to put the origin in it and to
maintain the scalar products matrix S(m,m) positive definite. We should note
that our problem is different from the multidimensional scaling problem, since
it does not aim at restoring the so-called “stimuli space.” It is sufficient, as it
is shown below, to use only pairwise comparisons to build the known clustering
algorithms from (but, in general, not limited to) the k-means family.

As it is evident, the new origin ωα, defined above, can be any point within
the convex hull of the set Ω as the appropriate linear combination. Specifically,
let αi = 1, αi6=j = 0, j = 1, ... m. We get d2(ωα, ωi) = d2ij , j = 1, ... m, since
the origin ωα is the point ωi.
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Therefore, this new object can be not only an element from the set Ω, but
also a new one, not belonging to Ω before. On the other hand, we can get the
linear combination of any subset from the Ω, and we discuss it below.

Let the new origin be the arithmetic mean ω̄, where αi = 1/m, i = 1, ... m.
Immediately, we get this element represented by the distances to other elements
as

d2(ωα, ωi) = d2(ω̄, ωi) =
1

m

m
∑

p=1

d2ip −
1

2m2

m
∑

p=1

m
∑

q=1

d2pq, i = 1, ... m. (6)

This partial case of the linear combination with equal weights leads us to the
known Torgerson’s “gravity center” ω̄ as the new origin ωα = ω̄ to represent it
as a new object (not included in the set Ω before) by its distances to other set
elements ωi, i = 1, ... m.

Let for the data matrix X(m,n) the matrix S(m,m) of scalar products
between objects be calculated relative to some initial origin ω0. Let us define
the scalar products of the mean vector

x̄ = (x̄1, ... x̄n), x̄l = (1/m)
∑m

p=1
xpl, l = 1, ... n

as

ω̄ ◦ ωi =

n
∑

l=1

xil

1

m

m
∑

p=1

xpl =
1

m

m
∑

p=1

n
∑

l=1

xilxpl =
1

m

m
∑

p=1

sip, i = 1, ... m.

Therefore, the arithmetic average ω̄ is represented as a new object (not included
in the set Ω before) also by its scalar products with other set elements ωi, i =
1, ... m.

Nevertheless, the correct use of scalar products ω̄ ◦ωi as similarities requires
of them to be positive in order to represent the mean object ω̄. Therefore, it is
necessary to move the origin outside the convex hull of the set, so that all scalar
products relative to it would become positive.

2.4. Moving the origin outside the convex hull of the set

Let the set Ω be represented by the distance matrix D(m,m). Let the center of
the set Ω be considered as the Torgerson’s origin ω0, represented by its distances
to other objects as

d20i =
1

m

m
∑

p=1

d2ip −∆, ∆ =
1

2m2

m
∑

p=1

m
∑

q=1

d2pq, i = 1, ... m.

In the Torgerson’s formula, the component ∆ = σ2
Ω is the set dispersion as

a scatter relative to the origin ω0, since

σ2
Ω =

1

m

m
∑

i=1

d20i =
1

m

m
∑

i=1

(

1

m

m
∑

p=1

d2ip −
1

2m2

m
∑

p=1

m
∑

q=1

d2pq

)

=
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1

m2

m
∑

i=1

m
∑

p=1

d2ip−
1

2m2

m
∑

p=1

m
∑

q=1

d2pq =
1

2m2

m
∑

p=1

m
∑

q=1

d2pq. (7)

Let us define now the new origin ωθ, represented by its distances to other
objects, d2θi, i = 1, ...,m, according to the Torgerson’s formula as above, but
with ∆ = 0. In this case, the distances d2θi become longer than the distances
d20i. It is evident that the new origin, ωθ, is not the Torgerson’s origin ω0. It is
convenient to assume that the origin ω0 has been moved to the outside of the
convex hull of the set Ω to a new position, ωθ. According to this reasoning, we
can understand ∆ = 0 as a very small scatter of elements relative to the new
origin ωθ.

It is necessary to provide at least non-negative scalar products sij ≥ 0 be-
tween the set elements immersed in the metric space as vectors in order to put
them in a single quadrant. Since

sij =
1

2dθidθj
(d2θi + d2θj − d2ij)

relative to the new origin ωθ according to the law of cosines, there should be

d2ij ≤ d2θi + d2θj for all i, j = 1, ... m.

If this condition is violated, it is necessary to put ∆ < 0, for example,
∆ = minij(d

2
θi + d2θj − d2ij), so as to get longer distances to the new origin.

In this case, the origin of coordinates is moved outside the convex hull of the
set of observations considered. Therefore, the elements of this set are placed in
the single quadrant of the metric space. Such transfer of the origin allows for
using the similarity function according to the law of cosines.

2.5. Representation of a subset center

According to Torgerson’s formula, (6), (7), the center of the set Ω is defined by
its distances to other elements as

d20i = (1/m)
∑m

p=1
d2ip − σ2

Ω, i = 1, ... m.

It is a new object, generally not coinciding with other elements in the set Ω.

Let us take some subset Ω0̄ ⊆ Ω. It must be noted that it can be any subset
of elements mixed in geometric sense with other elements of the set Ω within the
metric space (elements from Ω0̄ are distributed among the elements from Ω/Ω0

in the space). According to Torgerson’s formula, the center ω0̄ of the subset
Ω0̄ ⊆ Ω is represented by its distances to all elements of the whole set Ω in the
following manner

d20̄i =
1

m0̄

∑

p∈Ω0̄

d2ip − σ2
Ω0̄

, σ2
Ω0̄

=
1

2m2
0̄

∑

p∈Ω0̄

∑

q∈Ω0̄

d2pq, m0̄ = |Ω0̄|,

i = 1, ... m. (8)
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Note that, according to (6), Torgerson’s formula defines the distances from
the center to all elements in the set Ω. Here, distances in (8) to the already
defined center ω0̄ are defined also including the elements from Ω/Ω0̄. Therefore,
the second component in (8) remains the same as the dispersion of the subset
Ω0̄ ⊆ Ω.

Specifically, let the subset Ω0̄ = ωk consist of a single element ωk ∈ Ω.
Therefore, as the center itself, it is directly represented by its known distances
to other elements dki, i = 1, ... m.

In the other important case, let the set Ω be divided into non-intersecting
subsets Ωj , j = 1, ... K, Ωi ∩ Ωj = ∅, i 6= j, as local concentrations. Such
subsets usually arise in problems of cluster analysis. Immediately, we get for
each subset Ωk, k = 1, ... K, its center ω̄k, k = 1, ... K, represented by the
distances to other objects in the whole set Ω:

d2ki =
1

mk

∑

p∈Ωk

d2ip − σ2
Ωk

, σ2
Ωk

=
1

2m2
k

∑

p∈Ωk

∑

q∈Ωk

d2pq, mk = |Ωk|,

i = 1, ... m. (9)

Since the origin is placed in the center of the cluster Ωk, it is represented also
by the scalar products with other elements,

ski = (1/mk)
∑

p∈Ωk

sip, i = 1, ... m, k = 1, ... K.

And as mentioned above, it is necessary to move the origin outside the convex
hull of the set Ω, providing thereby that all sij ≥ 0.

It should be noted that in constructing a new object, not existing in the
original set, based on both a linear combination (5) and, in a particular case, on
Torgerson’s formula (6), it is necessary to put the origin at this new point. In
the clustering problem, when solved according to the k-means-like procedure,
we must put consecutively the origin in the center of each cluster, representing
it by the distances to other elements of the set.

It is the conceptual foundation for clustering and in an extended sense for the
machine learning algorithms based on distances or similarities only, when, for
example, the k-means, Forel (Zagoruiko, 1999), and B. N. Kozinets’s separating
hyperplane (Dvoenko, 2009a) procedures are taken as the models. Here we
explicitly justify the key principle that allowed us to have developed clustering
and machine learning algorithms before, based on distances and similarities, see
Dvoenko (2001, 2009a, b, 2011, 2014, 2018), as well as Dvoenko and Owsiński
(2019).
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3. Clustering based on distances and similarities

3.1. Unbiased clustering by distances

In order to get JD(K) = JX(K), it is necessary to define cluster centers ω̄k as
new objects by means of formula (9):

d2(ω̄k, ωi) =
1

mk

∑

p∈Ωk

d2(ωi, ωp)−
1

2m2
k

∑

p∈Ωk

∑

q∈Ωk

d2(ωp, ωq),

i = 1, ... m (10)

in the clustering procedure, referred to further on as the distance k-means, the
procedure (b):

(b) Step s = 0. Define the representatives ω̃s
k, k = 1, ... K, perhaps as the

most distant objects, s = s+ 1.

Step s. Allocate objects among clusters:

1. ωi ∈ Ωs
k, k = argminj=1,... Kd(ωi, ω̃

s
j ), i = 1, ... m.

2. Determine new centers ω̄s
k, k = 1, ... K, through distances (10): d2(ω̄s

k, ωi),
i = 1, ... m.

3. Stop, if ω̃s
k = ω̄s

k, k = 1, ... K. Else ω̃s+1
k = ω̄s

k, k = 1, ... K, s = s+ 1.

It is evident that when the algorithm (b) stops, then JD(K) = JX(K),
since x̄k = x(ω̄k). A remark ought to be made that the cluster dispersion ηk,
(2), is defined here as the direct consequence of (6) in (7), independently of
Friedman and Rubin (1967) and Späth (1983) for the distances only. At last,
since σ2

k = ηk, k = 1, ... K, then J̃(K) = J(K), and J̃D(K) = J̃X(K) also.

3.2. Unbiased clustering by similarities

Let us define scalar products of the mean objects ω̄ with other object as simi-
larities ω̄ ◦ωi = s(ω̄, ωi) ≥ 0, i = 1, ... m. Let us define the average similarity of
the whole set Ω as compactness, given by

δΩ = (1/m)
∑m

i=1
s(ω̄, ωi) = (1/m2)

∑m

i=1

∑m

p=1
sip.

It should be remembered that sip ≥ 0, since all the set Ω is located in a single
quadrant of the metric space. Therefore, δΩ ≥ 0 all the time. The dispersion of
the set Ω relative to the origin ω0 can be represented as

σ2
Ω =

1

2m2

m
∑

p=1

m
∑

q=1

d2pq =
1

2m2

m
∑

p=1

m
∑

q=1

(spp + sqq − 2spq)

=
1

m

m
∑

p=1

spp −
1

m2

m
∑

p=1

m
∑

q=1

spq
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=
1

m

m
∑

p=1

spp − δΩ = C − δΩ.

In the case of the cluster structure, elements ωi ∈ Ω from the set Ω belong to
non-intersecting subsets: Ωk, k = 1, ... K, Ωi ∩ Ωj = ∅, i 6= j. Therefore, for
each cluster k = 1, ... K we have its dispersion

σ2
k = (1/mk)

∑mk

p=1
spp − δk.

For all clusters we get the criterion

J(K) =

K
∑

k=1

mk

m
σ2
k =

K
∑

k=1

mk

m

(

1

mk

mk
∑

p=1

spp − δk

)

=
1

m

m
∑

p=1

spp −
K
∑

k=1

mk

m
δk = C − I(K)

where the weighted average compactness of the cluster structure,

I(K) =

K
∑

k=1

mk

m
δk (11)

is to be maximized; as I(K) = C − J(K) for constant C, then J(K) is to
be minimized, see Dvoenko (2009b, 2011). Let us now develop the clustering
procedure, which we shall refer to as the similarity k-means, (c):

(c) Step s = 0. Define the representatives ω̃s
k, k = 1, ... K, perhaps as the

least similar objects, s = s+ 1 .

Step s. Allocate objects among clusters:

1. ωi ∈ Ωs
k, k = argmaxj=1,... Ks(ωi, ω̃

s
j ), i = 1, ... m.

2. Determine new centers ω̄s
k, k = 1, ... K, with similarities: s(ω̄s

k, ωi), i =
1, ... m.

3. Stop, if ω̃s
k = ω̄s

k, k = 1, ... K. Else ω̃s+1
k = ω̄s

k, k = 1, ... K, s = s+ 1.

Based on the reasoning for the distance k-means algorithm above, the simi-
larity k-means stops exactly for ID(K) = IX(K), where ID(K) = C − JD(K),
IX(K) = C − JX(K).

3.3. The permutable k-means algorithm

The well-known k-means algorithm is popular and intuitive, see, e.g. Friedman
and Rubin (1967). Its peculiarity is that the optimization criterion is not ex-
plicitly present in it and is not recalculated directly, as usually is done in the
standard optimization procedures. It is proven only (for example in Dvoenko,
2009b) that the optimization criterion (1) is actually being minimized.
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It should be noted that in procedures (b) and (c), just as in the classical
k-means algorithm, the optimization criteria J(K) and I(K) are also not ex-
plicitly present. As shown above, the criteria J(K) and J̃(K) are equivalent.
Therefore, in order to represent the k-means algorithm as a procedure with an
explicit recalculation of the optimization criterion, it is rational to apply the
criterion J̃(K) in order not to explicitly generate new objects as the centers of
the corresponding clusters.

The main difference between the here proposed concept of an optimization
procedure and the classical k-means algorithm is that while the current object
is transferred between clusters, the centers of the corresponding clusters are
changed. This happens explicitly in criterion (1) or implicitly in criterion (3).
We denote the criterion J̃(K) at the step s for the cluster structure Ωs

k, k =

1, ... K as J̃s. When the current object ωi is moved from the cluster Ωs
p to

the cluster Ωs
j , we get the sets Ωs

p�ωi and Ωs
j

⋂

ωi in the clustering structure
Ωs

1, ...; Ω
s
j

⋂

ωi, ... Ω
s
p�ωi, ... Ω

s
K . Let us denote the corresponding value of the

criterion J̃(K) as J̃s
ij .

It is evident that this new so-called permutable algorithm is more compli-
cated than the original k-means algorithm, remaining, however, still a locally
optimal procedure.

On the other hand, it would be rational to apply optimal recalculation
schemes of the optimization criterion to improve the performance. Let us as-
sume that this can always be done.

We consider here the permutable distance k-means algorithm based on re-
calculation of the criterion J̃(K) and its dual form as the permutable similarity
k-means algorithm based on recalculation of the criterion I(K) = C − J̃(K).

Let us make one more remark here. The permutable k-means algorithm
should be presented in the form without the direct use of the cluster centers
themselves. Since the goal of the initial decision, determining the starting point
of the procedure, is the same as before, we assume that the choice is made of the
least scattered clusters. Here it does not matter how we do actually determine
these initial clusters. The permutable distance k-means algorithm has the form
(d):

(d) Step s = 0. Define clusters Ωs
k, k = 1, ... K, possibly as the least

scattered ones, Js = J̃s, s = s+ 1.

Step s. Allocate objects among clusters:

1. ωi ∈ Ωs
k, J̃

s
ik = minj=1,... K J̃s

ij , J̃
s = J̃s

ik.

2. i = i+ 1, reallocate the next object ωi, until the set Ω is exhausted.

3. Stop, if J̃s = Js. Else Js = J̃s, s = s+ 1.

Using similar notation and the notion of “most compact” for the initial
decision, with in the criterion I(K) (see (11)), we develop here the permutable
similarity k-means algorithm, (e):
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(e) Step s = 0. Define clusters Ωs
k, k = 1, ... K, possibly as the most

compact, Is = Is, s = s+ 1.

Step s. Allocate objects among clusters:

1. ωi ∈ Ωs
k, I

s
ik = maxj=1,... KIsij , I

s = Isik.

2. i = i+ 1, reallocate the next object ωi, until the set Ω is exhausted.

3. Stop, if Is = Is. Else Is = Is, s = s+ 1.

Obviously, the peculiarity of procedures (d) and (e) consists in that the
optimization criterion is recalculated every time both during trial permutations
of the current object between clusters and during its final transfer to the optimal
cluster. Each procedure stops when there is no moving of objects at all.

It is also evident that with such a sequential recalculation of the criterion in
procedures (d) and (e), their behavior differs from the behavior of the so-called
real-time k-means algorithm, that is – the one used in classification mode. In the
case of this real-time use, clusters are redefined after the appearance of a new
object. The difference consists in the fact that in the classical real-time k-means
algorithm, trial transfers of a new object are performed relative to unchanged
cluster centers.

Procedures (d), and (e) imply that the result of the permutable algorithm
may differ from the classical result in the general case. This gives a reason for
considering them as a separate entity within the class of k-means algorithms.
We discuss their novelty in more details below.

Additionally, let us yet consider another version of the permutable algorithm
for distances when all clusters are redefined simultaneously after all trial trans-
fers have been tested. Clusters are redefined in the same way as in the classical
algorithm relative to unchanged centers. The permutable distance k-means al-
gorithm has the following form, (f):

(f) Step s = 0. Define clusters Ωs
k, k = 1, ... K, perhaps as the least scattered

ones, Js = J̃s, s = s+ 1.

Step s. Allocate objects among clusters:

1. Remember, but do not move ωi ∈ Ωs
k, J̃

s
ik = minj=1,... K J̃s

ij , i = 1, ... m.

2. Reallocate all objects ωi, i = 1, ... m among clusters, calculate J̃s.

3. Stop, if J̃s = Js.

Stop, if J̃s > Js, cancel all last reallocations, J̃s = Js.

Else Js = J̃s, s = s+ 1.

It is obvious, in the procedure (f), that the result of the sequential trial
permutations relative to one initial cluster structure may differ from the result
when all permutations are done simultaneously. Therefore, in order to improve
the final result, in general, it would to be rational, after cancellation of all the
last permutations for J̃s > Js, to use the step s of the procedure (e) until the
end.
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4. Relation of cluster analysis to some other problems

4.1. Aggregation problem

Let us consider the heuristic problem of diagonalization of the matrix of connec-
tions A(m,m) with non-negative elements aij ≥ 0. The solution to this problem
is equivalent to identifying the so-called block-diagonal structure of this matrix
(Braverman et al., 1971; Braverman and Muchnik, 1983).

Let the set of elements be represented by pairwise relationships. It is as-
sumed that all elements are naturally concentrated in K compact subsets, which
can be potentially considered as aggregates. Consequently, by simultaneously
rearranging the rows and columns of the relationship matrix, it is possible to
distinguish such a block structure that each block along the main diagonal of
the matrix consists of elements in the same aggregate.

According to the compactness hypothesis, elements of the same aggregate are
more strongly interconnected than elements from different aggregates. There-
fore, values of linking quantities for the pairs of elements from the same aggre-
gate are higher than values for pairs from different aggregates.

The procedure of finding the aggregate structure maximizes the weighted
relationships within aggregates. The heuristic quality function is calculated as

F (K) =
1

m

K
∑

k=1

1

mk − 1

∑

ωi, ωj ∈ Ωk,
i 6= j

aij .

Let us consider the clustering criterion based on similarity:

I(K) =
K
∑

k=1

mk

m
δk =

K
∑

k=1

mk

m

(

1

m2
k

mk
∑

p=1

mk
∑

q=1

spq

)

=

K
∑

k=1

mk

m





1

m2
k

mk
∑

p=1

spp+
1

m2
k

mk
∑

p=1

mk
∑

q=1, p 6=q

spq





=
1

m

K
∑

k=1

1

mk

mk
∑

p=1

spp +
1

m

K
∑

k=1

1

mk

mk
∑

p=1

mk
∑

q=1, p 6=q

spq.

For the normalized relationship matrix S(m,m) with diagonal elements sii =
1, i = 1, ... m, the clustering criterion is calculated as

I(K) =
K

m
+

1

m

K
∑

k=1

1

mk

mk
∑

p=1

mk
∑

q=1, p 6=q

spq.
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As a result, the functional F (K) is a heuristic version of the clustering crite-
rion I(K), where the contribution of m diagonal elements simply provides a
constant added to the criterion value, which does not change for different par-
titions. Therefore, the diagonalization procedure for a positively semi-definite
relationship matrix A(m,m) is a heuristic version of the permutable similarity
k-means algorithm (e).

Let the elements of the set Ω be the features themselves, represented by
a positive definite correlation matrix R(n, n), calculated for the data matrix
X(m,n). If all correlations are non-negative, rij ≥ 0, then the problem of iden-
tifying groups of strongly correlated features can be solved by the permutable
similarity k-means algorithm (e). This problem can be represented, on the
other hand, as a diagonalization problem. In this case, the average attribute of
a group becomes the expression of a hidden factor representing this group.

In order for the correlations to be non-negative, rij ≥ 0, it is necessary,
as shown above, to put the origin of coordinates beyond the convex hull of
the set Ω in the metric space. If not, modules or squared correlations can
be considered. The problem of grouping features under these conditions is
considered in Dvoenko (2009b) as a factor analysis problem.

4.2. Factor analysis

One of the problems of data analysis is to split the set of n features as columns
of the data matrix X(m,n) = (X1, ... Xn) into groups of similar ones, where
Xj = (x1j , ... xmj)

T . Features characterize the behavior of the phenomenon
under study, where observations of features represent variational series. We
show that the problem of calculating centroid factors can be formulated as the
cluster analysis problem.

Let the relationships of features be represented by the correlation matrix
R(n, n). Let elements of the set Ω be the features themselves, represented by
correlations, −1 ≤ rij ≤ 1, for all pairs of features, where their modules or
squares are considered.

Solving the problem of clustering of features by the similarity k-means al-
gorithm, when unbiased clustering has been obtained, assumes maximization of
two functionals:

I ′(K) =
1

n

K
∑

k=1

nkδ
′
k =

1

n

K
∑

k=1

nk
∑

p=1

r2(ω̄k, ωp),

and

I ′′(K) =
1

n

K
∑

k=1

nkδ
′′
k =

1

n

K
∑

k=1

nk
∑

p=1

|r(ω̄k, ωp)|.
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This, in turn, assumes the maximization of functionals

IS(K) = nI ′(K) =

K
∑

k=1

nk
∑

p=1

r2(ω̄k, ωp), ωp ∈ Ωk.

and

IM (K) = nI ′′(K) =

K
∑

k=1

nk
∑

p=1

|r(ω̄k, ωp)|, ωp ∈ Ωk.

Let us consider two algorithms of factor analysis, referred to as algorithms
of extreme grouping of parameters (Braverman, 1970; Braverman and Much-
nik, 1983; Lumel’sky, 1970), which were developed for the correlation matrix
R(n, n) of features. Such algorithms are sometimes also referred to as the so-
called Square (S) for solving the Local Principal Component Analysis (LPCA)
problem and the Module (M) for solving the Local Centroid Component Anal-
ysis (LCCA) problem. The centers of groups are declared as their factors and
are built as new features that are most correlated with characteristics of their
groups. Such factors of groups are represented only by their correlations with
all of the features. The S- and M-algorithms maximize the following functionals

JS =
K
∑

k=1

nk
∑

p=1

r2(πk, ωp) and JM =
K
∑

k=1

nk
∑

p=1

|r(µk, ωp)|, ωp ∈ Ωk,

where πk is the principal factor, and µk is the centroid factor of the group Ωk.
Such functionals characterize the quality of the separation of features into a
given number of K groups, where features are most strongly correlated with
their factor in the group. These algorithms find factors, actually solving simul-
taneously the general tasks of factor analysis: building of general factors and
their oblique rotation (Harman, 1976).

Let us consider a normalized similarity matrix S(n, n) as a matrix R(n, n)
with elements sij = |rij |. Let us represent the centers ω̄k and the centroid
factors µk of groups by their similarities with features ωi ∈ Ω:

s(ω̄k, ωi) =
1

nk

nk
∑

p=1

sip, s(µk, ωi) =

nk
∑

p=1

sip, ωp ∈ Ωk. (12)

Similarly, let us consider a normalized similarity matrix S(n, n) as a matrix
R(n, n) with elements sij = r2ij . Let us represent the principal factors πk of
groups Ωk by their similarities with features ωi ∈ Ω:

s(πk, ωi) =

nk
∑

p=1

αk
psip, ωp ∈ Ωk, (13)



362 S. Dvoenko

where ak = (αk
1 , ... α

k
nk
)T is the eigenvector corresponding to the maximal eigen-

value λk
1 of the similarity submatrix S(nk, nk) with eigenvalues in the decreasing

order λk
1 > ... > λk

nk
> 0.

Let us also consider a normalized data matrix X(m,n) = (X1, ... Xn), con-
sisting of features being columns Xj = (x1j , ... xmj)

T , where x̄j = 0 and σ2
j = 1.

Let us calculate the feature Y = (y1, ... ym)T as the average Y = (1/n)
∑n

j=1 Xj

with components yi = (1/n)
∑n

j=1 xij . Let us calculate the average of the fea-
ture Y itself

ȳ =
1

m

m
∑

i=1

yi =
1

n

n
∑

j=1

1

m

m
∑

i=1

xij =
1

n

n
∑

j=1

x̄j = 0.

The dispersion of the feature Y is

σ2
Y =

1

m

m
∑

i=1

y2i =
1

n2

n
∑

p=1

n
∑

q=1

1

m

m
∑

i=1

xipxiq =
1

n2

n
∑

p=1

n
∑

q=1

1

m
(Xp ◦Xq)

=
1

n2

n
∑

p=1

n
∑

q=1

rpq.

Let us calculate the similarities of the normalized feature Y with respect to
other normalized features Xi as scalar products

Xi ◦
Y

σY

= Xi ◦
1

nσY

n
∑

j=1

Xj =
n
∑

j=1

1

nσY

(Xi ◦Xj). (14)

Let the maximal eigenvalue λ = λ 1, λ 1 > ... > λn > 0 be found for the correla-
tion matrix R(n, n) subject to the condition Ra = λa, where a = (α1, ... αn)

T ,
∑n

j=1 α
2
j = 1, is the corresponding eigenvector. Let us calculate a feature

Z = (z1, ... zm)T with components zi = xi ◦ a, xi = (xi1, ... xin). Then, let
us calculate the average value of the feature Z:

z̄ =
1

m

m
∑

i=1

zi =
1

m

m
∑

i=1

n
∑

j=1

xijαj =

n
∑

j=1

αj

1

m

m
∑

i=1

xij =

n
∑

j=1

αj x̄j = 0.

The dispersion of the feature Z is

σ2
Z =

1

m

m
∑

i=1

z2i =
1

m

m
∑

i=1





n
∑

j=1

xijαj





2

=
1

m

m
∑

i=1

n
∑

p=1

n
∑

q=1

xipxiqαpαq =

n
∑

p=1

n
∑

q=1

αpαq

(

1

m

m
∑

i=1

xipxiq

)

=

n
∑

p=1

αp

n
∑

q=1

αqrpq =

n
∑

p=1

α2
pλ = λ.
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Now, let us calculate the similarities of the normalized feature Z with respect
to other normalized features Xi as scalar products

Xi ◦
Z

σZ

=
1

σZ

m
∑

p=1

xpizp =
1

σZ

m
∑

p=1

xpi

n
∑

j=1

xpjαj =
n
∑

j=1

αj

σZ

(Xi ◦Xj). (15)

Following Braverman (1970), Braverman and Muchnik (1983) and Lumel’sky
(1970), let us calculate a feature V = (v1, ... vm)T with components vi = xi ◦ ε,
xi = (xi1, ... xin), εi = (ε1, ... εn)

T , ε = ±1, and then the average value of the
feature V :

v̄ =
1

m

m
∑

i=1

vi =
1

m

m
∑

i=1

n
∑

j=1

xijεj =
n
∑

j=1

εj
1

m

m
∑

i=1

xij =
n
∑

j=1

εj x̄j = 0.

The dispersion of the feature V is

σ2
V =

1

m

m
∑

i=1

v2i =
n
∑

p=1

n
∑

q=1

εpεq

(

1

m

m
∑

i=1

xipxiq

)

=
n
∑

p=1

n
∑

q=1

εpεqrpq,

where rpq is the correlation coefficient of features Xp and Xq. Let us calculate
the similarities of the normalized feature V with respect to other normalized
features Xi as scalar products

Xi ◦
V

σV

=
1

σV

m
∑

p=1

xpivp =
1

σV

m
∑

p=1

xpi

n
∑

j=1

xpjεj =
n
∑

j=1

εj
σV

(Xi ◦Xj). (16)

Let features Xi = X(ωi) be the objects ωi, i = 1, ... n, represented by the
positive definite non-normalized similarity matrix S(n, n) with non-negative e-
lements sij = Xi ◦Xj = mrij ≥ 0. Then, dispersions of normalized features Y ,
Z and V are calculated as

σ2
Y = (1/mn2)

∑n

i=1

∑n

j=1
sij ,

σ2
Z = λ′/m = λ, where Sa = λ′a = mλa,

σ2
V = (1/m)

∑n

i=1

∑n

j=1
sij , for all εi = +1, where σ2

V = n2σ2
Y .

Finally, let the features Y = Y (ω̄), Z = Z(π), V = V (µ) be objects,
referred to as ω̄, π and µ. Since features X1, ... Xn themselves are not directly
available, the scalar products Xi ◦Xj need to be defined by similarities s(ωi, ωj)
in the metric space. Therefore, according to (14) – (16), objects ω̄, π and µ are
represented by similarities to all other objects ωi, i = 1, ... n, as

s(ωi, µ) =
1

σV

n
∑

j=1

s(ωi, ωj), since all εj = +1,
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s(ωi, ω̄) =
1

nσY

n
∑

j=1

s(ωi, ωj) =
1

σV

n
∑

j=1

s(ωi, ωj),

s(ωi, π) =
1

σZ

n
∑

j=1

αjs(ωi, ωj).

Let objects ωi ∈ Ω be distributed among clusters Ωk, k = 1, ... K. Then, the
non-normalized objects ω̄k, πk and µk of a cluster Ωk are represented by their
similarities to other objects, according to (12) and (13).

Therefore, similarities s(ωi, ω̄k) and s(ωi, µk) coincide with each other up to a
constant multiplier. As a result, the grouping, obtained from the M-algorithm is
an unbiased clustering. The grouping, obtained from the S-algorithm represents
a biased clustering. And finally, the M-algorithm is similar to the similarity k-
means used for feature grouping.

It should be noted that this result is obtained here as a consequence of the
properties of the unbiased partition of a set of elements into non-intersecting
subsets. This demonstration is easier than the special proof in Braverman and
Muchnik (1983) of the properties of the extreme grouping M-algorithm for the
optimization criterion JM .

The essential issues of factor analysis are discussed in Harman (1976). In
particular, one of them is the question of determining the minimum rank of the
correlation matrix, which determines the number of common factors.

Let us consider an example of solving a factor analysis problem as a clus-
tering one. The correlation matrix of eight physical variables of a body status
is considered, where a preliminary conclusion is made on the basis of the struc-
ture of correlations that the rank of the reduced matrix should not be higher
than two, see Harman (1976). This means that there are two common factors.
The first four variables measure the so-called “lankiness”, while the other four
variables measure the so-called “stockiness” (see Table 1).

In this case, all correlations between physical variables as features are pos-
itive, which allows for considering them as similarity functions without addi-
tional preprocessing. This matrix is positively definite, all its eigenvalues are
positive, taking the values of: 4.672880, 1.770983, 0.481035, 0.421441, 0.233221,
0.186674, 0.137304 and 0.096463. The sum of eigenvalues is equal to the size of
the matrix and determines its rank as eight. Therefore, this set of eight elements
is immersed in eight-dimensional metric space.

As expected, the similarity k-means algorithm (c) correctly identifies two
clusters, where the averages for them represent the centroid factors of the groups
as a solution to the LCCA problem.

In addition, the following remark should be made. In accordance with the
linear factor model, a reduced correlation matrix (Table 2) is considered, where
the main diagonal shows the commonalities found in Harman (1976), see Table
5.4, page 81.
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Table 1. Correlations among eight physical variables for 305 girls

Variables 1 2 3 4 5 6 7 8
1. Height 1
2. Arm span 0.846 1
3. Length
of forearm

0.805 0.881 1

4. Length of
lower leg

0.859 0.826 0.801 1

5. Weight 0.473 0.376 0.380 0.436 1
6. Bitrochanteric
diameter

0.398 0.326 0.319 0.329 0.762 1

7. Chest girth 0.301 0.277 0.237 0.327 0.730 0.583 1
8. Chest width 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1

Source: Harman (1976), see Table 5.3, p. 80

It is natural that the rank of this reduced matrix is lowered to 5.96 as the sum
of commonalities on the main diagonal. This matrix becomes a non-positively
definite one with three negative eigenvalues: 4.448400, 1.508262, 0.102580,
0.058149, 0.013292, -0.039344, -0.058103 and -0.073234. The sum of them also
determines the rank of this matrix as 5.96. The sum of the positive eigenval-
ues only is 6.1307. It should be noted that a simple normalization, meant to
obtain the unit main diagonal does not eliminate negative eigenvalues, as we
obtain: 5.929929, 2.061029, 0.139097, 0.087818, 0.017322, -0.048442, -0.089078
and -0.097676, although it increases the rank of the matrix to its dimensionality,
that is – to eight.

It is obvious that this set of elements, represented by their pairwise compar-
isons in the form of the reduced correlation matrix, is not immersed correctly
into the eight-dimensional metric space. It can only be expected that the correct
dimensionality may not be higher than five or six, if contributions of all eigen-
vectors corresponding to negative eigenvalues are eliminated. As noted above,
the immersion problems are considered in Dvoenko and Pshenichny (2018).

It should be considered that the above mentioned reduction of this matrix
appears to be too strong, since the reduced matrix becomes a non-positively
definite one. Therefore, it becomes necessary to increase the commonalities of
the features.

As shown above, the diagonal elements of the non-normalized similarity ma-
trix determine the squares of distances of the elements to the origin. Therefore,
they determine the natural configuration of the set in a metric space. It should
be noted that the normalization destroys this configuration because all elements
of the set are located on a hypersphere of a unit radius.
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Table 2. Reduced correlation matrix among eight physical variables

Variables 1 2 3 4 5 6 7 8
1. Height 0.842
2. Arm span 0.846 0.881
3. Length of fore-
arm

0.805 0.881 0.817

4. Length of lower
leg

0.859 0.826 0.801 0.815

5. Weight 0.473 0.376 0.380 0.436 0.872
6. Bitrochanteric
diameter

0.398 0.326 0.319 0.329 0.762 0.647

7. Chest girth 0.301 0.277 0.237 0.327 0.730 0.583 0.584
8. Chest width 0.382 0.415 0.345 0.365 0.629 0.577 0.539 0.502

Source: Harman (1976), Table 5.4, p.81

After reduction, this correlation matrix becomes the non-normalized simi-
larity matrix. It is known that the correct non-normalized similarity matrix
should contain diagonal elements which exceed the non-diagonal ones.

However, Table 2 shows that the reduced correlation matrix for the eight
physical variables becomes incorrect. This also does not allow the given set to
be correctly immersed into the eight-dimensional metric space.

As it is known, the problem of commonalities in factor analysis does not have
an unambiguous solution (see Harman, 1976). It should be noted here that this
problem leads, in the general case, again to the problem of the correct immer-
sion of a set in a metric space. Therefore, it is obvious that this requirement
may impose additional restrictions on the degree of reduction of the correlation
matrix in factor analysis. Such difficulties are not discussed further, because
this would go beyond the problems of cluster analysis itself.

5. Improving the quality of clustering

5.1. A bi-partial objective function

The problem of improving the clustering quality with regard to the results, pro-
duced by the known algorithms, is still valid nowadays. Therefore, numerous
variants of the basic k-means procedure, fuzzy clustering, various concepts of an
average, various initial solutions, etc., were proposed. As it was noted above,
the possibility of rational data analysis is based on the informal compactness hy-
pothesis. According to this hypothesis, the compact concentrations are formed
by objects that are located close in some sense to each other. Hence, the stronger
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concentration of elements in a subset to be, the stronger tendency for centers
from different subsets as representatives of concentrations to be distant from
each other.

Here we consider one of the concepts that directly implement such a con-
sequence of the compactness hypothesis. This is the concept of a bi-partial
objective function for clustering, see Owsiński (2020). It should be noted that
the concept of a generalized two-component optimization criterion was devel-
oped first to solve various problems of splitting experimental data into subsets.

One of such important cases is the clustering problem. According to Owsiński
(2020), the generalized objective function consists of two partsQD

S (P ) = CS(P )+
CD(P ), where CS(P ) evaluates the quality of the partition P relative to simi-
larities of elements within subsets in P . The second part CD(P ) evaluates the
quality of the partition P relative to distances between elements from different
subsets in P . If the partition P represents clusters, then the criterion QD

S (P )
should be maximized, where both similarities of elements within each cluster
CS(P ) and distances between elements from different clusters CD(P ) are maxi-
mized. The dual objective function is represented as QS

D(P ) = CS(P )+CD(P ),
where its minimization for the partition P as composed of clusters means min-
imization of similarities between clusters CS(P ) and minimization of distances
CD(P ) within clusters.

5.2. A permutable k-means for the bi-partial objective function

Within the framework of the clustering problem, let us consider the particular
formulation that allows us to apply new properties of the permutable clustering
algorithms developed above, see Dvoenko and Owsiński (2019).

Usually, the bi-partial criterion in the form of QD
S (P ) or QS

D(P ) require
scaling of its parts. Let us propose a criterion of a particular type, in which the
proportions of its two parts constitute a linear combination

Jδ(K) = (1− α)J̃(K) + αδ(K), 0 ≤ α ≤ 1, (17)

where according to (3), the criterion J̃(K) minimizes the cluster dispersion and
the criterion δ(K) minimizes the inter-cluster similarity. Let us develop the
function δ(K).

Let the center ω0 of the set Ω, as the origin of coordinates, be moved,
as shown before in this paper, outside the convex hull of the set so that all
pairwise similarities between elements are non-negative, s(ωi, ωj) ≥ 0. Then
the center ω̄k of each cluster also is represented by its non-negative similarities,
s(ωi, ω̄k) ≥ 0, with the rest of the elements,

s(ωi, ω̄k) = (1/mk)
∑mk

p=1
sip, ωp ∈ Ωk, ωi ∈ Ω, i = 1, ... m.

The cluster compactness is calculated as the average similarity of its center with
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respect to the objects in the cluster

δk =
1

mk

mk
∑

i=1

s(ωi, ω̄k) =
1

m2
k

mk
∑

i=1

mk
∑

p=1

sip, ωi ∈ Ωk, ωp ∈ Ωk.

Let us consider the set of cluster centers ω̄k, k = 1, ...K. The center ω̄0 of this
set is represented by its non-negative similarities s(ω̄0, ω̄k) ≥ 0 with respect to
cluster centers relative to the origin ω0, moved out of the convex hull of the set

s(ω̄0, ω̄k) =
1

K

K
∑

p=1

s(ω̄k, ω̄p), k = 1, ... K.

The average similarity of the center ω̄0 with respect to other centers, ω̄k, k =
1, ...K is calculated as

δ(K) =
1

K

K
∑

k=1

s(ω̄0, ω̄k) =
1

K2

K
∑

k=1

K
∑

l=1

s(ω̄k, ω̄l). (18)

The disadvantage of (18) is that cluster centers are explicitly represented in it.
Hence, it becomes obvious that the criterion (17) cannot be optimized when
using the classical version of k-means. Since the cluster centers are represented
explicitly, the second part, (18), of the criterion (17) cannot be changed when
objects are transferred between clusters. Therefore, when 0 ≤ α < 1, the
optimization result corresponds to the classical one for α = 0, and when α = 1,
the criterion simply does not work. Obviously, to optimize such a criterion, the
permutable version of the k-means algorithm should be applied. To do this, it
is necessary to calculate δ(K) in some other way.

Let us calculate the similarity of the cluster center ω̄k to an object from
another cluster ωp ∈ Ωl as the average

s(ω̄k, ωp) = (1/mk)
∑mk

q=1
s(ωp, ωq), ωq ∈ Ωk.

The average similarity of the cluster center ω̄k to all objects from another cluster
Ωl is calculated as

s(ω̄k,Ωl) =
1

ml

ml
∑

p=1

s(ω̄k, ωp) =
1

mlmk

ml
∑

p=1

mk
∑

q=1

s(ωp, ωq),

ωp ∈ Ωl, ωq ∈ Ωk.

It is easy to see that s(ω̄k,Ωl) = s(ω̄l,Ωk), since spq = sqp. Therefore, the
equivalent notations can be applied: s(ω̄k,Ωl) = s(ω̄k, ω̄l) = s(Ωk,Ωl). Then,
(18) is represented as

δ(K) =
1

K2

K
∑

k=1

K
∑

l=1

s(ω̄k, ω̄l) =
1

K2

K
∑

k=1

K
∑

l=1

1

mlmk

ml
∑

p=1

mk
∑

q=1

spq,
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ωp ∈ Ωl, ωq ∈ Ωk. (19)

However, this expression is not altogether correct, since for k = l it includes the
compactness of the cluster δk. The purpose of the criterion Jδ(K) is to obtain
clusters with minimal cluster variance and minimal similarity between clusters.
Obviously, the compactness δk of each cluster only increases. Therefore, the
final correct expression for the function δ(K) can be obtained after removing the
contribution from the compactness of clusters and taking into account symmetry

δ(K) =
1

2K(K − 1)

K
∑

k=1

K
∑

l=1, l 6=k

1

mlmk

ml
∑

p=1

mk
∑

q=1

spq,

ωp ∈ Ωl, ωq ∈ Ωk. (20)

Now, it is obvious that to minimize the objective function (17), the permutable
algorithms (d) and (f) should be applied. For finding the optimal linear combi-
nation, i.e.

α∗ = argmin0≤α≤1Jδ(K) = argmin0≤α≤1

(

(1− α)J̃(K) + αδ(K)
)

,

the respective algorithm can be simply iterated along the values of α with a
certain step.

It should be noted that the type of the criterion (17) is determined by the
classical idea of the quality of clustering based on minimizing the variance of
clusters. Now, let us consider its dual form, based on maximizing compactness
of clusters and variance between them

Iσ(K) = (1− α)I(K) + ασ2(K), 0 ≤ α ≤ 1. (21)

The first part of (21) takes the form

I(K) =

K
∑

k=1

mk

m
δk =

K
∑

k=1

mk

m

1

m2
k

mk
∑

p=1

mk
∑

q=1

spq =
1

m

K
∑

k=1

1

mk

mk
∑

p=1

mk
∑

q=1

spq.

Let us calculate the function σ2(K). The center ω̄0 of the set of cluster centers
is represented by its distances to other centers ω̄k, according to Torgerson’s
formula, as

d2(ω̄k, ω̄0) =
1

K

K
∑

p=1

d2(ω̄k, ω̄p)−
1

2K2

K
∑

p=1

K
∑

q=1

d2(ω̄p, ω̄q),

k = 1, ... K.

After substituting and bringing similar expressions together, we calculate the
dispersion of the set of cluster centers relative to their center ω̄0 as

σ2(K) =
1

K

K
∑

k=1

d2(ω̄k, ω̄0) =
1

2K2

K
∑

k=1

K
∑

l=1

d2(ω̄k, ω̄l). (22)
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Let us determine the distances between the cluster centers. The cluster center
ω̄k is represented by its distances to all other objects ωi ∈ Ω and, in particular,
to objects from another cluster, ωi ∈ Ωl. The average square of distances of
objects from another cluster ωi ∈ Ωl to the center ω̄k of this cluster is calculated
as

d2(ω̄k,Ωl) =
1

ml

ml
∑

i=1

d2(ωi, ω̄k) =
1

ml

ml
∑

i=1

(

1

mk

mk
∑

p=1

d2ip −
1

2m2
k

mk
∑

p=1

mk
∑

q=1

d2pq

)

=

1

mkml

ml
∑

i=1

mk
∑

p=1

d2ip−
1

2m2
k

mk
∑

p=1

mk
∑

q=1

d2pq =
1

mkml

ml
∑

i=1

mk
∑

p=1

d2ip−σ2
k,

ωp ∈ Ωk, ωq ∈ Ωk.

The average square of distances of objects from another cluster ωi ∈ Ωk to the
center of this cluster ω̄l is calculated as

d2(ω̄l,Ωk) =
1

mk

mk
∑

i=1

d2(ωi, ω̄l) =
1

mkml

mk
∑

i=1

ml
∑

p=1

d2ip−
1

2m2
l

mk
∑

p=1

mk
∑

q=1

d2pq =

1

mkml

mk
∑

i=1

ml
∑

p=1

d2ip−σ2
l , ωp ∈ Ωl, ωq ∈ Ωl.

It is easy to see that d2(ω̄k,Ωl) 6= d2(ω̄l,Ωk), since dispersions of clusters Ωl

and Ωk are different, σ2
k 6= σ2

l . Therefore, distance between the centers of two
clusters is calculated as the average, where ωi ∈ Ωk, ωp ∈ Ωl:

d2(ω̄k, ω̄l) = d2(Ωk,Ωl) =
1

2

(

d2(ω̄k,Ωl) + d2(ω̄l,Ωk)
)

=

1

mkml

mk
∑

i=1

ml
∑

p=1

d2ip−
1

2
(σ2

k + σ2
l ).

After substitution of this distance in (22), we obtain the function σ2(K) in the
following form:

σ2(K) =
1

2K2

K
∑

k=1

K
∑

l=1

d2(ω̄k, ω̄l) =
1

2K2

K
∑

k=1

K
∑

l=1

(

1

mkml

mk
∑

i=1

ml
∑

p=1

d2ip−
1

2
(σ2

k + σ2
l )

)

.

However, such a function is, again, not fully correct. Obviously, when the
criterion Iσ(K) is maximized, distances between cluster centers increase, and
the clusters themselves become more compact. However, as the function σ2(K)
increases, the cluster dispersions decrease, since clusters become more compact.
Therefore, it is necessary to remove cluster dispersions from the expression for
σ2(K). In addition, when we get the cluster dispersion again for k = l, we need
also to delete σ2

k.



Clustering of data represented by pairwise comparisons 371

The final correct expression for σ2(K), after removing the contribution from
the cluster dispersions and taking into account the symmetry, takes the form

σ2(K) =
1

2K(K − 1)

K
∑

k=1

K
∑

l=1, l 6=k

1

mkml

mk
∑

p=1

ml
∑

q=1

d2pq, ωp ∈ Ωk, ωq ∈ Ωl.

Therefore, in order to find the optimal linear combination of two components
in the criterion (21), the permutable algorithm (e) should be applied.

5.3. The experiments

Let us consider for illustration the well-known Fisher’s Iris Data (Fisher, 1936).
These data consist of 150 measurements of 4 quantitative characteristics of
flowers (petal length, petal width, sepal length, and sepal width) belonging to
three Iris families (Setosa, Versicolor, and Virginica), with 50 measurements for
each family.

It is known that the first family is well separated from the other two in
the space of four features. The other two families partially overlap each other.
Other sets of measurements are also known: they are associated with various ad-
justments that are not always clear. In the published classical data set, objects
nos. 102 and 143 coincide with each other.

The purpose of the experiments, reported in Dvoenko and Owsiński (2019),
is to demonstrate various cases of improving the quality of partitioning of these
data by the permutable algorithm when solving the optimization problem

α∗ = argmin0≤α≤1Jδ(K) = argmin0≤α≤1

(

(1− α)J̃(K) + αδ(K)
)

.

Different initial solutions, normalization of initial data, etc. were considered
as various conditions. All the results are discussed in details in Dvoenko and
Owsiński (2019). Here we consider only some of them for illustration, needed
for the purposes of the present paper.

In all experiments, the classical result for α = 0 first is obtained under certain
initial conditions. Further, under the same initial conditions, the parameter α is
varied in the range of 0 < α ≤ 1 with the step of 0.01 to find the optimal value
among 100 values. In all cases, the first family (Setosa) is always distinguished
entirely. Errors occur, as expected, only when separating the second and third
families (see Table 3). It is easy to see that Iris Data are well-structured because
the number of errors cannot be reduced by the classical initial solutions.

Only the bi-partial quality criterion fundamentally allows for reducing sepa-
ration errors. In Table 3 the first column shows the initial clusters as a partition
into Setosa/Versicolor/Virginica: 50/50/50 is the real partition, 50/70/30 refers
to 20 samples moved from Virginica to Versicolor, 50/30/70 refers to 20 sam-
ples moved from Versicolor to Virginica. Then, the initial clusters in terms of
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partition into Versicolor/Virginica are as follows: 50/50 is the real partition,
70/30 means 20 samples from Virginica moved to Versicolor, and 30/70 means
20 samples from Versicolor moved to Virginica. Table 3 and Figs. 1 through
3 demonstrate the decreased number of errors relative to the classical case in
corresponding intervals of the parameter α. In all cases the first family, Setosa,
is well separated without errors. All errors are encountered only for the partially
intersecting families Versicolor and Virginica.

Table 3. Separation of the Iris Data flower families

Initial
clustering

Errors
(α = 0)

Intervals
(for α∗)

Errors
(for α∗)

Diagrams

50/50/50
50/70/30
50/30/70
50/50
70/30
30/70

16
16
16
16
16
16

0.6 – 0.75
0.6 – 0.75
0.6 – 0.75
0.81 – 0.92
0.81 – 0.92
0.81 – 0.92

15
15
15
15
15
15

Fig. 1
Fig. 1
Fig. 1
Fig. 2
Fig. 2
Fig. 3

In the second experiment, the well-known problem of separating clusters
of different sizes is considered. It is known that the k-means algorithm tries
to establish clusters of approximately the same size. In the case of clusters
of different sizes, the large one is usually diminished (Versicolor and Virginica
together), and the smaller one is expanded (Setosa alone).

In the classical case, i.e. for α = 0, three errors were obtained for objects
58, 94, and 99, incorrectly assigned to the first family Setosa. When searching
for the optimal value α∗, all errors are eliminated to zero (Fig. 4) in the range
of 0.97 ≤ α∗ ≤ 1 for all initial partitions as Setosa vs. Versicolor/Virginica:
50/100 is the real partition, 100/50 means that all 50 samples from Versicolor
were moved to Setosa, 30/120 means that 20 samples from Setosa were moved
to Versicolor/Virginica.

5.4. Redistribution of dispersion by the bi-partial criterion

Let us try to uncover the mechanism of improving the quality of clustering when
solving the optimization problem (17). Thus, suppose a set of m elements is
divided into K disjoint subsets (clusters). It is known that the total variance
of data in clustering is divided into the intra- and inter-cluster parts (see, e.g.,
Duda and Hart, 1973, or Duda, Hart and Stork, 2000).

Let ST be the overall scatter matrix, SW be the intra-cluster scatter ma-
trix, SB be the inter-cluster scatter matrix, where, of course, ST = SW + SB .
Therefore, it is true that trST = trSW + trSB for diagonal elements, where
mσ2

T = mσ2
W +mσ2

B and σ2
T = σ2

W + σ2
B .
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Figure 1. Clustering errors of original Iris Data: Setosa/Versicolor/Virginica:
50/50/50, 50/70/30, 50/30/70. All results are the same

Figure 2. Clustering errors of original Iris Data: Versicolor/Virginica: 50/50,
70/30. All results are the same
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Figure 3. Clustering errors of original Iris Data: Versicolor/Virginica: 30/70

Figure 4. Clustering errors of original Iris Data: Setosa vs. Versi-
color/Virginica. 50/100, 100/50, 30/120. All results are the same
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Let the set Ω = {ω1, ... ωm} be immersed in the metric space and represented
by the distance matrix D(m,m), dij = d(ωi, ωj) ≥ 0. Let this set be divided
into non-intersecting clusters Ωk, k = 1, ... K. Based on Torgerson’s formula,
the cluster dispersion is calculated as

σ2
k =

1

2m2
k

mk
∑

p=1

mk
∑

q=1

d2(ωp, ωq), ωp ∈ Ωk, ωq ∈ Ωk, k = 1, ... K,

the intra-clusters dispersion is calculated as

σ2
W =

K
∑

k=1

mk

m
σ2
k =

K
∑

k=1

mk

m

1

2m2
k

mk
∑

p=1

mk
∑

q=1

d2(ωp, ωq) =

1

2m

K
∑

k=1

1

mk

mk
∑

p=1

mk
∑

q=1

d2(ωp, ωq),

the general dispersion is calculated as

σ2
T =

1

2m2

m
∑

p=1

m
∑

q=1

d2(ωp, ωq) =
1

2m2

K
∑

k=1

K
∑

l=1

mk
∑

p=1

ml
∑

q=1

d2(ωp, ωq).

The dispersion of cluster centers (inter-cluster) relative to their center ω̄0 is
calculated as

σ2
IC =

1

K

K
∑

k=1

d2(ω̄k, ω̄0) =
1

2K2

K
∑

p=1

K
∑

q=1

d2(ω̄p, ω̄q),

where the center ω̄0 is represented by the distances to centers ω̄k, based on
Torgerson’s formula, as

d2(ω̄k, ω̄0) =
1

K

K
∑

p=1

d2(ω̄k, ω̄p)− σ2
IC .

The classical dispersion of the cluster centers is calculated as

σ2
B =

K
∑

k=1

mk

m
d2(ω̄k, ω̄0).

Therefore, the classical dispersion of cluster centers is calculated as

σ2
B =

K
∑

k=1

mk

m

(

1

K

K
∑

p=1

d2(ω̄k, ω̄p)− σ2
IC

)

=

1

K

K
∑

k=1

mk

m

K
∑

p=1

d2(ω̄k, ω̄p)− σ2
IC

K
∑

k=1

mk

m
=

1

K

K
∑

k=1

mk

m

K
∑

p=1

d2(ω̄k, ω̄p)− σ2
IC .
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As shown above, minimizing the criterion J̃(K), based on the distance matrix
D(m,m) means maximizing the dual criterion I(K) = C− J̃(K) for the similar-
ity matrix S(m,m), where sij ≥ 0. In the criterion Iσ(K) = (1−α)I(K)+ασ2

IC ,
the first component I(K) is maximized as the weighted average compactness of
clusters, and the second component σ2

IC is maximized as the inter-cluster dis-
persion, which is calculated according to (22). The decomposition of the total
dispersion is represented as

σ2
T = σ2

W +
1

K

K
∑

k=1

mk

m

K
∑

p=1

d2(ω̄k, ω̄p)− σ2
IC .

Let us denote the union of the classical weighted average variance of cluster
centers σ2

B and the inter-cluster dispersion σ2
IC as

σ2
B∪IC =

1

K

K
∑

k=1

mk

m

K
∑

p=1

d2(ω̄k, ω̄p).

Hence, we get σ2
B = σ2

B∪IC − σ2
IC . The decomposition of the total variance

takes the form

σ2
T + σ2

IC = σ2
W + σ2

B∪IC . (23)

As we can see, the permutable algorithm (d) minimizes according to (1), and
(3) the criteria J̃(K) = J(K) = σ2

W . Since σ2
T = const, the dispersion σ2

B =
σ2
B∪IC − σ2

IC is maximized with the balance σ2
T = σ2

W + σ2
B maintained. Then,

in the decomposition (23), both parts are increasing while maintaining balance.

In this case, the maximization of the bi-partial objective function Iσ(K)
affects only the maximization of the dispersion σ2

IC . At the same time, the
maximization of the other part of the dispersion σ2

B∪IC by the permutable
algorithm is not controlled.

6. Assessing the number of clusters

6.1. Some well-known ideas

As it is well known, the problem of determining the number of subsets, into
which a set is split so that they form well justified clusters is theoretically
difficult in general. At the same time, in cluster analysis, various practical
approaches have been intensively developed based on devising the appropriate
criteria and algorithms.

It is known that clustering algorithms, for example, the ones discussed above,
from the k-means family, are locally optimal. Therefore, the quality of their re-
sults depends not only on the initial solution but also on the number of clusters
assumed. Moreover, if the cluster structure is not sufficiently evident, then this
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also affects the result of processing (insufficiently distant or partially overlap-
ping clusters, etc.). Under such conditions, the type of measure of similarity
(or difference) of clusters also plays an essential role. Therefore, in a practi-
cal approach, this problem belongs to the class of multi-criteria optimization
problems, see Duda and Hart (1973) and Duda, Hart and Stork (2000).

It is easy to see that the criterion (1), discussed above, cannot be optimized
relative to the number of clusters. It takes the maximum value of data dispersion
when all objects are in the single cluster, and the minimum, zero value, when
each object forms its own cluster.

One of the directions of development of methods for determining the un-
known number of clusters is associated with the design of special criteria that
can contain extremes concerning the number of clusters (see Aivazyan et al.,
1989). Note that in the above considered approach, following Owsiński (2020),
it is also natural to determine the unknown number of subsets of multidimen-
sional data as clusters based on the generalized objective functionQD

S (P ). When
searching for the best approximation, concerning both cluster content and the
number of clusters, a combination of intra-cluster similarity with inter-cluster
dissimilarity in a single partitioning quality criterion is used.

The practical algorithms usually come in two categories. In the first case,
it is necessary to specify first a suitable number of clusters (k-means, M- and
S-algorithms, etc.), on the basis of a priori information for building clustering.
In the second case, algorithms are often developed for finding a suitable number
of clusters in one way or another, with the development and use of the corre-
sponding criteria of clustering quality (Isodata, Forel, hierarchical algorithms,
see Duda and Hart, 1973; Duda, Hart and Stork, 2000, or Zagoruiko, 1999). A
sufficiently ample review thereof is given in Aivazyan et al. (1989).

6.2. A quasi-hierarchical procedure

It should be noted that the notion of hierarchical search or hierarchical algo-
rithms has a prominent place within the domain of clustering, see, e.g., Ward
(1963). The hierarchical procedures of clustering constitute a sequential search
for subsets of a given set by both merging, which starts from individual elements
(agglomerative procedures), and splitting, which starts from the complete set
(divisive procedures), which are trivial clusters (and trivial partitions). The
corresponding criterion, which is used together with the procedure, allows for
determining a certain level of merging (partitioning), which establishes the ob-
tained subsets as (potentially) non-trivial clusters and their number.

If the search within a hierarchy itself is not in focus, then let a particular
procedure be developed based on iterating through subsets to determine an
unknown number of clusters (see Dvoenko, 2001, 2009a). It is known that the
hierarchical partitioning at a certain level of the dendrogram, i.e. the tree,
formed through consecutive aggregations or splits, may not always be optimal
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for the compactness of the resulting clusters. This means, in particular, that
the corresponding partition is biased. Therefore, breaking the hierarchy at this
level may restore the unbiased clustering with the more compact clusters.

Let us try to build a divisive dendrogram based on k-means algorithm ac-
cording to the criterion (1), sequentially increasing the number of clusters,
K = 1, ... m. So, based, for example, on the distance k-means (b), a divisive
quasi-hierarchical procedure is developed as (g):

(g) Step K = 0. Define cluster ΩK+1 = Ω, m = |Ω|, K = K + 1.

Step K. Increase the number of clusters by one:

1. While k = 1, ... K find the least compact cluster Ωk.
2. Define two representatives, ω̃k and ω̃K+1, as the most distant objects in Ωk.
3. Split Ωk into two clusters Ωk and ΩK+1 by distance k-means (b).
4. Define K + 1 representatives as ω̃1, ... ω̃k−1, ω̃k+1, ... ω̃K with ω̃k and ω̃K+1

after the preceding point 3.
5. Split Ω into K + 1 clusters Ω1, ... ΩK+1 by distance k-means (b).
6. K = K + 1. Stop, if K = m.

Let us consider the sufficiently obvious properties of this procedure. The se-
quence of partitions begins with a single set Ω1 = Ω and ends with the singleton
sets Ω1, ... Ωm. In general, in the sequence of partitions, not all of them may be
included in a hierarchy.

Obviously, two partitions, into K and K + 1 subsets, become a hierarchy
when splitting the least compact cluster Ωk into two Ωk and ΩK+1 immediately
gives an unbiased partition Ω1, ... ΩK+1. A hierarchy violation occurs when
splitting the least compact cluster Ωk into two subsets, Ωk and ΩK+1, requires
re-splitting all the set Ω into K + 1 subsets in such a way that the partition
Ω1, ... ΩK+1 becomes unbiased.

Using this algorithm, a set of partial dendrograms is developed, each starting
with a partition that violates the current hierarchy. The violation of the hier-
archy shows that a better partition is obtained for a given numbers of clusters
at a given level of the dendrogram.

We assume that all such violating partitions determine the preferred num-
bers of clusters. Therefore, the set of partial dendrograms (their initial levels)
determines the set of preferred of clusters. Indeed, this may be the case, since
the subsequent levels in partial dendrograms simply show the hierarchical split-
ting of the clusters defined in the violating partition up to the next violation of
the hierarchy.

On the other hand, in hierarchical algorithms, the suitable number of clusters
is usually determined based on the following empirical rule. The optimal number
of clusters is established at the boundary, up to which the dispersion of clusters
decreases quickly, and after which its decrease slows down sharply. Therefore,
this empirical rule should be implemented also in the sequence of unbiased
partitions formed by the sequence of partial dendrograms. In any case, this
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situation is more correct relative to the criterion (1) regarding the determination
of the number of clusters, than for hierarchy, which can contain some biased
partitions, in general.

If a single dendrogram is obtained, then it can be shown, Dvoenko (2001),
that the quasi-hierarchical procedure for distances is equivalent to the algorithm
for finding the minimal spanning tree.

It is obvious that the procedure (g) is a superstructure over clustering al-
gorithms that generate representatives. Since the permutable algorithms do
not generate representatives, it is also possible to develop a quasi-hierarchical
procedure for the corresponding subsets. It should be noted that in the quasi-
hierarchical procedure, the problem of the initial solution for the k-means algo-
rithm is reduced to only one case.

6.3. Experiments

First, let us look at the data on correlations of eight physical variables, charac-
terizing the body measurements, discussed before. Recall that the purpose of
factor analysis for this particular data set is to identify two groups of physical
characteristics (see Harman, 1976). Here, in this paper, this goal is achieved
as a solution to the clustering problem. Such groups have been successfully
identified.

In the case of using the similarity k-means algorithm, the criterion (11) is
used as the weighted average compactness of the cluster structure, I(K), to be
maximized. In the case of correlations (Section 4.2), one should maximize the
functional

IM (K) =
K
∑

k=1

nk
∑

p=1

|r(ω̄k, ωp)|.

The quasi-hierarchical grouping based on the similarity k-means algorithm gives
a dendrogram, i.e., hierarchy itself, and a sequence of increasing values of the
clustering criterion IM (K), K = 1, ... 8, is as follows: 4.63, 6.42, 6.89, 7.27, 7.5,
7.74, 7.88 and 8. The respective diagram (Fig. 5) shows a sharp increase of
the clustering criterion to the number of clusters equal two and a subsequent
slowdown after it. The empirical rule indicates, therefore, that K = 2.

Other data are more complex: Holzinger’s data are given in Harman (1976)
and represent correlations between 24 psychological tests in a study of mental
development of 145 Chicago suburb schoolchildren in 1934. The set of tests
is initially divided into five groups, each of which consisted of tests (features)
characterizing one of aspects of mental development.

The objective of the first study was to demonstrate the properties of the
bi-factor method, in which group factors are developed for predefined groups
of psychological tests. As it turned out, the complexity of Holzinger’s data did
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Figure 5. Eight physical variables: K = 2. Horizontal axis is the number of
clusters, vertical axis is the value of the criterion IM (K)

not allow for separating the group factor for the tests of the fifth group. These
tests had sufficient factor loads only as a part of an additional common factor
built for all tests.

The next attempt to get an insight into the complexity of these data was
made in 1970 to demonstrate the use of methods of an extreme grouping of
parameters (LPCA and LCCA), see Braverman (1970), Braverman and Muchnik
(1983), and Lumel’sky (1970). However, Holzinger’s groups also failed to be
restored as ideal ones by these methods. As before, differences in results depend
on tests from the 5th group. As a rule, some tests from it fell into other groups.
As a consequence, at the same time, some other tests were usually forced out
of their groups.

As the result, in general, the M-algorithm was better than the S-algorithm.
Under the so-called standard initial conditions (the first K tests form separate
groups, the rest join the closest group), an unsatisfactory result was obtained
(Table 4). This is easy enough to understand because using the pre-ordered
correlated tests creates an inconvenient initial solution.

When the original groups were taken as the initial ones, it was also not
possible to restore them, because test 24 fell into group 3, and test 19 moved
to group 5. It should be noted that according to this result, the original (ideal)
groups of tests should be treated as biased ones.

Here, it seems that peculiarities of the realization of algorithms were also
affected by the limited resources of the computing devices at the time the cal-
culations were performed.
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Figure 6. Holzinger’s data: K is undefined. Horizontal axis is the number of
clusters, vertical axis is the value of the criterion IM (K)

Table 4. Results of the M-algorithm for Holzinger’s data

Group Standard initial
conditions

Ideal groups as
initial ones

1 Spatial relations 1 – 4 1 – 4, 20, 22, 23 1 – 4
2 Verbal 5 – 9 5 – 9 5 – 9
3 Perceptual speed 10 – 13 10 – 13 10 – 13, 24
4 Memory 14 – 19 14 – 17 14 – 18
5 Deduction 20 – 24 18, 19, 21, 24 19 – 23

The third attempt was made in 2009 to demonstrate the procedure of a quasi-
hierarchical clustering, Dvoenko (2009a). Table 5 shows some results from using
the k-means algorithm. Increasing values of the criterion IM (K), K = 1, ... 24,
for hierarchy and quasi-hierarchy were obtained. Values IM (K), K = 5, ... 24,
were also obtained starting from the initial (ideal) groups of tests (Fig. 6).

It needs to be noted that all three sequences (left columns in Table 5) of
values of the quality indices increase smoothly, without kinks (Fig. 6). This
does not allow us to apply a heuristic method of determining the appropriate
number of groups.



382 S. Dvoenko

Also, the hierarchical grouping shows generally the worst quality of results
compared to those produced by the quasi-hierarchy (see Table 5). In a quasi-
hierarchical grouping, splitting into three groups breaks the hierarchy and gives
better quality. The hierarchy is not violated further, and the quality of quasi-
hierarchical partitions is systematically better up to the splitting into 21 groups.
At the end, all results coincide for obvious reasons, i.e. due to the lack of other
variants of partitions.

It is important to note that the so-called ideal partition is unbiased, forming
the beginning of the hierarchy (Table 5). Moreover, the quality of such a par-
tition becomes the best. This confirms the hypothesis about the complexity of
data and the multi-extreme criterion function. It is obvious that the methods
used in the second attempt and earlier to obtain a partition into five groups do
not lead to an ideal partition (Table 6). This means that the task of finding an
initial solution by itself becomes the non-trivial and comparable in complexity
to the basic clustering problem for these data.

The fact that the original Holzinger’s partition becomes unbiased means
that these groups are separable in a metric space. According to this, we note
that the compactness hypothesis, as a philosophical principle, applies not only
to single-point manifolds (cluster centers) but also to broader manifolds, such
as: linear (regressions, separating hyper-planes), nonlinear (separating hyper-
surfaces), etc.

The discussion of linear decision functions takes us beyond the subject of this
paper. However, it should be noted that Holzinger’s groups are linearly separa-
ble in a metric space. This means that the bi-factor analysis task is a problem
of learning with a teacher (machine learning). As a result, it becomes clear that
each Holzinger’s group is linearly separable from the remaining groups, with the
high cross-validation quality. The development of the learning algorithm and
experiments are discussed in deeper detail in Dvoenko (2009a).

If we remain within the framework of the cluster analysis problem, then
the best approximation in terms of the composition of groups gives a quasi-
hierarchical separation into 10 groups, see Dvoenko (2009a). In Table 6, for
each of Holzinger’s groups, the tests in the combined subgroups are shown in
parentheses.

Finally, we note that Holzinger’s data are represented through a positively
defined correlation matrix, consisting of positive values, except for one r3,10 =
r10,3 = −0.075. In the studies, reported in Harman (1976), this value is assumed
to be zero, while in the studies, reported in Braverman (1970), Braverman
and Muchnik (1983), Dvoenko (2009a) and Lumel’sky (1970), the modules of
correlations are considered.

As shown previously in this paper, in order to obtain a similarity function
based on the law of cosines, it is necessary to move the origin of the coordinates
beyond the convex hull of the set, so that all correlations really become positive.
To do this, the correlation matrix is transformed into a distance matrix with
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Table 5. Comparison of hierarchies and quasi-hierarchies, the values of IM (K)

Number
of
groups

Hierarchy Quasi-
hierarchy

Ideal initial
groups

Origin out of the
convex hull

Hierarchy Quasi-
hierarchy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

7.94
9.64
10.91
11.94
12.76
13.65
14.35
15.18
15.89
16.53
17.35
17.88
18.53
19.17
19.79
20.39
20.89
21.48
22.05
22.49
22.98
23.45
23.72
24.00

7.94
9.64
11.17

12.00
13.11
13.81
14.66
15.32
16.03
16.84
17.49
18.14
18.78
19.40
20.00
20.50
21.09
21.64
22.07
22.57
23.03
23.45
23.72
24.00

-
-
-
-
13.34
14.16
14.92
15.62
16.32
16.96
17.65
18.17
18.83
19.47
19.97
20.56
21.11
21.64
22.07
22.57
23.03
23.45
23.72
24.00

12.05
13.29
14.12
14.94
15.79
16.44
16.94
17.52
18.18
18.66
19.14
19.61
20.02
20.48
20.92
21.35
21.76
22.16
22.56
22.91
23.27
23.55
23.78
24.00

12.05
13.29
14.27

15.08
15.79
16.44
17.04
17.54
18.20
18.68
19.14
19.61
20.02
20.48
20.92
21.35
21.76
22.16
22.56
22.91
23.27
23.55
23.78
24.00

elements dij =
√

2(1− rij) and the origin is found for ∆ = 0, as shown before in
Section 2.4. This means that this origin of coordinates is placed outside of the
convex hull of the set. Further, the non-normalized similarity matrix is restored
with elements

sij =
1

2d0id0j
(d20i + d20j − d2ij),

and the normalized similarity matrix is finally obtained by the transformation
s′ij = sij/

√
siisjj . The respective results are shown in Table 7.

It is easy to see that these partitions are also not similar to the ideal one
for the same reason as that discussed above for clustering. In addition, as
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Table 6. Results for the hierarchy and quasi-hierarchy

Group Hierarchy Quasi-
hierarchy

10 groups

1 Spatial
relations

1-4 1-3 1-3 (1,3) (2)
(4,22)

2 Verbal 5-9 4-9, 13, 20-
23

4-9, 20, 22,
23

(5-9)

3 Perceptual
speed

10-13 10-12, 24 10-13, 21, 24 (10-13)

4 Memory 14-19 14-17 14-17 (14,16)
(15,17)
(18,19)

5 Deduction 20-24 18, 19 18, 19 (20,23)
(21,24)

Table 7. Results of hierarchy and quasi-hierarchy for similarities

Group Hierarchy Quasi-
hierarchy

1 Spatial rela-
tions

1 – 4 1 – 3 1 – 3

2 Verbal 5 – 9 4 – 9, 20, 22, 23 4 – 9, 20, 22, 23
3 Perceptual

speed
10 – 13 10 – 13, 21, 24 10 – 13, 21, 24

4 Memory 14 – 19 14, 16, 19 14 – 16, 19
5 Deduction 20 – 24 15, 17, 18 17, 18

before, the result for the quasi-hierarchy also becomes better than the result for
hierarchy (Table 5, right hand columns). As before, splitting into three groups
violates the hierarchy. Naturally, the values of the partitioning quality criterion
start with higher values, because in the single quadrant of the metric space all
the tests are located more closely (Fig. 6).

This experiment now metrically confirms the previously drawn conclusion
about the unbiased original grouping and, consequently, about the linear sepa-
rability of the Holzinger’s groups of tests from each other.

7. Conclusion

The processing of pairwise comparisons continues to be quite an interesting
problem, since experimental data are often inconvenient or even impossible to
be presented in the traditional form as the results of measurements of some
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pointwise characteristics. This situation requires the development of appropriate
methods and algorithms.

In general, the solution to this problem seems to be achieved in at least three
important directions. The first one is the development of new and a modification
of known machine learning algorithms. This problem is discussed here on the
basis of the clustering problem with the use of the k-means algorithm.

The second one is the immersion of paired comparisons in a metric space.
This problem is related to correction of pairwise comparisons, see Bognar (1974),
Dvoenko and Pshenichny (2018), Pekalska and Duin (2005). The third one is
solving of some specific problems, e.g., immersion of binary relations in a metric
space, and is related to increasing the power of non-quantitative measuring
scales, see Dvoenko and Pshenichny (2021), Kemeny (1959), Litvak (1982), or
Luce (1959).
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