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A b s t r a c t :  In this paper the results of a detailed investigation 
on a multi-parent recombination operator, diagonal crossover, are 
reported. Although earlier publications have indicated the high per-
formance of diagonal crossover on a number of problems, so far it 
has not been investigated whether high performance is indeed a re-
sult of using a high number of parents. Here we formulate three 
hypotheses to explain why GA performance increases when more 
parents are used. Based on an extensive study on a test suite con-
taining eight numerical optimization problems we are able to estab-
lish that the higher number of parents is indeed one of the sources 
of higher performance, if and when this occurs. B y  the diversity of 
the test functions (unimodal, multimodal, quasi-random landscapes) 
we can also make observations on the relationship between fitness 
landscapes and operator performance. 

K e y w o r d s :  genetic algorithms, numerical optimization, recom-
bination, multi-parent crossovers 

1. Introduction
Multi-parent recombination is a new research area within evolutionary com-
putation. Although some researchers have incidentally proposed and applied 
recombination mechanisms using more parents, Bersini and Seront (1996), Bre-
mermann, Rogson and Salaff (1966), Miihlenbein (1989), the phenomenon of 
multi-parent recombination has not been given much attention in the past. In 
this paper we study this phenomenon by investigating the behavior of diagonal 
crossover (see the definition in Section 2). Our research goals are two-fold. 
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1. We try to find connections between the structure of the fitness landscape
and the performance of diagonal crossover. In particular we want to estab-
lish on what kind of landscapes it is advantageous to increase the number
of parents. (Diagonal crossover for 2 parents is identical to the traditional
1-point crossover operator.)

2. We try to disclose the source of increased performance of the diagonal
crossover with more parents when it is superior to 2-parent recombination.

Further elaboration of the second research objective requires technical details, 
and so, we return to this issue after the exact definition of the operator. The rest 
of the paper is organized as follows. In the following section we briefly review 
multi-parent recombination operators in Evolutionary Algorithms. After the 
exact definition of diagonal crossover we formulate three hypotheses that can 
clarify why the performance of the GA increases when the number of parents in 
diagonal crossover is increased. To this end we design experiments that allow 
rejection or confirmation of these hypotheses. In Section 4 we present the GA 
used in the experiments and discuss the performance measures to be used to 
monitor GA performance. The test suite and the results of the experiments on 
each test function arc presented in Section 4. Finally, in Section 5 we evaluate 
the results and draw conclusions. 

2. Multi-parent recombination
In evolution strategics (ES) global recombination is a multi-parent operator, 
Back (1996), Schwcfel (1995). This operator creates a new value in the child 
chromosome based on two parents, but randomly chooses two parents for each 
variable anew. B y  this particular mechanism the number of parents is unde-
fined, thus investigations on the effects of different number of rccombinants on 
algorithm performance could not be performed in the traditional ES  frame-
work. (Let us note that in Schwefol and Rudolph, 1995, an extension of ES  is 
proposd that allows tuning of the number of recombinants.) So far there are 
almost no experimental results available on the ( dis )advantages of global re-
combination with respect to usual, two-parent recombination. Schwefel (1995) 
briefly touches on this issue stating that 'appreciable acceleration' is obtained 
by changing to bisexual from asexual scheme (i.e. adding recombination using 
two parents to the mutation-only algorithm), but only 'slight further increase' 
is obtained when changing from 'bisexual to multisexual recombination' (i.e. 
using global recombination instead of the two-parent variant). 

Related work of Beyer (1995), generalizes the traditional ES  recombination 
operators by introducing the number of parents as an independent parameter p. 
The resulting (it/ p, ,\) evolution strategy is studied for the special case of p = /L 
and theoretical analysis on the spherical function shows an advantage of using 
more than two parents. 

Global recombination in ES also fertilized Genetic Algorithms. The gene-
pool recombination of Miihlcnbcin and Voigt mixes information of possibly more 



Diagonal crossover in genetic algorithms for numerical optimization 449 

parents by a similar mechanism as global recombination in ES, Miihlenbein and 
Voigt (1995), Voigt and Miihlenbein (1995). Hence, the number of parents is not 
defined here either. Miihlenbein and Voigt report an increase of performance 
when using gene-pool recombination (GPR) instead of two-parent recombina-
tion (TPR). GPR is showed to be approximately 25% faster than T P R  on the 
ONEMAX problem, and the fuzzyficd GPR outperforms T P R  on the spherical 
function in speed and in realized heritability. 

The N-parent generalizations of the traditional 1-point crossover and uni-
form crossover in GAs were introduced in Eiben, Raue and Ruttkay (1994). The 
resulting diagonal, respectively, scanning crossover have the number of parents 
as parameter, and therefore arc tunable on the 'extent of sexuality'. This tun-
ability is new feature compared to global recombination and gene pool recom-
bination, where the multi-parent option can only be switched on or off, but it 
is not scalable. Several studies, e.g. Eiben, van Kemenade and Kok (1995), 
Eiben, Raue and Ruttkay (1994), Eiben and Schippers (1996), van Kemenade, 
Kok and Eiben (1995), have shown that using more than two parents in either 
crossover mechanism can increase GA performance, although this does not hold 
for every problem and the two operators can respond differently to increasing 
the number of parents. 

The main subject of the present investigation, diagonal crossover, general-
izes 1-point crossover for N parents by selecting (N - 1) crossover points and 
composing N children by taking the resulting N chromosome segments from 
the parents 'along the diagonals'. The idea is illustrated for N = 3 in Fig. 1 up.

With respect to our sccoud research objective let us make the following 
observations. First, the increase i11 1 lie number of parents automatically leads 
to an increased number of crossoYt'l' points. It can be the case that higher 
performance for higher N ' s  is not the result of using more parents, but simply 
comes from being more disruptive by using more crossover points. This forms 
our first working hypothesis. 

H 1 Using more crossover points leads to better performance. 

Second, notice that by application of the diagonal crossover, N parents create N 
children in one go. Since we use a steady state GA and update the population, 
i.e. insert offspring, after each application of crossover (followed by mutation),
this means that a GA using 10 parents diagonal crossover has more information
before performing the selection step than a GA using the two-parents version.
In other words, GAs with higher operator "arity" have a bigger generational
gap which might cause a bias in their favor. Our second working hypothesis is
accordingly the following.

H 2 Bigger generational gap leads to better performance. 

Finally, we maintain our original conjecture that the advantages of using diago-
nal crossover with higher "aritics" arc not the result of an unintended artifact. 
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Figure 1. Diagonal crossover with three parents and three children (up) and 
with three parents and one child (down). 

H 3 Using more parents leads to better performance. 

Note that the hypotheses H1 , H2 and H3 arc not mutually exclusive as there 
might be more sources of increased GA performance when increasing N in diag-
onal crossover. The main contribution of the present paper is that these sources 
are investigated in isolation hence providing a solid ground to check whether 
higher performance for higher N ' s  is an artifact (H 1 , H2) , or the higher number 
of parents is indeed advantageous. 

3. Experiment setup and performance measures
All experiments arc executed using a GA setup as described in Table 1. A non-
standard option is the uniform random parent selection mechanism, whereby 
no selective pressure is applied when choosing rccombinants. The motivation 
comes from van Kemenadc, Kok and Eiben (1995), where we observed that this 
mechanism is preferable. Note that uniform random parent selection mechanism 
is standard in Evolution Strategies. 

In order to test the working hypotheses presented in Section 2 we run exper-
iments with a set of different crossover operators. For investigating H1 we apply 
the traditional two-parent two-children N-point crossover, De Jong and Spears 
(1992). This operator is well known from the literature, therefore we omit a clef-
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representation fixed point binary with Gray coding 
GA type steady state 
parent selection uniform random 
deletion mechanism worst fitness deletion 
number of parents 2-30 
crossover rate Pc 1.0 
mutation rate Pm 1/chromosome length 
population size 500 
termination criterion population converged OR optimum hit 
max. nr. of evaluations 100,000 
results averaged over 50 independent runs 

Table 1. GA setup used in the experiments 

inition. If N-point crossover exhibits increasing performance when increasing 
N,  (the experimental results reported in Eiben, van Kemenade and Kok, 1995, 
make us expect this) then we accept H1. To test the second hypothesis H2, we 
will apply a slightly modified version of diagonal crossover that creates only one 
child. The lower part of Fig. 1 illustrates this operator. When we use the one 
child version of diagonal crossover the generational gap does not increase with 
increasing the number of parents. If the original variant outperforms the one 
child version of diagonal crossover, then we accept the hypothesis H2 . Concern-
ing hypothesis H3, note that the number of chromosome segments using N-point 
crossover is N + l ,  which equals the number of chromosome segments obtained
by diagonal crossover for N + l parents. This means that the disruptiveness
of these operators grows parallelly as N increases. If higher disruptiveness in-
creases GA performance on our test suite, then the performance of both the 
N-point crossover and the diagonal crossover will increase with increasing N.
This, however, does not imply that more parents have no additional advantage
as the perfo rmance of diagonal crossover might grow faster with increasing N
than that of the two-parent N-point crossover. We accept the hypothesis H3 if
diagonal crossover for N + l parents is better than N-point crossover.

To evaluate different GA setups, that is, the effect of different number of 
parents, respectively crossover-points, several performance measures of a run 
are monitored. The two main performance measures arc accuracy and speed. 
Accuracy is measured by the error at termination. Since all functions have a 
minimum of zero, we use the best objective function value at termination as 
the accuracy measure of one run, and the median of the best objective function 
values, calculated over the 50 independent runs, as the accuracy belonging to 
a specific setting. For practical purposes we consider 10- 10 as zero and ter-
minate the run if this value is achieved. Let us remark that using medians 
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instead of average values has an advantage, namely medians are less sensitive 
for outliers in the data. On the other hand, if the optimum is found in the 
majority of the runs, then the median will equal the optimum. Additionally to 
the medians of the outcomes we also present the 99% confidence interval bars 
to the performance curves. The second main performance measure is the speed 
of the algorithm, measured by the median number of fitness evaluations before 
termination. If the GA with a certain setup never finds the optimum, this value 
equals the maximum number of fitness evaluations. A third performance mea-
sure is the success rate, i.e. the percentage of runs where the optimal objective 
function value has been found. We will present figures on success rates and 90% 
confidence intervals, whenever the accuracy or the speed curves are (nearly) 
constant, thus providing (almost) no basis to compare different settings. Fi-
nally, for a detailed insight in the behavior of the GA sometimes we also depict 
the progress curves of the evolution for 18 parents ( diagonal crossover),. respec-
tively 17 crossover points (N-point crossover). These curves (with a logarithmic 
y-axis) show the population's best objective function value as a function of the
number of executed fitness evaluations, averaged over 50 independent runs.

4. Experimental results

The experiments have been performed on eight numerical function optimization 
problems. Each function is to be minimized and is scaled to have an opti-
mal function value of zero. The fitness landscapes defined by these functions 
have various characteristics, unimodal, multimodal and quasi-random, i.e. very 
rugged with randomly distributed local optima. Additionally, some of the func-
tions are separable, while others are not. The exact definitions will be given in 
the corresponding subsections, here we only give a summary on their separabil-
ity, the dimensions and the representation used in the experiments. As default, 
we use 20 bits for representing a single variable, but deviate from this value for 
F l ,  F2 and F8. For F l  and F2 we use the values originating from de Jong, for 
F8 30 bits are used, following Back (1996). A concise treatment on numerical 
optimization problems as test functions can be found in Back and Michalewicz 
(1997). 

Property F l F2 F3 F4  F5 F6 F7  F8  
separable y n n n y y y n 
dimension 3 2 30 10 10 10 10 30 

chrom. length 30 22 600 200 200 200 200 900 

Table 2. Properties of the test functions 
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Figure 2. Speed curves for the spherical function 

4.1. Spherica l  function 

The first test function is the spherical function: 

Fl(x) = E x f '
i=l 

453 

where -5 .12 :::; Xi :::; 5.12. This function is one of the most widely used objec-
tive functions in Evolutionary Computation, especially for convergence velocity 
evaluation. It has a unimodal, smooth fitness surface and is separable, making 
optimization rather easy. We tested the classical version of de Jong with n = 3. 
The GA found the optimum with every setting ( every operator, for every value 
of N). Therefore we omit accuracy and success rate data, only presenting the 
speed curves in Fig. 2. 

From the speed curves it turns out that the two variants of diagonal crossover 
show almost identical bchavior and both arc faster than N-point crossover. 
Furthermore, it seems that there is a limit to increasing N: approximately 
up to 6 it leads to performance increase, thereafter the performance begins to 
deteriorate. 

4.2. Rosenbrock ' s  saddle  function 

F2 is the saddle function after Rosenbrock: 

F2(x) = 100 · (xi - ,r, 2 ) 2 + (1 - x1) 2 , 

where -2.048 :::; Xi :::; 2.048. The global minimum is zero at .i! = (1, 1). The 
Rosenbrock function is not separable and the unimodal fitness landscape 1s 
characterized by an extremely deep valley along the parabola x r  = x 2•
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Figure 3. Accuracy (upper diagram) and speed (lower diagram) for the Rosen-
brock function 

Recall from Table 2 that we use the classical de Jong setting with chromo-
some length 22 for F2. Therefore, the maximum number of parents is lowered 
accordingly in these experiments. 

The accuracy and speed curves suggest that increasing N decreases the per-
formance. The success rate curves in Fig. 3 disclose that this is only partly 
true. The optimization performance grows with N for N-point crossover (up to 
N = 8), but deteriorates for the diagonal crossovers. N-point crossover outper-
forms both diagonal crossovers with respect to each performance measure. The 
two variants of diagonal crossover are practically identical for F2. 
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4.3. Ackley function 

Our third test function F3 is the Ackley function: 

F3(x}   20 + e - 20cxp ( - 0 . 2  
l n
- I : x f

i=l 

- exp ( ¾, t cos(21rxi)) , 

where - 3 0  Xi 30. The global minimum of zero is at x = (0, 0, 0, . . .  ). 
This function is not separable and at a low resolution the fitness landscape is 
unimodal, but the second exponential term covers the landscape with many 
small peaks and valleys, i.e. many local optima. We tested F3 for n = 30 and
observed that the GA never found the optimum. Accordingly, the speed and 
the success rate curves are constant, therefore omitted here. We present the 
accuracy curves in Fig. 5. 

The effect of higher N's is clear from the accuracy curves. Increasing N 
is advantageous for each operator up to the upper limit we tested. The one 
child and the N-children versions of diagonal crossover perform identically also 
on this function, and both diagonal crossovers are consistently better than N-
point crossover. 

4.4. Griewangk function 

F4, the Griewangk function is defined as follows. 

n 2 n ( ) 

F4(x) = 1 + L 4;  n  
- II cos x  ,

i=l i=l y'l, 
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Figure 5. Accuracy curves for the Ackley function 

where -600 ::::; xi ::; 600. The global minimum of zero is at the point x = 
(0, 0, 0, . . .  ). This function has a product term introducing an interdependency 
between the variables, thus it is not separable. F4 was tested for 10 dimensions, 
the results are exhibited in Fig. 6. 

On this function the advantages of higher N's  are clear, but the performance 
increase of accuracy stops at about N = 15. While the accuracy curves show 
only modest differences between the operators, the results on the speed of the 
algorithm disclose that the diagonal crossovers are significantly faster after N = 
5. The two variants of diagonal crossover do not differ significantly.

4. 5. Michal wicz function

The fifth test function is taken from Michalewicz, Bersini, Dorigo, Langerman, 
Seront and Gambardella (1996). 

� 2 (i:f)' F5(x) = - D sin(xi) · sin n
" 

i=l 

where O ::; xi :=; 7f. We tested F5 for n = 10 and observed that the G A  found
the optimum in the majority of runs. Hence the medians of the accuracy results 
are equal to the optimal value. Therefore we rather present the success rates 
instead of the accuracy data. 

Increasing N above 2 on the Michalewicz function results in the highest gains 
so far. The success rates show a spectacular increase from approximately 30% 
for 2 parents to 80-90% for N between 5-20 and the G A  becomes approximately 
four times faster for N = 5 - 10, than for N = 2. Comparing the operators
we sec again the superiority of diagonal crossover and no significant difference 
between the one child and the N-chilcl version. 
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Figure 6. Accuracy (upper diagTam) and speed (lower diagram) for the 
Griewangk function 
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Figure 8. Success rates (upper diagram) and speed (lower diagram) for the 
Rastrigin function 

4.6. R a s t r i g i n  function 

F6 is the Rastrigin function: 

F6(x) =an+ I:Xf - a. co;(21rxi),
i=l 

where -5 .12  ::; .Ti ::; 5.12. The global minimum of zero is at x = (0, 0, . . .  ). 
This function is separable and its primary characteristic is the existence of 
many suboptimal peaks whose values increase as the distance from the global 
optimum point increases. In our tests we used a. = 10.0 and n = 10. 

Since many runs found the optimum, accuracy figures are replaced by success 
rates curves (notice the 0.65 - 1.0 scaling in Fig. 8, upper part). These show that 
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increasing N is advantageous, but the differences between various operators are 
small. Looking at the speed curves the .effect of higher N's and the differences 
between operators become clear. We can observe that each operator becomes 
better for higher N's and that the two diagonal crossovers (identical again) 
outperform N-point crossover. 

4.7. Schwefel function 

F 7  is obtained by generalizing Schwefel's 2.26 function (Schwefel, 1995, p. 344): 

F7(x) = 418.9829n - L Xi sin ( JixJ) 
i = l

where -512.03: : ;  Xi ::;--511.97. The global minimum of zero is at x = (420.9687,
420.9687, . . .  ). Although this function is separable, it is interesting because of 
the presence of a second-best minimum far away from (in the 'opposite corner' 
to) the global minimum. This feature, just like two-peaks landscapes, makes 
the GA sensitive for early commitment with respect to the search direction. F7  
was tested for n = 10 and turned out to be easy. Nearly all runs ended with 
the global optimum, implying that accuracy and success rates would give no 
information for comparing the operators. The results on speed, however, show 
that the GA performance quickly and consequently improves when increasing 
N from 2 to ap]i)roximately 10-15, and stagnates thereafter. The algorithm 
becomes approximately twice as fast for high N's as for N = 2. Once again, 
there is no significant difference between the two diagonal crossovers that both 
outperform N-point crossover. 

•
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4.8. Fletcher-Powell function 

F8, the Fletcher-Powell function is retrieved from Back (1996): 

F8(x) 
n 

 (A- - B-)2 1, 1, 

i = l  
n 

Ai L ( a,i.i sin a._i + bi_i cos a._i) 
i=l 
n 

B i  L ( a,i.i sin x.i + bi.i cos x.i) ,
.i=l 

461 

where n = 30, na- = 30, and - 7 f  :S x f  :S 7f .  The a,i_i, bij E {-100,  . . .  , 100} 
are random integers, and a..i E [-1r, 1r] is the randomly chosen global optimum 
position. For the matrices A ,  B and the vector ii we used the values given in 
Back (1996) (pp. 265 267). 

No runs found the optimum on this function, resulting in constant speed and 
success rate curves. Accuracy curves reveal differences between performance for 
different N's, showing advantageous effects of higher N's, up to approximately 
10. The three operators, however, hardly differ in performance and, as the
progress curves for N = -18 in Fig. 10 indicate, their search behavior is very
similar, too.

5. Conclusions
Concerning our first research objective, i.e. finding connections between the 
characteristics of the objective functions and the usefulness of applying more 
parents, we can observe the following. With the single exception of Rosenbrock's 
saddle (F2) it is useful to apply diagonal crossover with "arity" N > 2. Looking 
for particular features of F2 that may cause this deviance let us note that it has 
the lowest dimensionality (n = 2) and the shortest chromosomes (oflength 22) as 
opposed to other functions (200-900 for F3-F8). This makes the disruptiveness 
of the crossover operators relatively high even for low N's. The other unimodal 
function in the test set, F l ,  is apparently so easy to optimize that the GA 
does not suffer from this effect, but on F2 where the optimum is 'hidden at the 
bottom of a long bent valley', sec Back and Michalcwicz (1997), this seems to 
be disasterous. 

Our second research objective concerned the identification of the source(s) 
of increased performance of diagonal crossover when used with more parents. 
As for the hypothesis H1, i.e. that increasing the number of crossover points 
increases performance, observe that N-point crossover did become better for 
higher N ' s  on all functions of our test suite. Therefore, we accept H1 and con-
clude that higher performance partially comes f rom a higher number of crossover 
points. Explanations for this fact arc the better mixing of information, sec de 
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Jong and Spears (1992), and perhaps also the increased macro-mutation-like 
effects of crossover in case of using higher N's. 

Hypothesis H2 about the advantages of a bigger generational gap is clearly 
rejected, since the one child and the N children variants of diagonal crossover 
exhibited the same behavior on each function. Hence, we can conclude that 
the advantage of applying diagonal crossover with higher N ' s  is not the result 
of a bigger generational gap in the Steady State GA we use (see Section 2 for 
discussion). 

Recall that our working hypotheses arc not mutually exclusive. Accepting 
H1 does not imply rejection of H3, i.e. that better performance for higher N ' s  
would only come from having more crossover points. In fact diagonal crossover 
was better than N-point crossover on all but two functions: on Rosenbrock's 
saddle (F2) and on the Fletcher-Powell function (F8). On the Fletcher-Powell 
function diagonal crossover was not significantly better than N-point crossover. 
Such little differences in performance do not clearly justify the acceptence of the 
hypothesis H3 on the function F8. There is no clear advantage of using more 
parents for recombination here. Increased performance for higher N ' s  seems to 
be the result of the crossovers effect as macro mutation, this effect being inten-
sified by more crossover points. Recall, that F8 spans a very rugged landscape 
with randomly distributed local optima, which makes it more or less similar 
to NK-landscapes with relatively high K values. These observations are thus 
in agreement with earlier conclusions for NK-landscapes, Eiben and Schippers 
(1996), Hordijk and Manclerick (1995), Kauffman (1993), stating that on such 
surfaces crossover is not useful at all. On Rosenbrock's saddle (F2) diagonal 
crossover was clearly worse than N-point crossover, besides, the performance of 
diagonal crossover decreased for increasing N. This behavior is unique on the 
test suite we use here and at the moment we do not have a solid clarification 
for it. 

According to the above considerations, hypothesis H3 has to be refined. 
On quasi-random landscapes, such as F8, increased performance of diagonal 
crossover for higher N's  may occur, but it seems not to be the result of us-
ing more parents, i.e. H3 does not hold. On other types of landscapes ( the 
unimodal F l  and the multimodal, but somewhat regularly shaped F3-F7), di-
agonal crossover exhibits increased performance when increasing N, and it does 
outperform N-point crossover, thus confirming H3. F2 remains an exception, 
showing that even for unimodal landscapes it is not guaranteed that diagonal 
crossover will become better when increasing N. Yet, with this exception in 
mind, we can draw the conclusion that i f  diagonal crossover becomes better for 
higher N ' s  then this improvement is not only the consequence of using more 
crossover points, but also that of using more parents. 

Lot us close our conclusions with noting that the greatest gain occurred in 
the speed of the GA, diagonal crossover is usually faster than 2 parent N-point 
crossover (if and when). Clearly, if we had set the maximum number of evalua-
tions lower then this difference in speed would also have resulted in differences 
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in success rate and accuracy. Thus, although we definitely do not claim that 
diagonal crossover is a universally superior operator, we have sufficient evidence 
to say that it is a sound design heuristics to implement it in a GA and set the 
number of parents above two. 
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