
Control and Cybernetics
vol. 25 (1996) No. 1

Clustering of parameters on the basis of correlations via 
simulated annealing

by

Gintautas Dzemyda

Institute of Mathematics and Informatics, 
Akademijos St. 4, 2600 Vilnius, Lithuania, 

e-mail: dzemyda@ktl.mii.lt

Abstract. The application of simulated annealing is considered 
in solving the problem of parameter clustering according to their 
correlation matrix. The problem is formulated as a problem of com
binatorial optimization and attempted to be solved using the simu
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1. Introduction

Any set of similar objects may be often characterized by common parameters 
(variables). The term “object” may cover, e.g., people, equipment, or produce 
of manufacturing. Any parameter may take some values. A combination of 
values of all parameters characterizes a concrete object from the whole set. The 
values obtained by any parameter depend on the values of other parameters,
i.e.,  the parameters are correlated. The correlation matrix of parameters may be 
calculated during the analysis of objects composing the set. There exist groups 
of parameters characterizing different properties of the object. The problem is 
to find these groups.

One of the major objectives of various data analysis methods is to discover 
relations among the parameters. The methods analyzed in this paper are ori
ented to the analysis of correlation matrices and, in particular, to the clustering 
of parameters on the basis of correlations.

Examples of real correlation matrices:
1. The matrix of 8 physical parameters measured on 305 schoolgirls, Harman 

(1976).
2. The matrix of 11 parameters characterizing the development of agriculture 

in two Canadian provinces, Braverman and Muchnik (1983).
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3. The matrix of 33 parameters of a tractor driver, Lumelsky (1970).
4. The matrix of 24 psychological tests on 145 pupils of the 7th and 8th forms 

in Chicago, Harman (1976).
The scope of this paper is out of search for the answer which method of 

parameter clustering (not realizations of the same method) is better, which 
criterion characterizing the partitioning quality is better. Investigator should 
have some methods at his disposal and integrate interactively their results. The 
paper deals with various simulated annealing strategies, which may be applied 
in solving combinatorial problems where the functional of partitioning quality 
is to be optimized.

2. The problem

The problem is to partition the parameters jq,..., xn into a fixed number p 
of non intersecting and homogeneous, in a certain sense, groups Ai,... ,Ap by 
the correlation matrix R = {rXiXj)i,j = characterizing the connections
among the parameters (rXiXj is the correlation coefficient of parameters x^ and 
Xj). The covariance matrix may be used instead of the matrix R. However, 
the parameters with a greater variance will be more significant in the analysis. 
There is no a priori information regarding the number and size of groups.

Algorithms of parameter clustering are widely used to analyze the real data. 
There are two possibilities of such an analysis. The first one is to analyze the 
data matrix Z = {zijyi = l,t, j = l,n}, where t is the number of objects, 
and any parameter xs is characterized by the data vector (^s, i — l,t). The 
algorithms for clustering objects are suitable here, because in this case param
eters are interpreted as objects and objects as parameters (see Braveman and 
Muchnik, 1983). But sometimes t may be large or only the correlation matrix of 
parameters is known. In this case, the analysis of a set of (n — 1) • n/2 elements 
of correlation matrix (or (n + 1) • n/2 elements of covariance matrix) is made 
instead of t ■ n elements of the data matrix Z, i.e., the compressed information 
is used.

There is a variety of parameter clustering algorithms on the basis of corre
lations. The modifications of Harman’s algorithm, Harman (1976), based on 
the analysis of correlations are included in SAS (1982). The algorithms of such 
a type are alśo presented, for example, in papers by Braveman and Muchnik 
(1983), Dzemyda (1990), Lumelsky (1970). All the algorithms start from some 
initial partition selected by some algorithm or by a certain knowledge about the 
problem. The goal of these algorithms is to recognize the internal structure of 
a system of parameters characterizing objects from a given set. But they do 
not try clustering the objects on the basis of parameter partition: there is a 
lot of efficient algorithms oriented to the clustering of objects (e.g., see Ander- 
berg, 1973; Hartigan, 1975; Spath, 1980; Owsinski, 1986; Mezzich and Solomon, 
1980). Some interaction between the clustering of objects and analysis of the 
groups of parameters may be found in the paper by Diday (1986). A review of 
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algorithms for a simultaneous clustering of parameters and objects is given by 
Mezzich and Solomon (1980).

In this paper we deal with the algorithms of extremal parameter grouping, 
Braveman and Muchnik (1983), Dzemyda (1987; 1988; 1990), Braveman (1970), 
Dzemyda and Valeviciene (1988), Dzemyda and Senkiene (1992), Dzemyda, 
Senkiene and Valeviciene (1990), based on the analysis of correlations and max
imizing the partitioning quality

L=1 xi^Al

where Fl is the factor with a unit variance, corresponding to the group Al] 
rXipL is the correlation coefficient of the parameter Xi and the factor Fl- The 
factors Fl, L = l,p, are selected so that to maximize the sums

V L = Up. (1)
xiEAl

Dzemyda (1987) proved that:
1- fl = y o.i xi/>/xl, (2)

XiEAL

rx3FL = y
XiEAL

where Al is the greatest eigenvalue of the matrix Rl = {^xixj E
7I5}, c/-i are components of the normalized eigenvector of the matrix Rl 
corresponding to A^.

2- rxsFL = \FlO.s as xs e Al.
p

3. Ii = FXl'
L=1 ___

From (2) we observe that the factors Fl, L = l,p, are linear combinations 
of parameters from the corresponding groups L = l,p. The coefficients 
of the linear combinations are selected so that to maximize the sums (1). The 
values of coefficients of the linear combination are proportional to the elements 
of the eigenvector corresponding to the greatest eigenvalue Al of Rl, and Al = 

rxiFL’ fn fhis manner the ideas of factor analysis are applied to the 
formulation of the problem of parameter grouping.

Definition 2.1 By the local maximum of the functional we shall call its 
value, corresponding to such a partition, where the squared correlation coeffi
cient of any parameter with the factor, corresponding to the group including 
this parameter, is greater than or equal to that of the parameter with other fac
tors, i.e., for any parameter xs (let xs E Al) the following inequality holds:

tI,Fl > rlgFk, k = l/p, k/L.
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Such a definition is useful in creating a strategy for maximizing Ą. Let us 
consider a parameter xs (xs e Ak). If , L k, then the transfer of
xs into the group Al will increase the value of Ii (see Braveman and Muchnik, 
1983). But by using the values of rXspL, L = l,p, it is impossible to determine 
the group where the value of Ix increases at most after transfering the parameter 
xs (see Dzemyda, 1987).

The partition will also correspond to the local maximum defined above, if 
the transfer of any parameter from its group to another one will not increase the 
value of Ą. Such a situation occurs when for any parameter xs (let xs E Al) 
the following inequalities are satisfied:

A^s 4- ALS < A& + A/;, k = l,p, k 7^ L,

where
A£s is the maximal eigenvalue of the matrix R£s = {rXiXj, x^ Xj E A£s}, where 

the group AFS is obtained from the group Al by eliminating xs\
>+s is the maximal eigenvalue of the matrix R^s = {rXiXj, x^ Xj E A^s}, where 

the group A^s is obtained from the group Ak by adding xs.
The value of Ą will increase after transferring xs (let xs E Al) into the 

group Ak if we succeed in finding such k (k L) where A^s + A£s > A& + A^, 
L k. This fact is also useful in creating a strategy for maximizing Ą.

The global maximum of Ą belongs to the set of local maxima, too.
The problem can be formulated as a combinatorial optimization problem. 

Let X1,... , Xn be variables taking discrete values from 1 to p, K = {X = 
(X1,..., Xn), X7, E {1,... ,p}, i = 1, n}. Let us introduce a function /(X1,..., 
Xn) that is related with the functional I± in such a manner:

/(X1,... , Xn) = Ii, where Xi E A^ as X1 = L.

It means that any point from K corresponds to the fixed parameter partition, 
and any partition of parameters corresponds to some point in K.

The problem of parameter clustering can be formulated as follows:

max/(Al) (3)

subject to

X = (X\ ... Xn) eK (4)

Bi: V = Xi = p (5)

A functional similar to Ą is proposed and investigated by Dzemyda and 
Valeviciene (1988), Dzemyda (1990) for the clustering of objects. Instead of the 
correlation matrix of parameters, Dzemyda and Valeviciene (1988), Dzemyda 
(1990) use a matrix K — {K(Zi, Zj),i,j — Mh where Zi = (^i5---,^n)5 
i = Tyi, are objects to be clustered into p non intersecting clusters,

= e~a-P2^zi\
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a is a positive number, p(Zi, Zj) is the generalized Euclidean distance between 
the objects Zi and Zj, Hartigan (1975):

where R = {fki, k, I = 1, n} is a non-negative defined symmetric matrix. In fact, 
some nonlinear transformation of'the objects defined on the Euclidean space Rn 
into its subset Sn C Rn containing unit vectors is given above. Dzemyda and 
Valeviciene (1988), Dzemyda (1990) showed the efficiency of such transformation 
experimentally on the basis of well-known clustering methods and data sets.

Dzemyda (1990) proposed to transform the problem of parameter cluster
ing into the clustering of points distributed in Sn. The possibility to use the 
methods oriented to the clustering of objects (e.g., A:-means - Spath, 1980) was 
grounded.

3. Deterministic algorithms

Deterministic algorithms, Braveman and Muchnik (1983), Dzemyda (1987;1988; 
1990), Braveman (1970), Dzemyda and Valeviciene (1988), .often find only the 
local maximum of Ą which is not global. They are based on the analysis of 
parameters in consecutive order and on the search for a group of transferring 
the individual parameter with a view to increase the R value. They use different 
strategies to determine when the parameter must be transferred from its group 
to another. The algorithms stop when the transfer of any parameter by the 
chosen strategy does not increase the value of Ą.

The investigations of deterministic algorithms, Dzemyda (1987), indicate 
that their efficiency depends substantially on the initial partition of parameters.

The performance of deterministic algorithms in this paper is illustrated on 
the basis of two algorithms proposed by Dzemyda (1987), representing different 
strategies of maximizing Ą. Al is one of the fastest algorithms; A2 finds the 
greatest values of Ą in comparison with other deterministic algorithms investi
gated by Dzemyda (1987).

When algorithm Al, Dzemyda (1987), Dzemyda and Senkiene (1992), con
siders the parameter xs (let xs E A^), it seeks the greatest squared correlation 
coefficient among j = Lp, j k. If then Al
transfers xs into the group Al and recalculates the factors Ą and Fl-

When algorithm A2, Dzemyda (1987), Dzemyda and Senkiene (1992),. con
siders the parameter xs (let xs E A&), it seeks the group Al, where the value 
of the functional I± increases most after transferring xS) i.e., A2 looks for L 
maximizing e = + X^s — XL — A&. If e > 0, then A2 transfers xs into the
group Al and recalculates X^ and Xl>
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4. Simulated annealing

Since Kirkpatrick et al (1983) much work has been done on simulated annealing 
for discrete variables and it has been used in a wide range of contexts. A 
brief description of different modifications to the discrete simulated annealing 
algorithm can be found in the paper by Eglese (1990). Simulated annealing 
was used in solving partitioning problems, also Trzebiatowski (1985), namely, 
partitioning of networks.

The problem (3)-(5) can be solved by using the simulated annealing strategy, 
too. It permits searching for the global maximum of Ą. The attempts to solve 
the problem by using simulated annealing were made by Dzemyda, Senkiene 
and Valeviciene (1990), Dzemyda and Senkiene (1992). Here we review and 
extend their results.

4.1. Algorithm

Let us consider the simulated annealing strategy in search of the global maxi
mum of the combinatorial problem

max/(X),

where X = € S = [A,B]n C Rn; A = (A1,... ,An); B =
(B1,... ,Bn'); X1, A1 and B\ i = l,n, take integer values; A2 < X1 < Bl.

Ak = 1, Bk = p, k = l,n, in the case of problem (3)-(5).
The performance of optimization algorithms based on simulated annealing 

can be generalized as follows. Let m — 1 step be performed. The current point 
is Xm-i. The problem is to find the next current point Xm. It may be one of 
the neighbors of Xm_i. Xm_i can remain as the current point after m steps, 
too. The selection of Xm is divided into two stages. Xm is chosen from the 
neighbors of Xm-± in the first stage. Then Xm and Xm_i are compared in the 
second stage. Xm_i can become Xm with some probability.

The search for the global maximum of /(•) can be performed in such a 
manner:

the m-th step of the algorithm is as follows:

X^^X^+C, m=l,2,..., i = l^n, (6)

where £7', i = l,n, are integers taking values with some probabilities:
a) i = 1, n, are random numbers taking integer values in the set {—1, 0,1}; 

P{^ = 0,i = l,n} = 0, and the probability for any other combination of 
£7', i = l,n, to appear is equal to l/(3n — 1);

b) c e 5'* = {Ai - X}n_1,Ai + 1 - X^,. ,.,Bi — \ {0}, i = Mb
with the same probability pi = — A*), i.e., A(Xm_i) = S\ {Xm_i}, where
A(Xm_i) is the set of neighbors of Xm_i.
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The probability of transition to the point Xm is defined by the formula:

DfV 1 — / aS /(^777,) > f(Xm — 1) z>_x
i \ exp{[/(Xm)-/(Xm_1)]/Tm}, as /(Xm) < f (X^) W

i.e.,  P{Xm} = 1 as f(Xm) > /(Xm_!); in the other case a random number 
r] 6 [0,1] is generated: the point Xm will be initial for a new step ((m + l)-st) 
of the algorithm and in formula (6) it will replace Xm_i if 77 < exp{[/(Xm) - 
/(Xm-Jl/Tm}, and the point Xm_! remains as the initial one for a new step, 
otherwise.

Tm = c/ ln(l + m0 + m), (8)

Tm = c/ ln[ln(l + m0 + m)], (9)

m = 1, 2,... is the number of a step, c is a positive constant, mo is some constant 
from [1, oo).

The proof of convergence of the algorithm in probability to the global maxi
mum of /(•) is based on the results of Mitra, Romeo and Sangiovanni-Vincentelli 
(1986).

The transition probability P{Xm} with an unknown parameter c (see (7), (8) 
and (9)), may be modified into the form with an unknown parameter 8 E (0,1]. 
If we use some initial probability P{X±} = Ó as m = 1 and if Tm has the form 
(8), then the constant c can be expressed:

c = [/(Xi) - /(Xo)] ■ ln(2 + mo)/In6,

where Xo and Xx are such that /(Xi) < /(Xo). Then (7) will have such a form 
(for m = 2, 3,...):

P{Xm} =
1, ,as/(Xm)>/(Xm_1)

1)J in 5 (10)
(1 4-m0 +m) 'in(2+m0) 5as/(Xm) < /(Xm_i)

If Tm has the form (9), then the transition probability may be transformed 
as follows:

P{Xm} =
1, as/(Xm) > /(Xm_!)

lng (11) 
[ln(l +mo + m)] [/pq)-/<Xo)1 ’in[in(2+m0)] 5as/(Xm) < /(Xm_i)

Taking into account a specific character of the functional, characterizing the 
partitioning quality of parameters, we suggest restricting the set of neighbors of 
the current point. Thus, two additional special cases of selection for (6) are 
used:
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c) P{źk = -1} = FRfc = 1} = 1/2, (12)
C = O, i — 1,2,... ,k - 1, k + 1,... ,n,
k 1,2,..., 77,,

d) e eSk = {Ak-X^l_1,Ak + l-X^_1,...,Bk-X^_1}\{0}{13) 
with the same probabilities:

pk = l/(Bfc—Afc),
f = o, i = l,2,...,k-l,k + l,...,n,

k = l,2,...,n.

Case c) is a restriction of case a), and case d) is that of b). The peculiarity 
of these two cases is that only the A:-th coordinate of Xm and Xm_i differs, and 
different values of k correspond to the consequent steps. The relation of m and 
k may be defined in a more sophisticated way (see for an example of such a 
relation the chapter below).

4.2. Realizations
Algorithms SAI and SA2 are concrete realizations of the algorithm proposed 
above. Their peculiarities are the following:

1. The algorithms start from the point Xo; the m-th step of algorithm is as 
follows (initially Xo = Xo, m = 1, P{Xm} = 1):

Xtn = Xj^1+e,i = l^, (14)
where i = 1, n, are integers taking values by (12*) (i.e., by (12) or (13)). 
Xo = Xm as f(Xm) > /(Xm_i). Xi = Xm and further calculations are 
performed by formulae (10), (12*) and (14) starting from the (m + l)-st 
step (various strategies for a further mo and m selection are presented in 
the sixth peculiarity) as f{Xm) < f(Xo)-

2. The relation of m and k (the strategy of k changing) is such: p — 1 step of 
the algorithm are performed for each fixed value of k. Thus, k corresponds 
to the number of the variable, whose value is changed, while the values of 
other variables are fixed. The totality of the calculations above, when the 
value of. k runs from 1 to n, is called an iteration of the algorithm. One 
iteration requires no more than n • (p — 1) calculation of the function /(•) 
values.

3. Restriction (5) is taken into account. Let a new value of k be fixed and 
the parameter xk be the only one in its group. Then the algorithm passes 
to the next k value.

4. Let the value of k be fixed. There may be some coincidental argument 
points among p — 1 point in which it is necessary to calculate the value 
of /(•)- The calls for program realizing /(•) are not reiterated in such a 
situation, but the number of calculated values of f (■) is increased.

5. Only the necessary part of the function /(•) is recalculated when we need 
to compute the unknown value of /(•)•
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6. The following strategies for m0 and m initial selection were investigated:
a) mo = 1; m is equal to the number of the function /(•) values calcu

lated, the calculation of /(Xo) value is also taken into account;
b) mo = 1; m = 1;
c) mo is the number of /(•) calculations used to obtain /(Xo); m = 1.

7. SAI uses (12), SA2 - (13).
8. Xlm = Az as X^_x = Bz and = 1, and Xlm = B1 as X^_x = A1 and

= — 1 when we use (12).
Algorithms SAI and SA2 use the probabilistic selection (described by (12) 

and (13), respectively) of a point for the next calculation of the objective func
tion value. The algorithm below uses a deterministic selection. Let us denote 
it by SA3. Its peculiarities are the following:

1. This peculiarity differs from the first one of SAI and that of SA2 like this: 
in (14) (k takes the values from Sk in a deterministic way and = 0 
(i = l,n, i k) during calculations when the value of k is fixed.

2. For each fixed value of k the value of £k runs from Ak—X^l_1 to Bk—X^l_1 
with the exception of £k =0. The totality of above calculations, when the 
value of k runs from 1 ton, is called the iteration of SA3.

3. The third, fifth and sixth peculiarities of SAI and SA2 remain the same 
for SA3.

Some properties of algorithms are presented below (see proofs in the paper 
by Dzemyda and Sienkiene, 1992).

REMARK 4.1 SA3 is identical to A2; Dzemyda (1987), if 6 = 0 and if 
P{Xm} = 0 as f(Xm) = /(Xm_i) are used.

Let us denote:
1. Xm = (X^-,... ,XJ^) is the current point of the algorithm after M it

erations {Xm is not necessarily the point, where the maximum of /(•) is 
achieved after M iterations);

2.5i =
p_,Xi+\ ... ,X&)} \

3. S is the subset of Ą consisting of the points, that satisfy the restriction 
(5).

REMARK 4.2 Let Xm be the current point of SA.3 after M iterations. If the cur
rent point remains the same after the (M + l)-st iteration (i.e. Xm+i — Xm)> 
Xm corresponds to the parameter partition conforming to the local maximum, of 
functional I\, i.e., the transfer of any parameter from its group to another one 
does not increase the value of Ą.

Remark 4.3 Let Xm be the current point of SA2 after M iterations. If it 
remains the same during consecutive iterations, the probability of calculation of 
/(•) values at all the points of S in consecutive iterations grows to 1.
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REMARK 4.4 Let Xm be the current point of SA2 after M iterations. If it 
remains the same during some consecutive iterations and if /(•) values are cal
culated at all the points of S during these iterations, Xm corresponds to the 
parameter partition, conforming to the local maximum of Ą.

The difference of SB-algorithms (SB1, SB2, SB3) from the corresponding SA- 
algorithms (SAI, SA2, SA3) is that SA-algorithms use (8) and SB-algorithms 
use (9). The goal of introduction of a double logarithm in the Tm expression 
was to slow down the cooling schedule. As a result the transition probability 
P{Xm} has been changed: SA-algorithms use (10) and SB-algorithms use (11).

Remarks 4.1-4.4 concerning SA-algorithms are valid for the corresponding 
SB-algorithms.

5. Experimental investigation

5.1. The experiments

The investigation was divided into two stages:
1. The search for an optimal value of 8. The convergence of algorithms 

depends on the value of 8 (or c). It is impossible to determine the value 
of 8 theoretically. Thus, it remains only the experimental search.

2. The comparison of the efficiency of algorithms, when optimal 8 (or 
c) is used.

The investigations were performed by IBM PC/AT computer. The third 
mode of mo and m selection was used because the optimal partitioning quality 
of all the modes turned out to be similar (except for the optimal value of 5). 
The termination condition of annealing algorithms was the limited number of 
iterations (a more complex termination condition may be selected for practical 
problems). Random correlation matrices were generated. The matrices were 
obtained by generating points, uniformly distributed in a certain subset of Rn, 
and calculating their correlation matrix. So the data structure was random, 
and the problems generated were multiextremal, n = 20. The search for the 
optimal number of groups is out of interest in this paper. Thus, it was set 
p = 4 and the next initial parameter partition was chosen: Ai = {mi,..., ms}, 
A2 = {.Te, • ■ • ,.Tio}> As = {®11, ■ ■ ■ .Zis}, A4 = {xis,... ,a?2o}. The first stage 
of investigations has been performed on the basis of 20 random matrices, and 
the second one - on 50 matrices. The results were averaged.

The search for optimal 8 is illustrated in Fig. 1. It is not very convincing as 
to the choice of 8. But we observe that the greatest values of /(•) are achieved 
by all three algorithms for 8 lying in the neighborhood of 0.3. This value of 8 
was set for all further investigations of the annealing algorithms.

Figures 2 (a-e) illustrate the dependence of optimization results on the num
ber of iterations. The results of solving 50 problems are averaged. We note that 
the performance of SA-algorithms is similar to that of the corresponding SB- 
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algorithms. But the SB-algorithms are better for a smaller number of iterations. 
It is easy to see in Fig. 2c for SA3 and SB3.

Another criterion for comparison of the algorithms may be a number of 
cases from 50 when the algorithm P yielded a better result than the algorithm 
p. Let us denote this criterion by Ep. The integral criterion for comparing the 
algorithm Pl with P^ i = 1, Z, i may be such:

E^= E <• 
i=l i^L

Figures 3 (a-e) show the dependence of integral criterion E on the number 
of iteration of all the annealing algorithms.

The dependence of E on the iteration number is not always a monotonous 
function. This nonmonotonicity must be taken into account when the annealing 
algorithms are used for the initial partition of parameters, and the determinis
tic algorithms (e.g., Al or A2, Dzemyda, 1987) seek the local optimum. The 
number of annealing iterations is preferable to be correspondent to the greatest 
values of the integral criterion.

Some additional properties of the algorithms are illustrated in Table 1. The 
results of commutation of annealing and deterministic algorithms are presented, 
too.

In Table 1 IT is the averaged number of iterations, where the maximum 
of /(■) was obtained, NL is the number of iterations performed by the SA 
and SB-type algorithms, IE is the averaged number of calculations of maximal 
eigenvalues in an iteration (calculations of such a type play a great part in 
computational expenditure of the algorithms investigated), T is the averaged 
computer time in seconds used by an iteration. The performance of deterministic 
algorithms is illustrated on the basis of Al and A2, Dzemyda (1987). The IT 
values presented for Al and A2 rows mean the averaged number of performed 
iterations (running through all the parameters); T means the averaged computer 
time used by Al and A2. The last five rows in Table 1 correspond to the case 
when simulated annealing was used for the initial partition of parameters, and 
afterwards the result was specified by the deterministic algorithms. Here T 
denotes the averaged computer time used by both algorithms.

All the algorithms (both simulated annealing and deterministic) were used 
to analyze the real data.

The first experiment was carried out using the correlation matrix of 8 physi
cal parameters measured on 305 schoolgirls, Harman (1976), SAS (1982): height, 
arm span, length of forearm, length of lower leg, weight, bit ro ch ant eric diam
eter, chest girth, chest width. The matrix is given in Appendix 1. The in
vestigations of these classical test data divided parameters into two groups: 
Xi = {.Ti,..., T4} and A-2 = {#5,..., #s}: the parameters of the first group 
characterize shapeliness, while the parameters of the second group characterize 
plumpness of girls. This is an “ideal” partition. It means that this data set
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Table 1. The averaged results of test problem solving

Algorithm NL IT IE T /(')
SAI 10(20) 5.58 (9.52) 55.5 6.1 16.950 (17.050 )
SA2 10(20) 6.18 (10.62) 62.1 6.5 17.283 (17.374 )
SA3 10(20) 4.78 (8.74) 79.6 8.3 17.358 (17.394 )
SB1 10(20) 4.22 (6.78) 55.2 6.0 16.862 (16.910 )
SB2 10(20) 5.92 (8.52) 62.3 6.4 17.323 (17.361 )
SB3 10(20) 4.54 (6.66) 79.7 8.3 17.351 (17.375 )
Al - 3.65 8.1 3.3 17.011
A2 - 4.68 80.0 37.3 17.291

SA1+A1 2 1.98 18.5 17.104
SB1+A1 2 1.96 17.6 17.121
SA3+A1 2 1.92 22.9 17.205
SB3+A1 2 1.84 22.2 17.245
SB3+A2 2 1.84 38.3 17.339
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15.00

Figure 2. The dependence of optimization results on the iteration number
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Figure 3. The dependence of integral criterion on the number of iteration
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has a good degree of structure. Naturally, any fast algorithm (e.g., Al) may be 
successfully used for the analysis of such data, because the simulated annealing 
algorithms are oriented to difficult problems where the partition precision is 
essential.

The second experiment was carried out using the correlation matrix of 24 
psychological tests on 145 pupils of the 7th and 8th forms in Chicago Harman 
(1976). The matrix is given in Appendix 2. There are five groups of tests:

1. Spatial perception {.Ti,..., £4}.
2. Verbal tests {x5,..., £9}.
3. The rapidity of thinking {.T10,..., £13}.
4. Memory {.T14,..., .ri9}.
5. Mathematical capabilities {.t20, ... ,.^24}
The tests of the fifth group characterize a general development of the tested 

person. They do not characterize separate parts of his intellect. Thus, clas
sifying all the tests into four groups the algorithms distribute the tests of the 
fifth group among the other four groups. The investigations indicated that the 
global maximum of is equal to 12.598 in case Ai = {.iq,..., .T4, .^20? ^22? ^23}, 
A2 = {t5, . . -,X9}, A3 = {.Tio, . . . ,3:13,^21,^24}, ^4 = {.T14, • ■ • ,3:19}.

The problem of Ą maximization was solved starting from 50 random initial 
partitions of parameters. The results (the value of /(•) and the number GL 
of achieved global solutions) are presented in Table 2. NL is the number of 
iterations performed by the algorithms of SA and SB-type.

Simulated annealing algorithms were joined with the deterministic algo
rithms:

1. Al was used in the fast local search for the nearest local maximum, because 
the simulated annealing not always stops at the local solution.

2. A2 was used to improve the initial partition.
The performance of various combinations of simulated annealing with the 

deterministic algorithms is illustrated in Table 2. The results of simulated an
nealing are put in brackets.

The results indicate that the simulated annealing algorithms are efficient in 
the analysis of the set of psychological tests. Good results are also obtained 
by A2 which is a partial case of SA3 (see Remark 4.1). The best results are 
obtained combining A2 and some iterations of SB3.

5.2. Conclusions from experimental investigations

The experimental investigation showed that by using simulated annealing one 
can find a better partition of parameters in comparison with that obtained by 
the deterministic algorithms.

We noticed a tendency to a significant improvement of the partition during 
initial iterations. Later on the results were specified. Thus, some iterations 
of simulated annealing algorithms can also be used for the initial partition of



70 G. DZEMYDA

Table 2. Experiments with the matrix of 24 parameters

Algorithm /(•) NL GL
SAI 12.220 10 15
SA2 12.598 10 49
SA3 12.595 10 48
SB1 12.148 10 9
SB2 12.596 10 49
SB3 12.592 10 47

SA1+A1 12.307 (12.158) 5 11 (9)
SA2+A1 12.561 (12.542) 5 36 (33)
SA3+A1 12.594 (12.594) 5 46 (46)
SB1+A1 12.234 (12.109) 5 7(5)
SB2+A1 12.564 (12.547) 5 39 (35)
SB3+A1 12.586 (12.586) 5 47 (47)

Al 11.329 - 0
A2 12.573 - 43

A2+SB2 12.580 2 44
A2+SB2 12.596 3 48
A2+SB2 12.597 4 49
A2+SB3 12.591 2 47
A2+SB3 12.593 3 48
A2+SB3 12.598 4 50
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parameters. Then deterministic algorithms, that are faster but require a good 
initial partition, can be used.

The practical use of SAI (not for the initial partition) is doubtful because its 
partitioning quality is similar to that of A2, and A2 requires less computational 
expenditure and has no problems in choosing the value of a parameter (like 6) 
exerting some influence on the result. The initial partition has a great influence 
on the results of SAI.

The partitioning quality of SA3 is better than that of SA2. The improve
ment of partition stops after a larger number of SA2 iterations in comparison 
with SA3. However, one iteration of SA3 performs more calculations of maxi
mal eigenvalues of symmetrical matrices. So it is difficult to determine which 
algorithm (SA2 or SA3) is better for use.

All the conclusions about SA-algorithms (SAI, SA2, and SA3) also apply to 
the corresponding SB-algorithms (SB1, SB2, and SB3).

The comparison of SA-algorithms with SB-algorithms indicates that SB- 
algorithms are better for the initial partition of parameters (using some itera
tions of annealing). SB2 and SB3 are a bit better than SA2 and SA3, respec
tively, when a greater number of iterations is used.

Various mixtures of deterministic and simulated annealing algorithms may 
speed up optimization, and yield better results.

6. Conclusions

Some algorithms for parameter clustering are proposed and investigated. They 
are more difficult than classical algorithms and require more computational 
resources. But they are oriented to the problems, not having a good degree of 
structure, and the cases when a high partition quality is required.

The algorithms can be modified for solving any clustering problem. Only 
the functional, characterizing the partitioning quality will be different.

As far as further research problems in this direction are concerned, it would 
be to analyze other criteria characterizing partitioning quality of parameters. 
The values of these criteria would be calculated significantly faster compared 
with calculation of Ą. The simulated annealing would be more effective in 
this case, because more sophisticated annealing strategies may be proposed and 
applied.

It would also be fruitful to study more precisely the application of simulated 
annealing to the clustering of objects, because the traditional criteria of parti
tioning quality of objects (e.g., A:-means - Spath, 1980) are simpler and may be 
calculated significantly faster compared with 1^.
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Appendix 1

Correlation matrix of 8 physical parameters measured on schoolgirls

A j 1 2 3 4 5 6 7 8
1 1.000 0.846 0.805 0.895 0.473 0.398 0.301 0.382
2 0.846 1.000 0.881 0.826 0.376 0.326 0.277 0.415
3 0.805 0.881 1.000 0.801 0.380 0.319 0.237 0.345
4 0.859 0.826 0.801 1.000 0.436 0.329 0.327 0.365
5 0.473 0.376 0.380 0.436 1.000 0.762 0.730 0.629
6 0.398 0.326 0.319 0.329 0.762 1.000 0.583 0.577
7 0.301 0.277 0.237 0.327 0.730 0.583 1.000 0.539
8 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000
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Appendix 2

Correlation matrix of 24 tests
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