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Abstract: The purpose of this paper is to provide sufficient
conditions for the stabilizability of weak solutions of stochastic dif-
ferential systems when both the drift and diffusion are affine in the
control. This result extends the well–known theorem of Jurdjevic–
Quinn (Jurdjevic and Quinn, 1978) to stochastic differential sys-
tems under weaker conditions on the system coefficients than those
assumed in Florchinger (2002).
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1. Introduction

The stabilization of deterministic nonlinear control systems has been the subject
of a great stream of research in the past decades by many authors. Among all
the results proven in this field of research, it is fair to indicate the work of
Jurdjevic and Quinn (1978), which gives sufficient conditions for the existence
of stabilizing state feedback laws for deterministic systems affine in the control,
provided the control Lie algebra of the system has full rank. This result is at
the origin of various publications on this subject, since it appears that many
engineering systems are of ”Jurdjevic–Quinn type” (see, for instance, Lee and
Arapostathis, 1988; Tsinias, 1989; Faubourg and Pomet, 1999; Outbib and
Sallet, 1992, or Morin, 1996, and the references therein).

Stochastic versions of Jurdjevic-Quinn theorem have been established by
Florchinger (1994) for stochastic differential systems, the drift of which is affine
in the control, and later in Florchinger (2002), when both the drift and the
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diffusion are affine in the control, and in Florchinger (2001) for more general
nonlinear stochastic differential systems. The technique used in these papers is
based on the stochastic Lyapunov analysis, developed by Khasminskii (1980)
and the stochastic version of La Salle’s invariance principle, proven by Kushner
(1972).

However, these results require that the stochastic systems considered in these
works admit strong solutions, which is not necessarily the case in the problems
of everyday life, in particular in stochastic financial and biological models (see,
for instance, Yang, Kloeden and Wu, 2018, and the references therein). Indeed,
for such models the system coefficients do not satisfy the local Lipschitz condi-
tion, which implies that the existence and uniqueness of the solution cannot be
guaranteed by the standard conditions.

To overcome this difficulty, we propose a new approach, based on the results
of Li and Liu (2014), which extend the concept of stochastic stability to more
general stochastic nonlinear systems that have more than one weak solution.
This new approach allows us to consider stochastic differential systems, whose
coefficients are only continuous, which is often the case in control theory.

This remainder of the paper is divided in three sections and is organized
as follows. In Section 2, we summarize the concepts of stochastic stability in
the more general sense, introduced by Li and Liu (2014) to cover the stochas-
tic nonlinear systems having more than one weak solution. In particular, the
generalized stochastic Barbashin–Krasovskii theorem, which gives the criteria of
stochastic stability for more general stochastic nonlinear systems, is recalled. In
Section 3, we introduce the class of stochastic differential systems, affine in the
control, that we are dealing with in this paper and introduce some differential
operators, associated to this class of stochastic systems that we shall need in
the sequel. In Section 4, we prove the main result of the paper, which extends
the stochastic version of Jurdjevic-Quinn theorem, stated in Florchinger (2002),
to stochastic differential systems that may have more than one weak solution.

2. Asymptotic stability in probability of weak solutions

for stochastic differential systems

In this section, in order for the paper to be self-contained, we recall some ba-
sic results concerning the existence of weak solutions for stochastic differential
systems and the concept of stochastic stability for such systems.

With this aim in mind, we introduce first the following notations, which will
be used in the sequel. A function α mapping IR+ into IR+ is said to be a class K
function if it is continuous, strictly increasing and α(0) = 0. Further, a function
α is said to be a class K∞ function if α is an unbounded class K function.

Let (Ω,F , P ) be a complete probability space and denote by (wt)t≥0 a stan-
dard IRm–valued Wiener process, defined on this space.
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Consider the stochastic process solution xt ∈ IRn of the stochastic differential
equation written in the sense of Itô,

xt = x0 +

∫ t

0

f(xs)ds+

∫ t

0

g(xs)dws, (1)

where x0 is given in IRn and f and g are Borel measurable functions, mapping
IRn into IRn and IRn×m, respectively, such that f(0) = 0 and g(0) = 0.

As it is well–known, in order to guarantee that the stochastic differential
equation (1) admits a unique strong solution for any initial condition, the func-
tions f and g need to satisfy a local Lipschitz condition (see. for example, Ikeda
and Watanabe, 1989; Karatzas and Shreve, 1991, or Khasminskii, 1980, and
the references therein). However, the stochastic differential equation (1) always
has weak solutions when the functions f and g are only continuous (see, for
example, Cherny, 2002; Cherny and Engelbert, 2018; Hofmanová and Seidler,
2012; Ondreját and Seidler, 2018; Karatzas and Shreve, 1991; or Ikeda and
Watanabe, 1989, and the references therein), which is usually the case when
modeling stochastic systems in real life, for example in finance and biology (see
Yang, Kloeden and Wu, 2018, and the references therein).

Before introducing the extension of the concepts of stochastic stability to
weak solutions of stochastic differential equations, we recall first the following
definition from Li and Liu (2014).

Definition 1 If there exists a continuous adapted stochastic process (xt)t≥0

on a probability space (Ωx,Fx, P x), equipped with a right–continuous filtration
(Fx

t )t≥0, and an IRm–valued (Fx
t )t≥0 adapted standard Wiener process (W x

t )t≥0,
defined on this probability space, such that P x

x0
= Px0

and for all t ∈ [0, τx+∞[,

xt = x0 +

∫ t

0

f(xs)ds+

∫ t

0

g(xs)dW
x
s a.s.

then the stochastic process (xt)t≥0 is called a weak solution of the stochastic
differential equation (1), where τx+∞ is the explosion time of the weak solution
(xt)t≥0; that is τx+∞ = lim

ǫ→+∞
inf {t ≥ 0/||xt|| ≥ ǫ}.

The above definition shows that given specified probability spaces, filtrations
and Wiener processes, weak solutions for the stochastic differential equation (1)
may exists on different probability spaces. In fact, for a given Wiener process,
defined on a specific probability space, a weak solution for the stochastic dif-
ferential equation (1) may not exist, but nevertheless, this does not mean that
this system has no weak solution for another Wiener process (see Karatzas and
Shreve, 1991, for example). Moreover, the following result, stated in Ikeda and
Watanabe (1989), gives sufficient conditions, ensuring the existence of weak
solutions for the stochastic differential system (1).
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Theorem 1 If the functions f and g are continuous on IRn then, for any initial
distribution µ on (IRn,BIRn), the stochastic differential system (1) admits a weak
solution (xt)t≥0 with initial distribution µ; i.e. P x

x0
= µ.

In the following, we bring in the extensions, introduced by Li and Liu (2014),
of the concepts and criteria for global asymptotic stability in probability of the
equilibrium solution of the stochastic differential equation (1), stated in Khas-
minskii (1980) or Deng, Krstić and Williams (2001), to stochastic differential
systems having more than one weak solution rather than a unique strong solu-
tion.

Definition 2 1) The equilibrium solution xt ≡ 0 of the stochastic differential
equation (1) is globally stable in probability if for any ǫ ∈]0, 1[, there exists a
class K function α, such that for any x0 ∈ IRn, every weak solution (xt)t≥0 of
the stochastic differential system (1) satisfies

P x

(

sup
0≤t

||xt|| < α (||x0||)

)

≥ 1− α.

2) The equilibrium solution xt ≡ 0 of the stochastic differential equation (1)
is globally asymptotically stable in probability if it is globally stable in probability
and for any x0 ∈ IRn, every weak solution (xt)t≥0 of the stochastic differential
system (1) satisfies

P x

(

lim
t→+∞

||xt|| = 0

)

= 1.

Note that in the previous definition the probability measure P x is associated
with the specific weak solution and consequently may differ from the different
weak solutions of the stochastic differential system (1). Moreover, it is worth
noticing that the class K function α in Definition 2 does not vary with the
solutions of the stochastic differential system (1).

Let us denote by L the infinitesimal generator of the stochastic process
solution of the stochastic differential equation (1); that is, the second order
differential operator, defined for any function ϕ ∈ C2 (IRn; IR) by

Lϕ(x) = ∇ϕ(x)f(x) +
1

2
Tr
(

g(x)g(x)τ∇2ϕ(x)
)

.

Then, the following stochastic version of Barbashin–Krasovskii theorem,
which gives sufficient conditions in terms of Lyapunov function for the global
asymptotic stability in probability of the equilibrium solution of the stochastic
differential equation (1), has been proven by Li and Liu (2014) in Theorem 2.



A Jurdjevic-Quinn theorem for stochastic differential systems under weak conditions 25

Theorem 2 Assume that the functions f and g are continuous and that there
exist a function V in C2 (IRn; IR) and class K∞ functions α and β such that

1. α (||x||) ≤ V (x) ≤ β (||x||),
2. LV (x) ≤ 0,
3. for any initial distribution, no nonzero weak solution of the stochastic

differential system (1) completely belongs to the set {x ∈ IRn/LV (x) = 0}
almost surely.

Then the equilibrium solution xt ≡ 0 of the stochastic differential equation
(1) is globally asymptotically stable in probability.

To conclude this section, we recall a result from Khalil (1996), connecting
proper Lyapunov functions and class K∞ functions.

Proposition 1 Let V be a proper Lyapunov function defined on IRn (i.e. a
radially unbounded function V in C2 (IRn; IR) such that V (0) = 0 and V (x) > 0
for any x ∈ IRn, x 6= 0), then there exist class K∞ functions α and β such that
for any x ∈ IRn,

α (||x||) ≤ V (x) ≤ β (||x||) .

3. Problem setting and notations

In this section, we introduce the class of stochastic differential control systems
we are dealing with in this paper.

Let (Ω,F , P ) be a complete probability space and denote by (wt)t≥0 a stan-
dard IRm–valued Wiener process, defined on this space.

Consider the stochastic process solution xt ∈ IRn of the multi–input stochas-
tic differential system written in the sense of Itô,

xt =

x0 +

∫ t

0

(

f0(xs) +

p
∑

k=1

ukfk(xs)

)

ds+
m
∑

i=1

∫ t

0

(

gi,0(xs) +

p
∑

k=1

ukgi,k(xs)

)

dwi
s

(2)

where

1. x0 is given in IRn,
2. u is a measurable IRp-valued control law,
3. fk, 0 ≤ k ≤ p, and gi,k, 1 ≤ i ≤ m, 0 ≤ k ≤ p, are smooth continuous

functions mapping IRn into IRn, vanishing in the origin.

The aim of this paper is to design a state feedback law u such that the
equilibrium solution of the closed–loop system deduced from the stochastic dif-
ferential system (3) is globally asymptotically stable in probability in the sense
of Definition 2.
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With this purpose in mind, we introduce the following differential operators
that we shall need in the sequel.

Denote by L the infinitesimal generator of the stochastic process solution of
the unforced stochastic differential system deduced from (3); that is, L is the
second order differential operator, defined for any function ϕ in C2(IRn; IR) by

Lϕ(x) =
n
∑

i=1

f i
0(x)

∂ϕ(x)

∂xi

+
1

2

n
∑

k,r=1

m
∑

j=1

gkj,0(x)g
r
j,0(x)

∂2ϕ(x)

∂xk∂xr

.

Furthermore, for any i ∈ {1, ..., p}, denote by Li the second order differential
operator, defined for any function ϕ in C2(IRn; IR) by

Liϕ(x) =
n
∑

k=1

fk
i (x)

∂ϕ(x)

∂xk

+
n
∑

k,r=1

m
∑

j=1

gkj,0(x)g
r
j,i(x)

∂2ϕ(x)

∂xk∂xr

and, for any i, j ∈ {1, ..., p}, denote by Lij the second order differential operator,
defined for any function ϕ in C2(IRn; IR) by

Lijϕ(x) =
1

2

n
∑

k,r=1

m
∑

ν=1

gkν,i(x)g
r
ν,j(x)

∂2ϕ(x)

∂xk∂xr

.

To conclude, for any i ∈ {1, ...,m}, denote by Gi the first order differential
operator, defined for any function ϕ in C1(IRn; IR) by

Giϕ(x) =

n
∑

k=1

gki,0(x)
∂ϕ(x)

∂xk

.

4. The main result

In this section, we state sufficient conditions ensuring the existence of a stabiliz-
ing state feedback law for the stochastic differential system (3). This result ex-
tends the well–known theorem of Jurdjevic–Quinn (Jurdjevic and Quinn, 1978)
to the framework considered in this paper.

Theorem 3 Assume that there exists a proper smooth Lyapunov function V
defined on IRn such that

1) LV (x) ≤ 0 for every x ∈ IRn,
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2) the set

H = {x ∈ IRn / Gq0
i0
Lr0 ...Gqk

ik
LrkLjV (x) = 0 and Gq0

i0
Lr0 ...Gqk

ik
Lrk+1V (x) = 0,

∀j ∈ {1, .., p}, ∀k ∈ IN, ∀i0, .., ik ∈ {1, ...,m}, ∀q0, r0, .., qk, rk ∈ {0, .., k}

s.t.

k
∑

i=0

(qi + ri) = k}

is reduced to {0}.

Then, the control law, u, defined on IRn by

uj(x) = −
LjV (x)

γ(x)
, 1 ≤ j ≤ p, (3)

where γ(x) = 1+

(

sup
1≤i,j≤p

LijV (x)

)2

, renders the stochastic differential system

(2) globally asymptotically stable in probability.

Remark 1 In the definition of the stabilizing control law u, given in (3), one
can actually use any positive function γ mapping IRn into IR such that

LijV (x) < γ(x)

for any x ∈ IRn and i, j ∈ {1, ..., p}.

Proof of Theorem 3. First, note that since V is a proper Lyapunov function,
Proposition 1 implies that there exist class K∞ functions α and β such that for
any x ∈ IRn,

α (||x||) ≤ V (x) ≤ β (||x||) .

Further, denoting by L the infinitesimal generator of the stochastic process
solution of the closed–loop system deduced from (2) with the state feedback law
u given by (3), one gets for every x ∈ IRn,

LV (x) = LV (x)−
1

γ(x)

p
∑

i=1

(LiV (x))2 +
1

γ(x)2

p
∑

i,j=1

LiV (x)LjV (x)LijV (x). (4)

Then, since LV (x) ≤ 0 for every x ∈ IRn, by taking into account the defini-
tion of the function γ, one has

LV (x) ≤ 0

for every x ∈ IRn and therefore the two first assertions in Theorem 2 are fulfilled.
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Furthermore, it is obvious from (4) that LV (xt) ≡ 0 for every t ≥ 0 if,
and only if, LV (xt) ≡ 0 for every t ≥ 0 and LiV (xt) ≡ 0 for every t ≥ 0 and
i ∈ {1, ..., p}.

Then, by applying Itô’s formula to the stochastic processes LV (xt) and
LiV (xt), i ∈ {1, ..., p}, it appears easily that if LV (xt) ≡ 0 for every t ≥ 0
and LiV (xt) ≡ 0 for every t ≥ 0 and i ∈ {1, ..., p}, one has L2V (xt) ≡ 0,
GiLV (xt) ≡ 0, 1 ≤ i ≤ m, LLiV (xt) ≡ 0, 1 ≤ i ≤ p, and GiLjV (xt) ≡ 0,
1 ≤ i ≤ m, 1 ≤ j ≤ p, for every t ≥ 0.

Therefore, by inductive applications of Itô’s formula, one can prove that if
LV (xt) ≡ 0 for every t ≥ 0, one has xt ∈ H for every t ≥ 0 and, consequently,
according with the second hypothesis, xt ≡ 0 for every t ≥ 0.

Consequently, no nonzero weak solution of the stochastic differential system
(2) in conditions of applying the state feedback law u, given by (2), completely
belongs to the set {x ∈ IRn/LV (x) = 0} almost surely and hence, according
to Theorem 2, the equilibrium solution xt ≡ 0 of the closed–loop stochastic
differential system deduced from (2) when applying the state feedback law u
given by (3), is globally asymptotically stable in probability. ✷
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Hofmanová, M. and Seidler, J. (2012) On weak solutions of stochastic
differential equations. Stochastic Analysis and Applications 30 (1) 100–
121. DOI: 10.1080/07362994.2012.628916



A Jurdjevic-Quinn theorem for stochastic differential systems under weak conditions 29

Ikeda, N. and Watanabe, S. (1989) Stochastic Differential Equations and
Diffusion Processes. North–Holland Publishing, Amsterdam.

Jurdjevic, V. and Quinn, J.P. (1978) Controllability and stability. Journal
of Differential Equations 28 381-389.

Karatzas, I. and Shreve, S.E. (1991) Brownian Motion and Stochastic
Calculus. Springer-Verlag, New York.

Khalil, H. K. (1996) Nonlinear Systems. 2nd ed. Prentice-Hall, Upper
Saddle River.

Khasminskii, R.Z. (1980) Stochastic Stability of Differential Equations.
Sijthoff & Noordhoff, Alphen aan den Rijn.

Kushner, H.J. (1972) Stochastic stability. In: R. Curtain, ed., Stability
of Stochastic Dynamical Systems. Lecture Notes in Mathematics 294

Springer Verlag, Berlin, Heidelberg, New York, 97-124.
Lee, K.K. and Arapostathis, A. (1988) Remarks on smooth feedback sta-

bilization of nonlinear systems. Systems and Control Letters 10 41–44.
Li, F. and Liu, Y. (2014) Global stability and stabilization of more gen-

eral stochastic nonlinear systems. Journal of Mathematical Analysis and
Applications 413 841–855. DOI:10.1016/j.jmaa.2013.12.021

Morin, P. (1996) Robust stabilization of the angular velocity of a rigid body
with two actuators. European Journal of Control 2 (1) 51–56.

Ondreját, M. and Seidler, J. (2018) A note on weak solutions to stochastic
differential equations. Kybernetika 54 888–907. DOI:10.14736/kyb-2018-
5-0888

Outbib, R. and Sallet, G. (1992) Stabilizability of the angular velocity of
a rigid body revisited. Systems and Control Letters 18 93–98.

Tsinias, J. (1989) Sufficient Lyapunov–like conditions for stabilization. Math-
ematics of Control Signals and Systems 2 343–357.

Yang, H., Kloeden, P.E. and Wu, F. (2018) Weak solution of stochas-
tic differential equations with fractional diffusion coefficient. Stochastic
Analysis and Applications 36 (4) 613–621. DOI:10.1080/07362994.2018.
1434005


