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Abstract: This paper addresses a multicriteria problem of in-
teger linear programming with parametric optimality. Parameter-
izations is introduced by dividing a set of objectives into a family
of disjoint subsets, within each Pareto optimality is used to estab-
lish dominance between alternatives. The introduction of this prin-
ciple allows us to connect such classical optimality sets as Pareto
and extreme. The parameter space of admissible perturbations in
such problem is formed by a set of additive matrices, with arbitrary
Hölder’s norms specified in the solution and criterion spaces. The
attainable lower and upper bounds for the radii of quasistability are
obtained.
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1. Introduction

In multicriteria optimization and decision making, we sometimes deal with
the choice functions different from the well-known Pareto optimality principle.
Such functions play crucial role in many real life applications (see, e.g., Lotov
and Pospelova, 2008). In this paper, in addition to Pareto optimality, we con-
sider the multicriteria problem of Integer Linear Programming (ILP) with the
extreme optimality principle, i.e. with the set of solutions being individual opti-
mizers of all criteria. This set is used to construct the payoff table, often serving
for calculating the ideal point and estimating the nadir point of the Pareto
optimal set (see, e.g., Ehrgott, 2005; Miettinen, 1999; Noghin, 2018; Steuer,
1986). We introduce a parameterized optimality principle which is imple-
mented by means of partitioning the partial criteria set into non-empty subsets,
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inside which relations on the set of solutions are based on the Pareto dominance.

Notice that the idea of splitting and grouping criteria is frequently used in
multicriteria decision making. For example, in Wilppu, Mäkelä and Nikulin
(2017), a new parameterized achievement scalarizing function is using similar
approach for treating partial criteria and found to be useful in modern
applications (Montonen, Ranta and Mäkelä, 2019). In addition, the problem
if ILP can be considered under game theoretic framework (see, e.g., Nikulin,
2009), where grouping criteria can be interpreted as forming coalition between
players and then establishing optimality principles between coalitions.

A general approach to obtaining the formula of the stability radius for
scalar combinatorial problem was suggested in Gordeev and Leontev (1996).
A brief survey of some typical quantitative results and approaches to various
multicriteria integer linear programming problems can be found in Emelichev
et al. (2002).

In this paper, the lower and upper bounds for the radii of quasistability
are obtained, and criteria are formulated as corollaries. This type of stability
is interpreted as the existence of such perturbations in which new optimal
solutions can appear but all the original optima should be preserved.

Why is it important to have information about quasistability radius
bounds? First, if the radius of stability is not equal to zero, not only does it
determine the solution of the original problem, but also to a series of problems
with parameters located in the vicinity of the radius equal to a radius of
quasistability. Second, for a number of particular cases one can build an
algorithm for finding radii that uses and continues the same procedures that
were involved in the problem, which actually means that the radius could be
potentially calculated along with the optimal solution of the problem.

The paper is organized as follows. In Section 2, we formulate parametric
optimality and introduce basic concepts along with the notation. Section 3
contains some auxiliary statements about norms and two lemmas used later
for the proof of the main result. In Section 4, we formulate and prove the
main result regarding the lower and upper bounds for the quasistability radius.
Section 5 lists most important corollaries as well as presents a comment on
how the result fares against the earlier known results. Section 6 describes
quantitatively quasistability by means of formulating necessary and sufficient
conditions. Concluding remarks appear in Section 7.
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2. Problem formulation and basic definitions

Consider a multicriteria integer linear programming problem (ILP) in the fol-
lowing formulation. Let C = [cij ] ∈ Rm×n be a matrix, whose rows are de-
noted by Ci = (ci1, ci2, ..., cin) ∈ Rn, i ∈ Nm = {1, 2, ...,m}, m ≥ 1. Let
x = (x1, x2, ..., xn)

T ∈ X ⊂ Zn, n ≥ 2, the number of elements of the set X
being finite and greater than one. On the set of (admissible) solutions X, we
define a vector linear criterion

Cx = (C1x,C2x, ..., Cmx)
T → min

x∈X
. (1)

In the space Rk of arbitrary dimension k ∈ N we introduce a binary relation
that generates the Pareto optimality principle, Pareto (1909),

y ≻ y′ ⇔ y ≥ y′ & y 6= y′,

where y = (y1, y2, ..., yk)
T ∈ Rk, y′ = (y′1, y

′
2, ..., y

′
k)

T ∈ Rk.

The symbol ≻, as usual, denotes the negation of the relation ≻ .

Let ∅ 6= I ⊆ Nm, |I| = v, and let CI denote the submatrix of the matrix
C ∈ Rm×n consisting of rows of this matrix with the numbers of the subset I,
i.e.

CI = (Ci1 , Ci2 , ..., Civ )
T , I = {i1, i2, ..., iv},

1 ≤ i1 < i2 < ... < iv ≤ m, CI ∈ Rv×n.

Let s ∈ Nm, and let Nm =
⋃

k∈Ns

Ik be a partition of the set Nm into s

nonempty sets, i.e. Ik 6= ∅, k ∈ Ns, and i 6= j ⇒ Ii ∩ Ij = ∅. For this partition,
we introduce a set of (I1, I2, ..., Is)-efficient solutions according to the formula:

Gm(C, I1, I2, ..., Is) =
{

x ∈ X :

∃k ∈ Ns ∀x′ ∈ X
(

CIkx≻CIkx
′
)}

.
(2)

Sometimes for brevity we denote this set by Gm(C).

Obviously, any Nm-efficient solution x ∈ Gm(C,Nm) (s = 1) is Pareto opti-
mal, i.e. is an efficient solution to problem (1). Therefore, the set Gm(C,Nm)
is the Pareto set (Pareto, 1909):

Pm(C) =
{

x ∈ X : ∀x′ ∈ X
(

Cx≻Cx′
)}

.

We also use the following set

X(x,C) =
{

x′ ∈ X : Cx ≻ Cx′
}

,
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which is a set of solutions x′ ∈ X such that x′ dominates x in Pareto sense in
problem (1). Therefore,

Pm(C) =
{

x ∈ X : X(x,C) = ∅
}

.

In the other extreme case, when s = m, Gm(C, {1}, {2}, ..., {m}) is a set of
extreme solutions (Miettinen, 1999; Sholomov, 1989; Yudin, 1989). This set is
denoted by Em(C). Thereby, we have

Em(C) =
{

x ∈ X : ∃k ∈ Nm ∀x′ ∈ X (Ckx≻Ckx
′)
}

=

=
{

x ∈ X : ∃k ∈ Nm ∀x′ ∈ X
(

Ckx ≤ Ckx
′
)}

.

It is easy to see that the set is composed of the solutions that are the best for
at least one criterion.

So, in this context, the parameterization of the optimality principle refers
to the introduction of such a characteristic of the binary preference relation
that allows us to connect the well-known choice functions, parameterizing them
from the Pareto to the extreme.

Denoted by Zm(C, I1, I2, . . . , Is), the multicriteria ILP problem consists in
finding the set Gm(C, I1, I2, . . . , Is). Sometimes, for the sake of brevity, we use
the notation Zm(C) for this problem.

It is easy to see that the set P 1(C) = E1(C) is the set of optimal solutions
to the scalar (single-criterion) problem Z1(C,N1), where C ∈ Rn.

For any nonempty subset I ⊆ Nm we introduce the notation

P (CI) =
{

x ∈ X : ∀x′ ∈ X (CIx≻CIx
′)
}

,

X(x,CI) =
{

x′ ∈ X : Cix ≻ Cix
′)
}

,

i.e.
P (CI) =

{

x ∈ X : X(x,CI) = ∅
}

.

Then, by virtue of (2), we obtain

Gm(C, I1, I2, . . . , Is) =
{

x ∈ X : ∃k ∈ Ns

(

x ∈ P (CIk )
)}

. (3)

Therefore, we have

Gm(C, I1, I2, . . . , Is) =
⋃

k∈Ns

P (CIk), Nm =
⋃

k∈Ns

Ik.

It is obvious that all the sets given here are nonempty for any matrix
C ∈ Rm×n.
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The perturbation of the elements of the matrix C is imposed by adding
matrices C′ from Rm×n to it. Thus, the perturbed problem Zm(C + C′) has
the form

(C + C′)x→ min
x∈X

,

and the set of its (I1, I2, ..., Is)-efficient solutions is Gm(C + C′, I1, I2, . . . , Is).
In the space of solutions Rn, we define an arbitrary Hölder’s norm lp,

p ∈ [1,∞], i.e. by the norm of the vector a = (a1, a2, ..., an)
T ∈ Rn we mean

the number

‖a‖p =















(

∑

j∈Nn

|aj |p

)1/p

if 1 ≤ p <∞,

max
{

|aj | : j ∈ Nn

}

if p = ∞.

In the space of criteria Rm, we define an arbitrary Hölder’s norm lq, q ∈ [1,∞].
By the norm of the matrix C ∈ Rm×n with the rows Ci, i ∈ Nm, we mean the
norm of a vector whose components are the norms of the rows of the matrix.
By that, we have

‖C‖pq =
∥

∥(‖C1‖p, ‖C2‖p, . . . , ‖Cm‖p)
∥

∥

q
.

For an arbitrary number ε > 0, we define the set of perturbing matrices

Ω(ε) =
{

C′ ∈ Rm×n : ‖C′‖pq < ε
}

.

Following Emelichev et al. (2002), Emelichev and Nikulin (2019), Emelichev
and Podkopaev (1998, 2001, 2010), the quasistability radius of the ILP problem
Zm(C, I1, I2, . . . , Is), m ∈ N (called T4-stability radius in the terminology of
Emelichev et al., 2014 and Sergienko and Shilo, 2003) is the number

ρ = ρmpq(C, I1, I2, . . . , Is) =

{

supΞ if Ξ 6= ∅,

0 if Ξ = ∅,

where
Ξ =

{

ε > 0 : ∀C′ ∈ Ω(ε)
(

Gm(C) ⊆ Gm(C + C′)
)}

.

Thus, the quasistability radius of the problem Zm(C) determines the limit
level of perturbations of the elements of the matrix C that preserves optimality
of all the solutions of the set Gm(C) of the original problem, but new extreme
solutions are allowed to arise in the perturbed problem.

The quasistability radius of the problem Zm(C) can also be determined using
the well-known (see, for example, Emelichev et al., 2014; Sergienko and Shilo,
2003) concept of the stability kernel of the problem. Indeed, it is easy to see
that

ρ = sup
{

ε > 0 : Kerm(C, ε) = Gm(C)
}

,
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where

Kerm(C, ε) =
{

x ∈ Gm(C) : ∀C′ ∈ Ω(ε) (x ∈ Gm(C + C′))
}

.

The last set is called the kernel of ε-stability of the problem, and the set

Kerm(C) = Kerm(C, I1, I2, . . . , Is) =
{

x ∈ Gm(C, I1, I2, . . . , Is) :

∃ε > 0 ∀C′ ∈ Ω(ε)
(

x ∈ Gm(C + C′, I1, I2, . . . , Is)
)}

is called the stability kernel of the problem Zm(C, I1, I2, . . . , Is). Thus, the kernel
of the stability of a problem is the set of all solutions that are stable with respect
to small perturbations of the parameters of the problem.

3. Auxiliary statements and lemmas

In the solution space Rn, along with the norm lp, p ∈ [1,∞], we will use the
conjugate norm lp∗ , where the numbers p and p∗ are connected, as usual, by the
equality

1

p
+

1

p∗
= 1,

assuming p∗ = 1 if p = ∞, and p∗ = ∞ if p = 1. Therefore, we further suppose
that the range of the variation of the numbers p and p∗ is the closed interval
[1,∞], and the numbers themselves are connected by the above conditions.

So, it is easy to see that for any a = (a1, a2, . . . , an)
T ∈ Rn with

|aj | = α, j ∈ Nn,

the following equality holds

‖a‖p = αn1/p (4)

for any p ∈ [1,∞].

Further, we use the well-known Hölder’s inequality

|aT b| ≤ ‖a‖p‖b‖p∗ (5)

that is true for any two vectors a = (a1, a2, . . . , an)
T ∈ Rn and

b = (b1, b2, . . . , bn)
T ∈ Rn.

It is also well-known (see, e.g., Hardy, Littlewood and Polya, 1988) that
Hölder’s inequality becomes an equality for 1 < p <∞ if and only if

a) one of a or b is a zero vector;
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b) the two vectors obtained from non-zero vectors a and b by raising their
components’ absolute values to the powers of p and p∗, respectively, are
linearly dependent (proportional), and the sign of (aibi) is independent of
i.

When p = 1, the inequality (5) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|bi|
∑

i∈Nn

|ai|.

The last inequality holds as equality if, for example, b is the zero vector or if
aj 6= 0 for some j such that |bj| = ‖b‖∞ 6= 0, and ai = 0 for all i ∈ Nn\{j}.

When p = ∞, the inequality (5) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|ai|
∑

i∈Nn

|bi|.

This last inequality holds as equality if, for example, b is the zero vector or if
ai = σ sign (bi) for all i ∈ Nn and σ > 0.

So, we have just proven the first Lemma.

Lemma 1 For any p ∈ [1,∞] the following formula holds

∀b ∈ Rn ∀σ > 0 ∃a ∈ Rn

(

|aT b| = σ‖b‖p∗ & ‖a‖p = σ
)

.

Hereinafter, a+ is a projection of a vector a = (a1, a2, . . . , ak) ∈ Rk on a
positive orthant, i.e.

a+ = [a]+ = (a+1 , a
+
2 , . . . , a

+
k ),

where + implies the positive cut of vector a, i.e.

a+i = [ai]
+ = max{0, ai}.

Lemma 2 Given x, x0 ∈ X, x0 6= x, ∅ 6= I ⊆ Nm, v = |I|, CI ∈ Rv×n with
rows Ci, i ∈ I, and a vector η with ηi > 0 such that for any i ∈ I

[Ci(x− x0)]+ < ηi‖x− x0‖p∗ , (6)

then for any ε > ‖η‖q there exists a perturbing matrix C0
I ∈ Rv×n with rows

C0
i , i ∈ I such that

x ∈ X(x0, CI + C0
I ), ‖C0

i ‖p = ηi, i ∈ I, ‖C0
I ‖pq < ε.
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Proof Let us choose ε > ϕ. According to (5), for any C′ ∈ Rv×n with rows
C′

i, i ∈ I, the following inequalities hold

C′
i(x− x0) ≤ ‖C′

i‖p‖x− x0‖p∗ , i ∈ I.

Therefore, for every i ∈ I, according to Lemma 1, there exists a vector row
C0

i with the norm ‖C0
i ‖p = ηi such that

C0
i (x− x0) = −ηi‖x− x0‖p∗ .

From the above, taking into consideration (6), we deduce inequalities below

(Ci + C0
i )(x− x0) = [Ci(x− x0)]+ − ηi‖x− x0‖p∗ < 0, i ∈ I.

This implies x ∈ X(x0, CI + C0
I ), and ‖C0

I ‖pq = ‖η‖q < ε. �

4. Bounds on quasistability radius

For the multicriteria ILP problem Zm(C, I1, I2, . . . , Is), m ∈ N, for any p, q ∈
[1,∞] and s ∈ Nm we define

ϕ = ϕm
pq(C, I1, I2, . . . , Is) = min

x′∈Gm(C)
max
k∈Ns

min
x∈X\{x′}

‖[CIk(x− x′)]+‖q
‖x− x′‖p∗

.

It is obvious that ϕ ≥ 0.

Theorem 1 For any m ∈ N, p, q ∈ [1,∞] and s ∈ Nm, the quasistability
radius of the multicriteria ILP problem Zm(C, I1, I2, . . . , Is) has the following
lower and upper bounds:

ϕ ≤ ρmpq(C, I1, I2, . . . , Is) ≤ s
1

qϕ.

Proof First, we prove the inequality ρ ≥ ϕ. For ϕ = 0, this inequality is
obvious. Let ϕ > 0. Then, according to the definition of the number ϕ, we have

∀x′ ∈ Gm(C, I1, I2, . . . , Is) ∃k ∈ Ns ∀x ∈ X\{x′}
(

0 < ϕ‖x− x′‖p∗ ≤ ‖[CIk(x− x′)]+‖q
)

. (7)

Further, for any perturbing matrix C′ ∈ Ω(ϕ), we deduce

(CIk + C′
Ik
)x′ ≻ (CIk + C′

Ik
)x, x ∈ X\{x′}. (8)

Assume the opposite, i.e. assume that there exist a matrix C0 ∈ Ω(ϕ) and
solutions x0 6= x′ such that

(CIk + C0
Ik)x

′ ≻ (CIk + C0
Ik)x

0.
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Then, for any index i ∈ Ik, we have

(Ci + C0
i )(x

0 − x′) ≤ 0.

Therefore, due to (5), the following inequalities are valid

[Ci(x
0 − x′)]+ ≤ ‖C0

i ‖p‖x
0 − x′‖p∗ , i ∈ Ik. (9)

Let

Ik = {i1, i2, . . . , iv}, 1 ≤ i1 ≤ i2 ≤ · · · ≤ iv ≤ m.

Then, due to monotonicity of lq, i.e.

∀y, y′ ∈ Rv
+

(

y ≤ y′ ⇒ ‖y‖q ≤ ‖y′‖q
)

,

inequalities (9) yield the following equalities:

‖[CIk(x
0−x′)]+‖q = ‖[Ci1(x

0−x′)]+, [Ci2(x
0−x′)]+, . . . , [Civ (x

0−x′)]+‖q ≤
∥

∥(‖C0
i1‖p, ‖C

0
i2‖p, . . . , ‖C

0
iv‖p)

∥

∥

q
‖x0 − x′‖p∗ =

‖C0
Ik‖pq‖x

0 − x′‖p∗ ≤ ‖C0‖pq‖x
0 − x′‖p∗ < ϕ‖x0 − x′‖p∗ .

The last contradicts (7). So, (8) is true, i.e. x′ ∈ P (CIk +C
′
Ik
). Thus, according

to (3), x′ ∈ Gm(C+C′, I1, I2, . . . , Is) if C
′ ∈ Ω(ϕ). Therefore, we conclude that

∀C′ ∈ Ω(ϕ) (Gm(C, I1, I2, . . . , Is) ⊂ Gm(C + C′, I1, I2, . . . , Is)),

i.e. ρ ≥ ϕ.

Next, we prove the inequality ρ ≤ s
1

qϕ. Let ε ≥ s
1

qϕ and Θ > 1 be such
that

ε

s
1

q

> Θϕ > ϕ. (10)

In accordance with the definition of the number ϕ we get the formula

∃x0 ∈ Gm(C, I1, I2, . . . , Is) ∀k ∈ Ns ∃x̂ ∈ X\{x0}
(

‖[CIk(x̂ − x0)]+‖q ≤ ϕ‖x̂− x0‖p∗

)

.

Then, for any index k ∈ Ns there exists a vector η with ηi > 0, i ∈ Ik such that

Θ[Ci(x̂− x0)]+ ≤ ηi‖x̂− x0‖p∗ , i ∈ Ik, ‖η‖q = Θϕ.

Therefore, according to Lemma 2, for every index k ∈ Ns there exists a per-
turbing matrix C0

Ik
∈ Rv×n, v = |Ik| with rows C0

i , i ∈ Ik such that

x̂ ∈ X(x0, CIk + C0
Ik ), ‖C

0
i ‖p = ηi, i ∈ Ik,
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‖C0
Ik‖pq = ‖η‖q = Θϕ < ε.

Therefore, using (4) and (10), we have

‖C0‖pq = s
1

q Θϕ < ε.

Thus, we get x0 6∈ P (CIk+C
0
Ik
) for any k ∈ Ns. So, due to (3), x0 is not extreme

in Zm(C + C0, I1, I2, . . . , Is) if C
0 ∈ Ω(ε). It implies that for any ε > s

1

qϕ, the

inequality ρ < ε holds. Hence, ρ ≤ s
1

qϕ. �

5. Corollaries

Theorem 1, proven in the previous section, extends the earlier known bounds
for the cases with Pareto and extreme optimality to the more general case with
parametric optimality, allowing for a greater flexibility for a decision maker
regarding expressing his or her preferences along with taking into consideration
possible input parameter uncertainty. Particularly, from Theorem 1, we have
the following two known results (see Emelichev and Nikulin, 2019; Emelichev
and Kuzmin, 2013).

Corollary 1 For any m ∈ N and p, q ∈ [1,∞] for the quasistability radius
ρmpq(C,Nm) (s = 1) of the multicriteria ILP Zm(C,Nm) consisting in finding
the Pareto set Pm(C), the following formula is true:

ρmpq(C,Nm) = min
x′∈Pm(C)

min
x∈X\{x′}

‖[C(x− x′)]+‖q
‖x− x′‖p∗

.

Corollary 2 For any m ∈ N and p, q ∈ [1,∞] for the quasistability radius
ρmpq(C, {1}, {2}, . . . , {m}) (s = m) of the multicriteria ILP Zm(C, 1, 2, . . . ,m)
consisting in finding the extreme set Em(C), the following lower and upper
bounds are true:

ψm
p ≤ ρmpq(C, {1}, {2}, . . . , {m}) ≤ m

1

qψm
p ,

where

ψm
p = min

x′∈Em(C)
max
i∈Nm

min
x∈X\{x′}

[Ci(x− x′)]+

‖x− x′‖p∗

.

Corollary 1 proves that the lower bound ϕm
pq(C, I1, I2, . . . , Is), specified in

Theorem 1 is attainable if s = 1. The attainability is also evident if q = ∞
and m = 1. Corollary 1 also illustrates the fact that the bounds for the
quasistability radius can be transformed into the equation formula for some
special cases. It might also be possible that the equation formula takes place
in more general situations, not only in the Pareto case. In such situation,
the analytical expression for the quasistability radius should have a bit more
general form that can turn into the lower and upper bounds, specified in
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Theorem 1 and Corollary 2, respectively.

The following example shows that the upper bound m
1

qψm
p specified in corol-

lary 2 is also attainable.

Example 1 Let p = ∞, q ∈ [1,∞], X = {x1, x2, . . . , xn} ⊂ En = {0, 1}n,
where n ≥ 3, and every solution xj , j ∈ Nn, be a unit vector, i.e. a column of
identity matrix of size n× n. Let matrix C = [cij ] ∈ Rm×n with rows Ci ∈ Rn,
i ∈ Nm, m = n− 1 be constructed as follows

C =









0 M . . . M −2α
M 0 . . . M −2α
. . . . . . . . . . . . . . .

M M . . . 0 −2α









,

where M ≫ α > 0, and M is a number large enough. Then we have

Cx1 = (0,M, . . . ,M,M)T ∈ Rm,

Cx2 = (M, 0, . . . ,M,M)T ∈ Rm,

...............................................

Cxn−1 = (M,M, . . . ,M, 0)T ∈ Rm,

Cxn = (−2α,−2α, . . . ,−2α,−2α)T ∈ Rm.

Thus, xn ∈ Em(C), xj 6∈ Em(C), j ∈ Nm. Moreover, the following equality is
evident

ψm
∞ = max

i∈Nm

min
j∈Nm

Ci(x
j − xn)

2
= α. (11)

Let C′ = [c′ij ] ∈ Ω∞q(αm
1

q ) be an arbitrary perturbing matrix with rows

C′
1, C

′
2, . . . , C

′
m, i.e. C′ ∈ Rm×n, ‖C′‖∞q < αm

1

q . Proving by contradiction, it
is easy to show that there exists an index k ∈ Nm with ‖C′

k‖∞ < α. Therefore,
|c′kj | < α for any j ∈ Nn. So, we deduce that

(Ck + C′
k)(x

k − xn) = 2α+ c′kk − c′kn ≥ 2α− |c′kk| − |c′kn| > 0,

and hence for any index i ∈ Nm\{k} we obtain

(Ci + C′
i)(x

k − xn) = Ci(x
k − xn) + C′

i(x
k − xn) =M + 2α+ c′ik − c′in > 0.

As a result, we conclude that xn ∈ Em(C + C′), and for any perturbing matrix

C′ ∈ Ω∞q(αm
1

q ) the following inequality holds

ρm∞,q(C, {1}, {2}, . . . , {m}) ≥ m
1

qα.

Taking into account Corollary 2 and using (11), we get the equality:

ρm∞,q(C, {1}, {2}, . . . , {m}) = m
1

qψm
∞.
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6. Quasistability criteria

We call a multicriteria ILP problem Zm(C), m ≥ 1, quasistable (to pertur-
bations of the elements of the matrix C) if there exists a number ε > 0 such
that

∀C′ ∈ Ω(ε)
(

Gm(C) ⊆ Gm(C + C′)
)

.

It is obvious that the property of quasistability is a discrete analogue of the
lower semicontinuity property (according to Hausdorff) at the point C ∈ Rm×n

of the optimal mapping

Gm(C) : Rm×n → 2X ,

i.e. of the point-to-set mapping, which associates with each set of prob-
lem parameters (each matrix C) the set of (I1, I2, . . . , Is)-efficient solutions
Gm(C, I1, I2, . . . , Is).

In order to formulate the necessary and sufficient conditions of quasistability,
we introduce some notation. In the space Rk of arbitrary dimension k ∈ N we
introduce one more binary relation:

y ⊢ y′ ⇔ yi ≥ y′i, i ∈ Nk,

where y = (y1, y2, . . . , yk)
T ∈ Rk, y′ = (y′1, y

′
2, . . . , y

′
k)

T ∈ Rk.

Now, we define a set of strictly extreme solutions to the problem Zm(C)
according to the formula:

SGm(C) = SGm(C, I1, I2, . . . , Is) =

= {x ∈ X : ∃k ∈ Ns ∀x′ ∈ X\{x}
(

CIkx ⊢ CIkx
′
)

}.

It is obvious that SGm(C) ⊆ Gm(C) for any matrix C ∈ Rm×n and any
partition (I1, I2, . . . , Is).

From Theorem 1, we get the following corollary.

Corollary 3 For any m ∈ N, p ∈ [1,∞] and s ∈ Nm, for the multicriteria
ILP problem Zm(C, I1, I2, . . . , Is) the following statements are equivalent:

(i) the problem Zm(C, I1, I2, . . . , Is) is quasistable;
(ii) Gm(C) = SGm(C) = Kerm(C);
(iii) ϕm

pq(C, I1, I2, . . . , Is) > 0.

In the case when s = 1, the set SGm(C,Nm) turns into the well-known
Smale set (Smale, 1974), i.e. into the set of strictly efficient solutions of the
problem Zm(C,Nm):

Smm(C) =
{

x ∈ X : ∀x′ ∈ X\{x}
(

Cx ⊢ Cx′
)}

.
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Therefore, Corollary 3 implies the following well-known result (see Emelichev
et al., 2002, 2009, 2014; Emelichev and Podkopaev, 1998, 2001; Sergienko and
Shilo, 2003):

Corollary 4 For any m ∈ N, and p ∈ [1,∞] for the multicriteria ILP prob-
lem Zm(C,Nm), consisting in finding the Pareto set Pm(C), the following state-
ments are equivalent:

(i) the problem Zm(C,Nm) is quasistable;
(ii) Pm(C) = Smm(C) = Kerm(C,Nm);
(iii) ϕm

pq(C,Nm) > 0.

From this, in particular, we obtain the following corollary:

Corollary 5 The single criterion (scalar) ILP problem Z1(C), C ∈ Rn, con-
sisting in finding optimal solutions, is quasistable if and only if it has a unique
optimal solution.

In the case when s = m, the set

SGm(C) = SGm(C, {1}, {2}, . . . , {m})

turns into the set of strictly extreme solutions of the problem
Zm(C, {1}, {2}, . . . , {m}):

SEm(C) = {x ∈ X : ∃k ∈ Nm ∀x′ ∈ X\{x} (Ckx < Ckx
′)}.

Thus, from Corollary 3, while taking into consideration (11) and Corollary
2, we derive the following corollary:

Corollary 6 For any m ∈ N and p ∈ [1,∞], for the multicriteria ILP prob-
lem Zm(C, {1}, {2}, . . . , {m}), consisting in finding the set of extreme solutions
Em(C), the following statements are equivalent:

(i) the problem Zm(C, {1}, {2}, . . . , {m}) is quasistable;
(ii) Em(C) = SEm(C) = Kerm(C, {1}, {2}, . . . , {m});
(iii) ψm

p > 0.

7. Conclusion

As a result of the parametric analysis performed in this paper, the lower and
upper bounds on the quasistability radius were obtained for the multicriteria
ILP problem with parametric optimality in the case, in which the criterion and
solution spaces are endowed with various Hölder’s norms lp, 1 ≤ p ≤ ∞, and lq,
1 ≤ q ≤ ∞, respectively. Parametrization was done on the basis of partitioning
of the partial criteria set into non-empty subsets such that Pareto optimality
principle is used within each subset and extreme optimality principle is used
between the subsets.
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The generality of our approach made it possible to obtain the achievable
lower and upper bounds only for the quasistability radius. As stated in
Theorem 1, the bounds turn into the equation formula for cases of s = 1 and
q = ∞. The existence of the lower and upper bounds naturally leads us to
the proof that the bounds could not be improved, since, as it was shown in
Example 1 and Corollary 1, so the quasistability radius can be equal either to
lower or upper bound for some classes of ILP problems. Theorem 1 made it
also possible to formulate the quasistability criteria (see Corollaries 3 – 6).

One of the biggest challenges in this field is to construct efficient algorithms
to calculate the analytical expressions of the bounds. To the best of our knowl-
edge, there are not so many results known in that area, and, moreover, some of
those results, which have been already known, put more questions than answers.

For example, in Kuzmin (2015), the formulas along with the lower and upper
exact bounds of stability radii were obtained for solutions of the multiobjective
maximum cut problem as well as for the various types of stability of the
problem under assumption that Hölder’s metrics are given on the spaces of a
perturbing parameter. In Kuzmin (2015), it was also shown that the problem of
finding the radii of every type of stability is intractable unless P = NP . As it
was specifically mentioned in Nikulin, Karelkina and Mäkelä (2013), calculating
exact values of stability radii is an extremely difficult task in general, and so
one concentrates either on finding easy computable classes of problems or on
developing general metaheuristic approaches.

An example of such metaheuristic approach can be found in Karelkina,
Nikulin and Mäkelä (2011), where non-dominated sorting genetic algorithm
based approach is proposed for calculating stability radius of an optimal solu-
tion to the single criterion shortest path problem. The key idea of the method is
defractionalization of the objective by means of transforming a nonlinear single
objective problem into biobjective problem with linear objectives. Such trans-
formation is performed locally (within the genetic population), which makes the
problem of finding the approximation of the Pareto frontier in biobjective case
realistic when compared to the case, in which such linearization would have been
made globally, that is, with respect to the original set of feasible solutions. This
approach may become beneficial in comparison with other possible methods,
such as, for example, applying genetic algorithm directly to the single objective
problem with nonlinear (fractional) function, which would require some efficient
nonlinear optimization tool to deal with. Extension of this idea to the case of
several objectives could be an interesting avenue for future research in this and
related areas.
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Emelichev, V., Girlich, E., Nikulin, Yu. and Podkopaev, D. (2002)

Stability and regularization of vector problem of integer linear program-
ming. Optimization, 51, 4, 645–676.

Emelichev, V., Gurevsky, E. and Platonov, A. (2009) On stability and
quasi-stability radii for a vector combinatorial problem with a parametric
optimality principle. Buletinul Academiei de Stiinte a Republicii Moldova.
Matematica, 2(60), 55–61.

Emelichev, V., Kotov, V., Kuzmin, K., Lebedeva, N., Semenova, N.

and Sergienko, T. (2014) Stability and effective algorithms for solving
multiobjective discrete optimization problems with incomplete informa-
tion. J. of Automation and Inf. Sciences, 46, 2, 27–41.

Emelichev, V. and Nikulin, Yu. (2019) On a quasistability radius for
multicriteria integer linear programming problem of finding extremum so-
lutions. Cybernetics and System Analysis, 55, 6, 949–957.

Emelichev, V. and Kuzmin, K. (2013) A general approach to studying the
stability of a Pareto optimal solution of a vector integer linear program-
ming problem. Discrete Mathematics and Applications, 17 (4): 349–354.

Emelichev, V. and Podkopaev, D. (1998) On a quantitive measure of
stability for a vector problem in integer programming. Comp. Math. and
Math. Physics., 38, 11, 1727–1731.

Emelichev, V. and Podkopaev, D. (2001) Stability and regularization of
vector problems of integer linear programming. Discrete Analysis and
Operation Research, Ser. 2, 8, 1, 47–69.

Emelichev, V. and Podkopaev, D. (2010) Quantitative stability analysis
for vector problems of 0-1 programming. Dicrete Optimization, 7, 1-2,
48–63.

Gordeev, E. and Leontev, V. (1996) A general approach to the study of
the stability of solutions in discrete optimization problems. Computational
Mathematics and Mathematical Physics, 1, 53–58.

Hardy, G., Littlewood, J. and Polya, G. (1988) Inequalities. University
Press, Cambridge.

Karelkina O., Nikulin Y. and Mäkelä, M. (2011) An adaptation of
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ness and tolerances in vector Boolean optimization. European Journal of
Operational Research, 224, 449–457.

Nikulin, Y. (2009) Stability and accuracy functions in a coalition game with
bans, linear payoffs and antagonistic strategies. Annals of Operations
Research, 172, 25–35.

Noghin, V. (2018) Reduction of the Pareto Set: An Axiomatic Approach.
Springer, Cham.

Pareto, V. (1909)Manuel D’economie Politique. V. Giard & E. Briere, Paris.
Sergienko, I. and Shilo, V. (2003) Discrete Optimization Problems. Prob-

lems, Methods, Research. Naukova dumka, Kiev.
Sholomov, L. (1989) Logical methods for investigating discrete models of

choice. Nauka, Moscow.
Smale, S. (1974) Global analysis and economics V: Pareto theory with con-

straints. J. of Mathematical Economics, 1, 3, 213–221.
Steuer, R. (1986) Multiple Criteria Optimization: Theory, Computation and

Application. John Wiley&Sons, New York.
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