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Abstract: We consider a multicriteria problem of integer linear
programming and study the set of all individual criterion minimiz-
ers (extreme solutions) playing an important role in determining the
range of Pareto optimal set. In this work, the lower and upper at-
tainable bounds on the stability radius of the set of extreme solutions
are obtained in the situation where solution and criterion spaces are
endowed with various Hölder’s norms. In addition, the case of the
Boolean problem is analyzed. Some computational challenges are
also discussed.
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1. Introduction

Multiobjective discrete models have been widely used in decision making, de-
sign, management, economics, and many other applied fields. Therefore, the
interest of mathematicians regarding multicriteria (vector) discrete optimiza-
tion problems is far from being lost, which is confirmed by numerous recent
publications. One of directions in investigating these problems is the analysis of
stability of solutions with respect to perturbations of the initial data (problem
parameters). Various notions of stability generate numerous investigation lines.

The terms, such as sensitivity, stability or post-optimal analysis are com-
monly used for the phase of an algorithm at which a solution (or solutions) of
the problem has been already found, and additional calculations are performed
in order to investigate how this solution depends on changes in the problem
data.
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In 1923, Jacques Hadamard recognized the stability problem as one of the
central problems in mathematical research. He postulated that in order to be
well-posed, a mathematical problem should satisfy three properties: existence
of a solution; uniqueness of the solution; and continuous dependence of the
solution on the data (Hadamard, 1923). Problems that are not well-posed in
the sense of Hadamard are usually termed ill-posed.

Despite the existence of numerous approaches to stability analysis of opti-
mization problems, two major directions can be pointed out: quantitative and
qualitative.

Qualitative sensitivity analysis is usually conducted for multicriteria opti-
mization problems with various (linear and nonlinear) criteria. The typical re-
sults are necessary and sufficient conditions for different types of stability of one
or a set of optimal solutions (see, e.g., Sergienko and Shilo, 2003; Lebedeva and
Sergienko, 2008; Lebedeva, Semenova and Sergienko, 2014a,b; Emelichov et al.,
2014; Kuzmin, Nikulin and Mäkelä, 2017; Emelichev, Karelkina and Kuzmin,
2012).

Within the scope of the quantitative direction, various measures of stabil-
ity are investigated. Analytical expressions or (attainable) lower and upper
bounds on a quantitative characteristic called stability radius constitute typical
results in this area. The results are formulated in the case where parameter
space is equipped with various metrics (see, e.g., Leontev, 2007; Gordeev, 2015;
Emelichev and Podkopaev, 1998, 2001, 2010; Emelichev et al., 2002; Emelichev
and Kuzmin, 2010; Bukhtoyarov and Emelichev, 2015; Emelichev and Nikulin,
2018). In addition to stability radius, some papers are focusing on more gen-
eral characteristics of stability, for example stability and accuracy functions are
analyzed in Libura and Nikulin (2006) and in Nikulin (2009). Sensitivity anal-
ysis has been also performed for some problems of scheduling theory, see, e.g.,
Sotskov et al. (2010) and Nikulin (2014).

This publication follows the ideas of quantitative analysis. It continues a
series of publications (Emelichev et a., 2014; Emelichev and Podkopaev, 1998,
2001; Emelichev and Kuzmin, 2007, 2013; Emelichev, Krichko and Nikulin,
2004) seeking the analytical bounds on stability radius for the multicriteria
problem of Integer Linear Programming (ILP) with various optimality princi-
ples.

In multicriteria optimization and decision making, we deal sometimes with
choice functions different from the well-known Pareto optimality principle
(Pareto, 1909). Such functions play a crucial role in many real life applica-
tions (see, e.g., Podinovskii and Noghin, 1982, and Lotov and Pospelov, 2008).
In this paper, we consider the multicriteria problem of ILP with the extreme
optimality principle, i.e. with the set of solutions being individual optimizers of
all criteria.

This set is used to construct the payoff table, often serving for calculating
the ideal point and estimating the nadir point of the Pareto optimal set (see,
e.g., Steuer, 1986; Miettinen, 1999; Noghin, 2018; Ehrgott, 2005). We study
the type of stability with respect to independent perturbations of linear func-
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tion coefficients that is a discrete analogue of Hausdorff upper semi-continuity
mapping, transforming any set of problem parameters into a set of extreme
solutions. In other words, this type of stability guarantees the existence of a
neighborhood in problem parameter space such that no new extreme solutions
appear, see Emelichev and Podkopaev (1998, 2001, 2010) and Emelichev et al.
(2002).

As a result of the parametric analysis performed, the lower and upper bounds
on the stability radius are obtained for multicriteria ILP problem with extreme
solutions in the case where criterion space is endowed with various Hölder’s
norms. Attainability of the estimates (both lower and uppers bounds) is demon-
strated.

2. Problem formulation and basic definitions

We consider an m-criteria ILP problem in the following formulation. Let C =
[cij ] ∈ Rm×n be a real valued m × n - matrix with rows Ci ∈ Rn, i ∈ Nm =
{1, 2, . . . ,m}, m ≥ 1. Let also X ⊂ Zn, 1 < |X | < ∞, be the set of feasible
solutions x = (x1, x2, . . . , xn)

T , n ≥ 2. We define a vector criterion

Cx =
(

C1x,C2x, . . . , Cmx
)T

→ min
x∈X

,

with linear objective functions.
In this paper, Zm(C), C ∈ Rm×n, is the problem of finding the set of

extreme solutions defined in, e.g., Miettinen (1999) and Branke et al. (2007):

Em(C) =
{

x ∈ X : ∃k ∈ Nm ∀x′ ∈ X
(

Ck(x) ≤ Ck(x
′)
)

}

.

This set can equivalently be written as follows:

Em(C) = {x ∈ X : ∃k ∈ Nm (Em
k (x,Ck) = ∅)},

where

Em
i (x,Ci) =

{

x′ ∈ X : Ci(x− x′) > 0
}

, i ∈ Nm, x ∈ X.

Thus, the choice of extreme solutions can be interpreted as finding best
solutions for each of m criteria, and then combining them into one set. The
vector composed of optimal objective values constitutes the ideal vector that is
of great importance in theory and methodology of multiobjective optimization
(Miettinen, 1999). This also justifies our particular interest in studying some
properties of the extreme solutions. Obviously, E1(C), C ∈ Rn is the set of
optimal solutions for the scalar problem Z1(C).

We will perturb the elements of matrix C ∈ Rm×n by adding elements of
the perturbing matrix C′ ∈ Rm×n. Thus, the perturbed problem Zm(C + C′)
of finding extreme solutions has the following form:

(C + C′)x → min
x∈X

.



228 V.A. Emelichev and Y.V. Nikulin

The set of extreme solutions of the perturbed problem is denoted by Em(C+C′).
In the solution space Rn, we define an arbitrary Hölder’s norm lp, p ∈ [1,∞],
i.e. the norm of vector a = (a1, a2, . . . , an)

T ∈ Rn is defined as

‖a‖p =















(

∑

j∈Nn

|aj |p
)1/p

if 1 ≤ p < ∞,

max{|aj | : j ∈ Nn} if p = ∞.

In the criteria space Rm, we define another Hölder’s norm lq, q ∈ [1,∞]. The
norm of matrix C ∈ Rm×n is defined as

‖C‖pq = ‖(‖C1‖p, ‖C2‖p, . . . , ‖Cm‖p)‖q.

It is easy to see that

‖Ci‖p ≤ ‖C‖pq, i ∈ Nm. (1)

It is well known that the lp norm defined in Rn induces conjugated lp∗ norm in
(Rn)∗. For p and p∗, the following relations hold:

1

p
+

1

p∗
= 1, 1 < p < ∞. (2)

In addition, if p = 1 then p∗ = ∞, and, if p∗ = 1 then p = ∞. Notice that p

and p∗ belong to the same range [1,∞]. We set 1
p = 0 if p = ∞.

It is easy to see that for any vector ξ = (ξ1, ξ2, ..., ξn)
T ∈ Rn with |ξj | = σ,

j ∈ Nn, for any p ∈ [1,∞] the following equality holds:

‖ξ‖p = n
1

pσ. (3)

For any two real-valued vectors a and b of the same dimension n, the follow-
ing Hölder’s inequality is well known:

|aT b| ≤ ‖a‖p‖b‖p∗, (4)

where p ∈ [1,∞].
It is also well known (see, e.g., Hardy, Littlewood and Polya, 1988) that

Hölder’s inequality becomes an equality for 1 < p < ∞ if and only if
a) one of a or b is the zero vector;
b) the two vectors obtained from non-zero vectors a and b by raising their

components’ absolute values to the powers of p and p∗, respectively, are
linearly dependent (proportional), and sign (aibi) is independent of i.

When p = 1, (4) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|bi|
∑

i∈Nn

|ai|.
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The last holds as equality if, for example, b is the zero vector or if aj 6= 0 for
some j such that |bj| = ‖b‖∞ 6= 0, and ai = 0 for all i ∈ Nn\{j}.

When p = ∞, (4) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|ai|
∑

i∈Nn

|bi|.

The last holds as equality if, for example, b is the zero vector or if ai = σ sign (bi)
for all i ∈ Nn and σ ≥ 0.

From here we deduce that the following formula is valid for p ∈ [1,∞]:

∀b ∈ Rn ∀σ > 0 ∃a ∈ Rn
(

|aT b| = σ‖b‖p∗ & ‖a‖p = σ
)

. (5)

Given ε > 0, let

Ωpq(ε) =
{

C′ ∈ Rm×n : ‖C′‖pq < ε
}

be the set of perturbing matrices C′ = [c′ij ] ∈ Rm×n with rows C′
k ∈ Rn, k ∈

Nm.
Denote

Ξpq =
{

ε > 0 : ∀C′ ∈ Ωpq(ε)
(

Em(C + C′) ⊆ Em(C)
)}

.

Following Emelichev and Podkopaev (1998, 2001) and Emelichev et al. (2002),
the number

ρm(p, q) =







sup Ξpq if Ξpq 6= ∅,

0 if Ξpq = ∅

is called stability radius (T3-stability radius in terminology of Sergienko and
Shilo, 2003; Lebedeva and Sergienko, 2008; and Emelichev et al., 2014) of prob-
lem Zm(C), m ∈ N, with Hölder’s norms lp and lq in the spaces Rn and Rm,
respectively. Thus, the stability radius of problem Zm(C) defines the extreme
level of perturbations of the elements of matrix C in the metric space Rm×n

such that no new extreme solutions appear in the perturbed problem. The
problem Zm(C) is called stable if and only if the stability radius is positive
(ρm(p, q) > 0).

If Em(C) = X , then the inclusion Em(C + C′) ⊆ Em(C) holds for any
perturbing matrix C′. Therefore, the stability radius of such a problem is not
bounded from above. The problem Zm(C) with Em(C) 6= X is referred to as
non-trivial.

3. Bounds on the stability radius

Given the multicriteria ILP problem Zm(C), m ∈ N, for any p ∈ [1,∞] we set

φm(p) = min
i∈Nm

min
x 6∈Em(C)

max
x′∈X\{x}

Ci(x − x′)

‖x− x′‖p∗

,
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ηm(p) = min{‖Ci‖p : i ∈ Nm}.

Theorem 1 Given p, q ∈ [1,∞] and m ∈ N, for the stability radius ρm(p, q) of
the non-trivial multicriteria ILP problem Zm(C), the following lower and upper
bounds are valid:

0 < φm(p) ≤ ρm(p, q) ≤ ηm(p).

Moreover,

0 < φm(p) ≤ ρm(p, q) ≤ min
{

n
1

pφm(∞), ηm(p)
}

if the problem is Boolean.

Proof According to the definition of Em(C), we have

∀x 6∈ Em(C) ∀i ∈ Nm ∃x0 ∈ X
(

Cix > Cix
0
)

,

and hence φm(p) > 0. Now we prove that

ρm(p, q) ≥ φm(p). (6)

Let C′ ∈ Rm×n be an arbitrary perturbing matrix, and norm

‖C′‖pq < φm(p),

i.e. C′ ∈ Ωpq(φ
m(p)). Then, according to the definition of number φm(p) and

due to (1), the following statement holds:

∀i ∈ Nm ∀x 6∈ Em(C) ∃x0 ∈ X\{x}

(Ci(x − x0)

‖x− x0‖p∗

≥ φm(p) > ‖C′‖pq ≥ ‖C′
i‖p

)

.

Taking into account Hölder’s inequalities (4), we deduce that for any index
i ∈ Nm there exists x0 6= x such that

(Ci + C′
i)(x− x0) = Ci(x− x0) + C′

i(x− x0) ≥

Ci(x− x0)− ‖C′
i‖p‖x− x0‖p∗ > 0,

i.e. x 6∈ Em(C + C′) for any x 6∈ Em(C).
Hence, the inclusion Em(C + C′) ⊆ Em(C) holds for any perturbed matrix

C′ ∈ Ωpq(φ
m(p)), so that equation (6) is true.

Further, we prove that ρm(p, q) ≤ ηm(p). In order to do that, it suffices to
show that ρm(p, q) ≤ ‖Ck‖p for any k ∈ Nm. Let us fix k ∈ Nm and let matrix
C0 = [cij ] ∈ Rm×n with rows C0

i ∈ Rn, i ∈ Nm be constructed as follows:

C0
i =

{

−Ci if i = k,
0T if i ∈ Nm\{k},
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where 0 is the vector column in Rn, containing all zeroes. Then we get

‖C0‖pq = ‖C0
k‖p = ‖Ck‖p,

Em(C + C0) = X.

Taking into account X 6⊆ Em(C), we conclude that ρm(p, q) ≤ ‖Ck‖p. Hence,
ρm(p, q) ≤ ηm(p) = min{‖Ci‖p : i ∈ Nm}.

We then consider the case where X ⊆ {0, 1}n. All the bounds proven earlier
remain valid. All we need to show is that an extra upper bound holds:

ρm(p, q) ≤ n
1

pφm(∞). (7)

Indeed, according to the definition of φ = φm(∞), there exist a solution x0 =
(x0

1, x
0
2, ..., x

0
n)

T 6∈ Em(C) and an index k ∈ Nm such that for any solution
x 6= x0 the following inequality holds

φ‖x− x0‖1 ≥ Ck(x
0 − x). (8)

Set ε > n
1

pφ, choose δ such that

φ < δ <
ε

n
1

p

,

and consider the row vector ξ = (ξ1, ξ2, ..., ξn) with coordinates

ξj =

{

−δ if x0
j = 1,

δ if x0
j = 0.

Then, according to (3), we get

‖ξ‖p = n
1

p δ.

Further, we define a perturbing matrix C0 = [cij ] ∈ Rm×n with rows C0
i ∈ Rn,

i ∈ Nm, constructed as follows:

C0
i =

{

ξ if i = k,
0T if i ∈ Nm\{k}.

Then we have

‖C0‖pq = n
1

pφ,

C0 ∈ Ωpq(ε).

In addition, for any x 6= x0 we have

C0
k(x

0 − x) = −δ‖x0 − x‖1.
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From the above, using inequality (8), we deduce for any x ∈ X\{x0}:

(Ck + C0
k)(x

0 − x) = Ck(x
0 − x) + C0

k(x
0 − x) ≤ (φ − δ)‖x0 − x‖1 < 0.

This implies that x0 ∈ Em(C + C0) for x0 6∈ Em(C). Summing up, we have

∀ε > n
1

pφm(∞) ∃C0 ∈ Ωpq(ε)
(

Em(C + C0) 6⊆ Em(C)
)

,

i.e. ρm(p, q) < ε for any number ε > n
1

pφm(∞). Therefore, inequality (7) is
true. �

4. Bound attainability

The following corollaries indicate the lower bound attainability φm(p) for the
stability radius ρm(p, q) of non-trivial ILP problem Zm(C).

Corollary 1 Let m ∈ N. If for a non-trivial multicriteria ILP problem
Zm(C) we have Em(C) = {x0}, then the stability radius ρm(p, q) is expressed
by the following formula:

ρm(p, q) = min
i∈Nm

max
x∈X\{x0}

Ci(x− x0)

‖x− x0‖p∗

. (9)

Proof Let Θ denote the right-hand side of (9). According to the definition of
Θ, there exist x̂ ∈ X\{x0} and k ∈ Nm such that the following equality holds:

Ck(x̂− x0) = Θ‖x̂− x0‖p∗ . (10)

Notice that here Θ > 0. Set ε > Θ and a number γ, satisfying

Θ < γ < ε.

According to formula (5), there exists a vector a ∈ Rn such that

aT (x̂− x0) = −γ‖x̂− x0‖p∗ ,

‖a‖p = γ.

Further, we define a perturbing matrix C0 = [cij ] ∈ Rm×n with rows C0
i ∈

Rn, i ∈ Nm, constructed as follows:

C0
i =

{

aT if i = k,
0T if i ∈ Nm\{k}.

Then we have

‖C0‖pq = γ,

C0 ∈ Ωpq(ε),
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C0
k(x̂− x0) = −γ‖x̂− x0‖p∗ .

From the above, using inequality (10), we deduce

(Ck +C0
k)(x̂− x0) = Ck(x̂− x0)− γ‖x̂− x0)‖p∗ = (Θ− γ)‖x̂− x0‖p∗ < 0.

This implies that x0 6∈ Em
k (x̂, Ck + C0

k). If Em
k (x̂, Ck + C0

k) = ∅, then x̂ ∈
Em(C + C0). If Em

k (x̂, Ck + C0
k) 6= ∅, then there exists x̃ ∈ Em

k (x̂, Ck + C0
k)

such that x̃ ∈ Em(C + C0) and x̃ 6= x0.
Summing up, we have that for any ε > Θ there exists a perturbing matrix

C0 ∈ Ωpq(ε) such that one can specify x′ ∈ X\{x0} satisfying the condition
x′ ∈ Em(C+C0). This implies that Em(C+C0) 6⊆ Em(C). Hence ρm(p, q) < ε

for any number ε > Θ, i.e. ρm(p, q) ≤ Θ.
Taking into account the lower bound ρm(p, q) ≥ Θ, proven earlier in

Theorem 1, we get formula (9). �

In the case of a Boolean non-trivial problem, the following corollary results
from Theorem 1 and indicates the lower bound attainability for the stability
radius ρm(∞, q).

Corollary 2 Given m ∈ N and q ∈ [1,∞), the stability radius ρm(∞, q) of a
non-trivial multicriteria Boolean problem Zm(C) is expressed by the following
formula:

ρm(∞, q) = φm(∞) = min
i∈Nm

min
x 6∈Em(C)

max
x′∈X\{x}

Ci(x− x′)

‖x− x′‖1
. (11)

Further, we show that for any number p ∈ [1,∞], the upper bound n
1

pφm(∞)
for the stability radius of the Boolean problem is attainable when m = 1.

Theorem 2 Given p, q ∈ [1,∞], there exists a class of scalar Boolean problems
Z1(C), C ∈ Rn, such that the stability radius ρ1(p, q) of any problem belonging
to the class is expressed by the following formula:

ρ1(p, q) = n
1

pφ1(∞). (12)

Proof Due to Theorem 1, in order to prove (12) it suffices to find a class of

problems satisfying ρ1(p, q) ≥ n
1

pφ1(∞). Let X = {x0, x1, ..., xn} ∈ En, where
x0 = (0, 0, ..., 0)T ∈ Rn, xi = ej, j ∈ Nn. Here ej is the j-th column of the
n × n basis matrix (basic column vector). We set C = (−a,−a, ...,−a) ∈ Rn,
a > 0. Then

E1(C) = X\{x0},

φ1(∞) = a.

Let C′ = (c′1, c
′
2, ..., c

′
n) be an arbitrary perturbing row vector belonging to

Ωpq(n
1

p a). Reasoning by contradiction, it is easy to see that there exists at least
one index k ∈ Nm such that |c′k| < a. Therefore, we get

(C + C′)(x0 − xk) = a− c′k > 0,
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i.e. x0 6∈ E1(C + C′) for any perturbing row C′ ∈ Ωpq(n
1

pφ1(∞)). Hence, due

to x∗ 6∈ E1(C), we get ρ1(p, q) ≥ n
1

pφ1(∞). �

The numerical example, given below, shows that all three bounds for the
stability radius of a non-trivial Boolean problem can also be attainable in the
single criterion case.

Example 1 Let X = {x0, x1} ⊂ En where x0 = (0, 0, ..., 0)T , x1 = (1, 1, ..., 1)T ,
and C = (1, 1, ..., 1). Then, we have

Cx0 = 0, Cx1 = n,

E1(C) = {x0}, X\E1(C) = {x1},

ρ1(p, q) ≤ ‖C‖p.

Moreover, by taking into account (2) and (3), we obtain the equalities

φ1(p) = n
1

p = ‖C‖p.

Then, according to Theorem 1,

ρ1(p, q) = ‖C‖p, p, q ∈ [1,∞].

In addition, we notice that

φ1(p) = ‖C‖p = n
1

pφ1(∞),

i.e. all the three bounds are attainable in the scalar case of m = 1.

5. Conclusion

In this paper, the lower and upper attainable bounds on the stability radius
of the set of extreme solutions were obtained in the situation where solution
and criterion spaces are endowed with various Hölder’s norms. As corollaries,
analytical formulae for the stability radius are specified in the case of the Boolean
set of feasible solutions.

One of the biggest challenges in this field is to construct efficient algorithms
to calculate the analytical expressions. To the best of our knowledge, there are
not so many results known in that area, and, moreover, some of those results,
which have been already known, put more questions than answers. As it was
pointed out in Nikulin, Karelkina and Mäkelä (2013), calculating exact values of
stability radii is an extremely difficult task in general, so one could concentrate
either on finding easily computable classes of problems or on developing general
metaheuristic approaches.

Estimations of stability radius obtained in this paper, are based on the enu-
meration of the set of feasible solutions, whose cardinality may grow exponen-
tially with n. In the case of a single objective function, an approach to calcu-
lating the stability radius of an ε-optimal solution to the linear problem of 0-1
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programming in polynomial time has been given in Chakravarti and Wagelmans
(1999). These authors assumed that the objective function is minimized, the
feasible solution set is fixed and a given subset of the objective function coef-
ficients is perturbed. The approach requires that the original single objective
optimization problem be polynomially solvable, for example it can be one of
the well-known graph theoretic problems, such as minimum spanning tree or
shortest path problems. Another approach, based on k-best solutions, was pro-
posed in Libura et al. (1998) for NP-hard problems, such as traveling salesman
problem. In Emelichov and Podkopaev (2010), it has been shown how analyti-
cal formulae similar to (9) can be transformed into polynomial type calculation
procedure in the case of Boolean variables, Chebyshev norm and polynomial
solvability of the problem. However, for multicriteria case the question of ex-
istence of the polynomial time procedures remains open. As it is well known
that the presence of multiple criteria increases the level of complexity, for ex-
ample, polynomially solvable single objective problems become intractable even
in bicriteria case, see, e.g., Ehrgott (2005), finding polynomial methods seems
to be unlikely in general. For some particular challenging combinatorial prob-
lems, it has been proven that the problem of finding the radii of every type
of stability is intractable unless P = NP (Kuzmin, 2015). An application of
inverse optimization allows for reducing the calculation of stability radius to a
logarithmic number of mixed integer programs for multi-objective combinatorial
problems, where each objective function is a maximum sum and the coefficients
are restricted to natural numbers (Roland, Smet and Figueira, 2012).
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