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Abstract: In this work we provide a list of irreducible monic, to-
tally positive polynomials with integer coefficients and lengths below
2.3679d for a degree d polynomial. Our approach combines tech-
niques based on auxiliary functions and mixed-integer linear pro-
gramming algorithms. The list obtained shows that there are poly-
nomials of this type up to degree 16, with the exception of degree
11 where we are very close to the threshold.

Keywords: auxiliary functions, length of polynomials

1. Introduction

Let P (x) = b0x
d + · · · + bd = b0(x − α1) · · · (x − αd), b0bd 6= 0, P 6= x, be a

polynomial with complex coefficients. M. Langevin (1980) defined three families
of measures of polynomials which are, for p > 0:

Mp(P ) =
(

∫ 1

0

|P (e2iπt)|pdt
)

1

p ,

Lp(P ) =
(

d
∑

i=1

|ai|
p
)

1

p ,

Rp(P ) = |a0|

d
∏

i=1

(1 + |αi|
p)

1

p .

Note first that M(P ) = lim
p→0

Mp(P ) = exp
(

∫ 1

0

log |P (e2iπt)|dt
)

is the well known

Mahler measure of P . If α is an algebraic integer and M(α) = 1, then the
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classical theorem of Kronecker (1857) tells us that α is a root of unity. This
raises the question of whether

inf
α not a root of unity

M(α) > 1,

which is known as the Lehmer’s problem and is still open. The smallest known
value is due to Lehmer himself and is M(P ) = 1.176280 . . . where

P (z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

For a complete survey on the Mahler measure, see Smyth (2008).

Now, note that L(P ) = L1(P ) is the well known length of P . In 1994, inspired
by the works related to the Mahler measure, the first author (Flammang, 1994)
studied the structure of the set R of the quantities L(P )1/ deg(P ), P irreducible,
(namely the absolute length of P ) in case of P totally positive (i.e., all its roots
are positive real numbers) with integer coefficients and leading coefficient equal
to 1. Using the principle of auxiliary functions, she found the five smallest
points of R in the interval (2, 2.361101]. At last, she showed that R is dense in
[2.376841 . . . ,∞). In 2013, Q. Mu and Q. Wu (2013) extended the description
of the spectrum R to 2.364950, finding no new point in that spectrum. In 2014,
the first author (Flammang, 2014) continued this extension to 2.365827 but
found again no new point in the spectrum. However, she conjectured that the
next point is given by

x10−19x9+143x8−557x7+1231x6−1599x5+1231x4−557x3+143x2−19x+1

with measure 2.366160. Both results (Mu and Wu, 2013, and Flammang, 2014)
are based on the use of auxiliary functions, which require finding relevant poly-
nomials in order to construct them. Since the work mentioned above did not
lead to the sixth point of the spectrum, the idea came to seek for higher degree
totally positive integer polynomials with small length, with a view to using them
in the construction of new more efficient auxiliary functions.

Note that exhibiting such polynomials serves a threefold purpose. On the
one hand, such polynomials can provide improved auxiliary functions that could
lead to the sixth point of the spectrum. On the other hand, drawing up lists of
polynomials with small length has its own interest, as does the search for small
Mahler measures, for example. Finally, the values of these small lengths may
indicate the presence of possible unknown limit points for the absolute length
of polynomials defined above. Previously, the first author, Flammang (1994),
was able to get exhaustive results from degree 3 to degree 7, but the higher
degrees remained out of reach using the techniques available at that time. New
methods, based on optimization techniques, have since been developed by the
second author so that it is now possible to deal with the problem up to degree 16.
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The optimization method used is a linear optimization method, in that the
constraints imposed on unknown variables are linear, and the function to be
minimized, i.e. the length of the polynomials, can also be expressed as a lin-
ear form for the particular polynomials (the sign of their coefficients changes
alternately) that we consider. So, we are in a mixed integer programming-based
optimization framework, because our problem has the important peculiarity of
imposing an integer condition on the variables (the coefficients of unknown poly-
nomials) to be found. We write our problem as a mixed-integer programming
problem rather than a pure-integer programming problem, because the coeffi-
cients of linear constraints are real numbers. Of course, we could multiply the
left and right members of linear constraints to have only integer coefficients, but
this is not efficient, because it leads to dealing with very large integers, hence
our choice to keep real coefficients in linear constraints.

The main lines of solving a mixed-integer linear problem are as follows (see
Rustem, 2000):

1. Solve the continuous linear problem (i.e. ignore integrality).
2. If the optimal variables are all integer then the optimum solution is reached.

Otherwise:
3. Generate a cut (a constraint) which is satisfied by all integer solutions

to the problem but not by the current solution of the linear (continuous)
problem.

4. Add this new constraint and go to 1.

In this work, we have extended the list of polynomials with small length up
to degree 16, using both the principle of auxiliary functions and our algorithmic
method based on mixed-integer linear programming. Again, this did not find the
sixth point of the spectrum. Nevertheless, the list obtained is very interesting in
itself, in particular because it highlights four previously unknown polynomials
with length very close to 2.366160. As in Flammang (1994), we focus on the
search for polynomials P of degree d with length less than or equal to 2.3769d

(remember that the known limit point is 2.376841). The first step is to find a
lower bound and an upper bound for coefficients a1 and ad−1. This will allow us
to find an interval containing all the roots of P , depending on the values of a1.
The next step is to give precise estimates of lower and upper bounds relative to
each coefficient of the sought polynomials. The full details of this preparatory
work are given in Section 2.

2. Preparation of the computations

Let P be an irreducible totally positive polynomial with integer coefficients.
Since all its roots are positive real numbers, we deduce from the relations be-
tween coefficients and roots that P can be written as

P = xd − a1x
d−1 + · · ·+ (−1)d−1ad−1x+ (−1)d = (x− α1) · · · (x− αd)
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where the ai’s are positive integers. An important consequence of the alternative

signs in P is that L(P ) = |P (−1)| =

d
∏

i=1

(αi + 1). We will use this equality in a

later demonstration.

2.1. Bounds for a1 and ad−1

Recall that the trace of P is defined as tr(P ) =

d
∑

i=1

αi = a1. If P ∗ is the

reciprocal polynomial of P (i.e., P ∗(x) = xdP (1/x)), then tr(P ∗) = ad−1. In
Flammang (2016) the first author gave a lower bound for all but finitely totally
positive polynomials P with integer coefficients: tr(P ) ≥ 1.792812d. Hence, we
have a lower bound for the coefficients a1 and ad−1. We then prove the following
result:

Proposition 1 If P is a totally positive polynomial with integer coefficients of
degree d, different from x− 1 then

tr(P ) ≤ 5.336355 logL(P )− 2.466204d.

Proof: The auxiliary function involved here is of the type:

∀x > 0, f(x) = −x+ c0 log(x+ 1)− c1 log |x− 1|.

Thanks to the semi infinite linear programming (introduced into Number Theory
by C. J. Smyth, 1984, for more details, see Flammang, 2016), we are able to
find c0 and c1 such that the minimum m of the function f is as large as possible.
We obtain c0 = 5.336355, c1 = 1.170114 and m = 2.466204. If x − 1 does not
divide P , then we have

d
∑

i=1

f(αi) ≥ md

i.e.,

−tr(P ) + c0 log

d
∏

i=1

(αi + 1) ≥ c1 log

d
∏

i=1

|αi − 1|+md.

Since x− 1 does not divide P , then

d
∏

i=1

|αi − 1| is a nonzero integer, because

it is the resultant of P and x− 1. Hence, we have

tr(P ) ≤ c0 logL(P )−md.

Now, remember that L(P ) ≤ 2.3769d. Thus, we obtain an upper bound for
tr(P ) = a1 and tr(P ∗) = ad−1. ✷
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2.2. Localization of the roots of the polynomials

Let

P = xd − a1x
d−1 + · · ·+ (−1)d−1ad−1x+ (−1)d = (x− α1) · · · (x− αd)

where the ai’s are positive integers and α1 < α2 < · · · < αd = α are the roots of
P . Suppose that tr(P ) is a fixed integer. The auxiliary function f , introduced

in Flammang (2016), is such that f(x) = x −

79
∑

i=1

cj log |Qj(x)| ≥ 1.792812 for

x > 0, where the coefficients cj are positive real numbers and the Qj ’s are
polynomials with integer coefficients. The cj ’s and the Qj ’s are explicitly given
in Flammang (2016). It follows that tr(P ) ≥ f(α)+1.792812(d− 1). Now let A
be the point, from which the function f is increasing. We seek B > A such that,
if α ≥ B then f(α) + 1.792812(d− 1) > tr(P ), which is fixed, as stated above.
Then we have α < B and the roots of P lie in (0, B). This interval depends on
the degree and trace of the polynomials.

2.3. Global bounds for the coefficients of the polynomials

In this subsection, we explain how to give precise estimates for the upper and
lower bounds relative to each coefficient of a polynomial for a given degree and
trace.

For a given degree d and a given trace t, the estimation method consists
of sampling at random (from a uniform distribution) several million sets of d
real numbers contained in the interval (0, B) of the previous subsection, and
reconstructing for each of these sets the polynomial with real coefficients, whose
roots are the d real numbers it contains. We continue sampling until we obtain
100,000 polynomials with real coefficients whose traces are in a neighborhood
very close to t. For each coefficient, we thus have 100,000 real values coming
from the 100,000 selected polynomials, and we give an interval containing 99.9%
of these values. This provides very good estimates of lower and upper bounds
for each coefficient of the sought polynomials. More details are given in Otmani
et al. (2014).

3. Formulation as an optimization problem

The method, which allows to express the search for polynomial with small length
as a mixed-integer programming problem is in the spirit of the method, devoted
to a problem of a similar nature, which is explained in detail in Otmani et al.
(2014). We will therefore only give the broad lines in this section. Suppose we
are looking for polynomials of degree d. The basic idea is that these polyno-
mials, which have only real roots, change sign d times, and are strictly positive
or strictly negative between their roots. We translate this property in terms of
linear constraints in the following way: we sample at random (uniform distri-
bution) d real numbers in the interval (0, B), corresponding to the degree and
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the trace which interest us. These real numbers are sorted in ascending order,
and we impose on the sought polynomial to change alternately sign for each of
these real numbers. This provides inequalities involving integer coefficients (i.e.
unknown variables) to be found. We add new constraints using the intervals
found in Section 2.3, which restrict the possible values for these unknown integer
coefficients. Finally, with

P = xd − a1x
d−1 + · · ·+ (−1)d−1ad−1x+ (−1)d,

we minimize the linear form

(ad−1, · · · , a0) → −ad−1 + ad−2 − · · ·+ (−1)d

with the constraints previously mentioned. It is not sure that for the given
constraints, the mixed-integer programming problem has a solution. If there
is one, it remains to check the irreducibility of the found polynomial, which is
done using the Pari library (see Pari/GP, 2016).

In summary, the search algorithm is as follows:
1. Randomly sample d real numbers in (0, B).
2. Solve the mixed-integer programming problem by using the randomly sam-

pled real numbers to construct linear constraints.
3. If a solution is found, keep it if the corresponding polynomial is irreducible

in Z[X ].
4. Back to 1.

4. Implementation and results

For the implementation of our mixed-integer programming algorithm, we used
the Matlab Optimization toolbox, which, in particular, allowed us to deal with
the fact that unknown coefficients are integers. The most difficult polynomials
to find, in the case where d is an even integer, are non-reciprocal polynomials,
since reciprocal polynomials can be obtained from half-degree polynomials via

the change of variables x → x+
1

x
− 2. When d is an odd integer, this question

does not arise, and the polynomials found are all non-reciprocal.

In the following lines, we list by degree the reciprocal and non-reciprocal
polynomials of degree d, whose length is less than 2.3769d.

Rather than giving a long list of polynomials, we provide for each degree,
the reciprocal and the non-reciprocal polynomials of smallest lengths (in the
case of even degrees), and the non-reciprocal polynomial of smallest length (in
the case of odd degrees) found by our algorithm. The full list is available at
http://www.iecl.univ-lorraine.fr/ Jean-Marc.Sac-Epee/SmallLength.html
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• Degree 8: 2.37698 = 1018.79 . . .

Reciprocal polynomial

Length = 941: x8−15x7+83x6−220x5+303x4−220x3+83x2−
15x+ 1

Non-reciprocal polynomial

Length = 999: x8−16x7+91x6−240x5+323x4−228x3+84x2−
15x+ 1

• Degree 9: 2.37699 = 2421.57 . . .

Length = 2389: x9−17x8+111x7−366x6+668x5−690x4+396x3−
121x2 + 18x− 1

• Degree 10: 2.376910 = 5755.84 . . .

Reciprocal polynomial

Length = 5501: x10− 19x9+143x8− 557x7+1231x6− 1599x5+
1231x4 − 557x3 + 143x2 − 19x+ 1

Non-reciprocal polynomial

Length = 5741: x10− 19x9+144x8− 567x7+1269x6− 1670x5+
1302x4 − 595x3 + 153x2 − 20x+ 1

• Degree 11: 2.376911 = 13681.06 . . .

Length = 13683: x11 − 21x10 + 178x9 − 805x8 + 2150x7 − 3535x6 +
3618x5 − 2287x4 + 873x3 − 192x2 + 22x− 1

• Degree 12: 2.376912 = 32518.53 . . .

Reciprocal polynomial

Length = 31169: x12 − 23x11 + 218x10 − 1118x9 + 3438x8 −
6651x7 + 8271x6 − 6651x5 + 3438x4 − 1118x3 + 218x2 − 23x+ 1

Non-reciprocal polynomial

Length = 31703: x12 − 23x11 + 219x10 − 1132x9 + 3506x8 −
6802x7 + 8441x6 − 6750x5 + 3466x4 − 1121x3 + 218x2 − 23x+ 1

• Degree 13: 2.376913 = 77293.29 . . .

Length = 74839: x13−24x12+245x11−1401x10+4980x9−11549x8+
17848x7 − 18464x6 + 12694x5 − 5702x4 + 1625x3 − 279x2 + 26x− 1

• Degree 14: 2.376914 = 183718.43 . . .

Reciprocal polynomial

Length = 175449: x14 − 27x13 + 308x12 − 1963x11 + 7790x10 −
20307x9 + 35763x8 − 43131x7 + 35763x6 − 20307x5 + 7790x4 −
1963x3 + 308x2 − 27x+ 1
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Non-reciprocal polynomial

Length = 179271: x14 − 27x13 + 310x12 − 1993x11 + 7969x10 −
20864x9 + 36760x8 − 44197x7 + 36446x6 − 20561x5 + 7840x4 −
1967x3 + 308x2 − 27x+ 1

• Degree 15: 2.376915 = 436680.36 . . .

Length = 414157: x15 − 28x14 + 339x13 − 2349x12 + 10389x11 −
30960x10 + 63969x9 − 92910x8 + 95232x7 − 68646x6 + 34443x5 −
11805x4 + 2676x3 − 379x2 + 30x− 1

• Degree 16: 2.376916 = 1037945.54 . . .

Reciprocal polynomial

Length = 969581: x16 − 31x15 + 413x14 − 3141x13 +15261x12 −
50187x11+115410x10−189036x9+222621x8−189036x7+115410x6−
50187x5 + 15261x4 − 3141x3 + 413x2 − 31x+ 1

Non-reciprocal polynomial

Length = 1024159: x16− 31x15+414x14− 3164x13+15484x12−
51391x11+119441x10−197861x9+235603x8−202018x7+124235x6−
54218x5 + 16465x4 − 3364x3 + 436x2 − 32x+ 1

5. Remarks

In conclusion of this work, we note that the reciprocal polynomials have smaller
lengths than the non-reciprocal polynomials, the fact that we do not know how
to explain at the moment.

Another very interesting and rather promising observation is relative to the
absolute length of the polynomials found, which we can calculate from the
lengths given in our list. Indeed, it appears that four absolute lengths are very
close to 2.366160, namely 2.366160..., 2.366799..., 2.368519... and 2.368523...,
which gives some consistency to conjecture of the existence of a limit point
smaller than the known limit point 2.376841.
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