
Control and Cybernetics 
vol. 26 (1997) No. 3 

Initial results of training neural networks to detect breast 
cancer using evolutionary programming 

by 

D a v i d  B .  Fogel*,  E u g e n e  C.  Wasson**, E d w a r d  M .  Boughton***,  
Vincent  W .  Porto*,  J a m e n  W .  Shively* 

* Natural Selection, Inc., 3333 N. Torrey Pines Ct., Suite 200,
L a  Jolla, CA 92037 

E-mail: { dfogel,bporto,jshively }@natural-selection.corn

** Maui Memorial Hospital, 221 Mahalani, 
Wailuku, HI 96793 

E-mail: wasson@maui.net

*** Hawaii Industrial Laboratory, Inc., P.O. Box 1275, 
Wailuku, HI 96793 

E-mail: boughton@maui.com

A b s t r a c t :  Artificial neural networks arc applied to the problem 
of detecting breast cancer from radiographic features and patient 
age. Evolutionary programming is used to train neural networks 
based on sigmoid or Gaussian kernel functions. Preliminary results 
on 96 biopsy-proven cases (62 malignant, 34 benign) indicate that 
a reasonable probability of detecting malignancies can be achieved 
using simple neural architectures. The features appear to be more 
amenable to discrimination by partitioning functions than to clus-
tering functions, although final analysis remains for larger sample 
sizes. 

K e y w o r d s :  breast cancer, neural networks, evolutionary pro-
gramming 

1. Introduction
Carcinoma of the breast is second only to lung cancer as a tumor-related cause 
of death in women. There arc now more than 180,000 new cases and 45,000 
deaths annually in the United States alone. It begins as a focal curable disease, 
but it is usually not identifiable by palpation at this stage, and mammography 
remains the mainstay in effective screening. It has been estimated that the 
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mortality from breast carcinoma could be decreased by as much as one-third if 
all women in the appropriate age groups were regularly screened. 

Computer technology offers many potential benefits to the radiologist, in-
cluding computer-aided diagnosis. There is currently considerable intra- and 
inter-observer disagreement or inconsistencies in mammographic interpretation. 
This has led to an interest in the possibility of utilizing computerized pattern 
recognition algorithms, such as artificial neural networks (ANNs), to assist in 
the decision-making required in the assessment of mammograms. ANNs have 
been demonstrated to be useful in many engineering pattern recognition appli-
cations and these techniques hold promise for improving the accuracy of deter-
mining those patients where further assessment and possible biopsy is indicated. 
Furthermore, there should also be an eventual cost saving when a reliable au-
tomated screening system can be developed. The successful development of a 
neural network that is capable of reliably assessing the potential for the exis-
tence of breast carcinoma based on radiographic features of mammograms would 
make the radiologist both more efficient and more effective. 

ANNs are models based on the neuronal structure of natural organisms 
(H a y kin, 1994). They arc stimulus-response transfer functions that accept some 
input and yield some output. They are typically used to learn an input-output 
mapping over a set of examples. For example, as will be described here, the 
input can be radiographic features from mammograms, with the output being 
a decision regarding the likelihood of a malignancy. Hornik et al. (1989) and 
Poggio and Girosi (1990) have proved that neural networks with sigmoid or 
Gaussian basis functions in a single hidden layer can in principle generate any 
measurable mapping, indicating the versatility of these functions. 

Given a network architecture (i.e., type of network, the number of nodes in 
each layer, the connections between the nodes, and so forth), and a training 
set of input patterns, the collection of variable weights determines the output 
of the network to each presented pattern. The error between the actual out-
put of the network and the desired target output defines a response surface 
over a hyperspace having a dimension equal to the number of weights. A com-
monly employed method for finding weight sets in such applications is error back 
propagation, which is essentially a gradient method. As such, it is subject to 
entrapment in locally optimal solutions, and the resulting weight sets arc often 
unsuitable for practical applications. Numerical optimization techniques that 
do not suffer from such entrapment can be used to advantage in these cases. 

Evolutionary algorithms offer one such technique. In these stochastic op-
timization methods, a population of candidate solutions is maintained, and 
random variation (m11tation and/or recombination) and selection are imposed 
on the population to guide it to appropriate regions of the hyperspace. The 
use of random variation to bias the search avoids entrapment in local optima, 
and there arc several mathematical proofs that variations of these procedures 
provide asymptotic global convergence, rather than merely local convergence 
(Fogel, 1994; Rudolph, 1994; Back, 1996). Moreover, there is empirical evi-
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dence that the methods arc robust to many pathologies in possible response 
surfaces, including multiple minima or maxima, constraints, disjoint feasible 
regions, and random perturbations (Schwefel, 1995; Fogel, 1995; Michalewicz, 
1996; and others). 

There have been many efforts to train neural networks using evolutionary 
algorithms (Fogel et al., 1990; Angeline et al., 1994; McDonnell and Waagen, 
1994; Yao and Liu, 1996; and many others). This paper describes the results of 
preliminary efforts to use evolutionary programming to train simple ANNs to 
respond to a set of radiographic features from film screen mammograms, along 
with the patient's reported age, to make a determination regarding the presence 
or absence of a malignant condition. It begins with a brief review of selected 
efforts to use neural networks in breast cancer detection, before describing the 
current methods and results. 

2. Background
Neural networks have been rece1vmg recent attention in medical diagnostics 
(Brotherton and Simpson, 1995; Rizki et al., 1995; and others). With regard to 
detecting breast cancer, efforts have been directed at classifying histologic data 
f rom cells removed by fine needle aspiration (Wolberg et al., 1994, 1995) and 
radiographic features from film screen mammography (Kocur et al., 1995; and 
others). Three of these efforts are reviewed here. 

The investigation of Wu et al. (1993) used 43 preselected features related 
to density, microcalcification, parenchymal distortion, skin thickening, correla-
tion with clinical findings, and so forth. Data was taken from 133 textbook 
cases in Tabar and Dean (1985). For each mammogram, each of the selected 
features was rated by an experienced mammographer on a scale of 0-10, and 
this served as the vector input to a multilayer perceptron neural network (i.e., 
feedforward and fully connected). The network possessed 10 hidden units and a 
single output unit which was trained to yield a value of 0.0 for a benign case and 
1.0 for a malignancy. Training was accomplished using back propagation. The 
results of this preliminary study and other described experiments indicated the 
suitability of this approach. B y  pruning the feature set to a more reasonable, 
smaller collection, the neural network was able to statistically outperform an at-
tending radiologist and residents in assessing patterns of mammographic image 
features that arc associated with benign and malignant lesions. There was no 
statistically significant difference between the performance of the network and 
the experienced mammographer used to rate each of the image features. 

Floyd et al. (1994) used back propagation on multilayer perceptrons to pre-
dict breast cancer from mammographic findings from patients who were sched-
uled for biopsy. They used only eight input parameters (mass size, mass margin, 
asymmetric density, architectural distortion, calcification number, calcification 
morphology, calcification density, and calcification distribution) and each of 
these was paramcterized less subjectively than in Wu et al. (1993). There were 
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260 cases used for training and testing. Data was not separated into comple-
mentary training and testing sets; all of the exemplars were processed using a 
jackknife statistical procedure. After significant training, the results indicated 
that if a threshold value of 0.1 were used (output on a scale from [-1, 1]), 38 out 
of 168 benign cases and all 92 malignancies would be identified. The authors 
compared this performance to that of radiologists and suggested that these re-
sults were statistically significantly better than radiologists at a P < 0.08 level. 
Although their results do appear fairly impressive with regard to detecting ma-
ligrnmcy, the number of false alarms is somewhat high (23%), and the statistical 
validity of the hypothesis test carried out can be questioned because the thresh-
old of 0.1 was chosen after the authors reviewed the data and statistics were 
compiled on those same data. Thus, the data did not reflect a random sample, 
but rather a biased sample. New data would have to be tested at the threshold 
value of 0.1 to ensure a sound statistical procedure. 

Wilding et al. (1994) used back propagation on multilayer perceptrons to 
assess both breast and ovarian cancer. Their procedure was similar to Wu 
et al. (1993) and Floyd et al. (1994), except that their input parameters 
consisted mainly of objective blood specimens and analyses (maximum of 10 
total input parameters) from 104 patients. Unfortunately, Wilding et al. (1994) 
reported that the neural network was able to "provide little improvement on the 
sensitivity of testing comparing to the use of [the tumor marker] CA 15-3 only. 
Furthermore, it would appear that none of the networks appear to identify any 
worthwhile parameters or operating conditions with clinical utility". 

Wu et al. (1993), Floyd et al. (1994), and Wilding et al. (1994) each used 
back propagation to determine the weights of their neural networks. But net-
works trained by gradient methods may require many more hidden nodes to 
train to a tolerable level of error than are actually required because the method 
may converge at suboptimal weight sets. Adding more weights (i.e., degrees 
of freedom) can help overcome local optima and offer the possibility for suit-
able training, but overparameterized networks may not generalize well on new 
data. These concerns were specifically discussed in Floyd et al. (1994) and 
Wilding et al. (1994). The most effective methods employed in these investiga-
tions for limiting the number of nodes and network parameters were based on 
sensitivity analysis and ad hoe pruning. Sensitivity analysis is problematic on 
nonlinear transfer functions (such as neural networks) and ad hoe pruning can 
be largely unproductive. Despite directly mentioning concerns about overfitting 
their data, Floyd et al. (1994) found that their best performance occurred when 
using 177 weights (16 hidden nodes), but they used only 260 samples. Wild-
ing et al. (1994) used networks with as few as 38 weights and as many as 132 
weights, and despite having 104 samples were still unable to generate satisfac-
tory performance. Even if the blood statistics that were being used were not 
particularly relevant to the classification task at hand, the failure to find suit-
able networks with more parameters than data indicates the limitations of the 
training method and suggests alternative methods for optimizing classification 
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networks, such as evolutionary computation. 

3. Method
Data for the current effort were collected by assessing film screen mammograms 
in light of a set of radiographic features as determined by the domain expert 
(Wasson). The features selected paralleled those of Floyd et al. (1994) with 
some important modifications. Under the system of Floyd et al. (1994), cer-
tain features were described as lying on a continuum when it appeared more 
useful to rate these features independently. For example, Floyd et al. (1994) 
rated mass margin with six categories: (1) no mass (value 0.0), (2) well cir-
cumscribed (value 0.2), (3) microlobulated (value 0.4), (4) obscured (value 0.6), 
(5) indistinct (value 0.8), and (6) and spiculated (1.0). In contrast, the current
parameterization rated the five categories of masses (see (2)-(6) in Table 1) in 
four levels [0, 1, 2, 3] as none, low, medium, and high. The complete set of radio-
graphic features used appears in Table l .  In addition, the age of the patient was
considered leading to a total of 13 input features. These features were assessed
in 96 cases all of which subsequently had open surgical biopsy of the area of
concern, with the associated pathology indicating whether or not a malignant
condition had been found. In all, 62 cases were associated with a biopsy-proven
malignancy, while 34 cases were indicated to be negative by biopsy ( although
the possibility remains that such an indication may be in error).

These data were processed using two forms of neural networks: (1) multilayer 
perceptrons and (2) receptive fields. Each network architecture was restricted to 
two hidden nodes, with a linear output node, resulting in 31 adjustable weights 
(see Figure 1). The perceptron network used a sigmoid filter on each hidden node 
of J(/3) = (1 +exp( -fJ)  ) - 1, where (3 is the sum of a bias term and the clot product 
of the input feature vector and the associated weight vector. The receptive field 
network used a Gaussian filter on each hidden node off (/3) = (27r)-0·5 exp(-(32 ).

Evolutionary programming was used to train the networks in a leave-one-out 
cross validation procedure. 

Specifically, for each complete cross validation where each sample pattern 
in turn was held out for testing then replaced in a series of 96 separate train-
ing procedures, a population of 250 networks of the chosen architecture were 
selected at random by sampling weight values from a uniform random variable 
distributed over [-0.5, 0.5]. Each weight set (i.e. candidate solution) also had 
an associated self-adaptive mutational vector used to determine the random 
variation imposed during the generation of offspring networks ( described be-
low). Each of the self-adaptive parameters was initialized to a value of 0.01. 
Each weight set was evaluated based on how well the network classified the 95 
remaining available training patterns (with one "left out" for testing), where a 
malignant condition was assigned a target value of 1.0 and a benign condition 
was assigned a target of 0.0. The performance of each network was determined 
as the sum of the squared error between the output and the target value taken 
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Figure 1. The design used for processing data, both for the multilayer perceptron 
and receptive field neural architectures. Input data are weighted in connections 
to the two hidden nodes. Each hidden node passes the sum of a bias term 
(not shown) and the dot product of the weights and inputs through a nonlinear 
filter. The filter is f(/3) = 1/(1 + e-fl) for the multilayer perceptron, and 
f(/3) = (27r)-0·5e- fl2 for the receptive field. The output node is a linear filter 
which performs the sum of a bias term with the dot product of filtered hidden 
nodes and their associated weights. There are 31 weights given 13 inputs. 
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1. Mass size: either zero or in mm. 
2. Mass margin: (each subparameter rated as none (0), low (1), medium (2),

or high (3)) 
(a) Well circumscribed
(b) Microlobulated
( c) 0 bscured
( d) Indistinct
( e) Spiculated

3. Architectural distortion: none or distortion
4. Calcification number: none (0), < 5 (1), 5 - 10 (2), or > 10 (3).
5. Calcification morphology: none (0), not suspicious (1), moderately suspi-

cious (2), or highly suspicious (3) 
6. Calcification density: none (0), dense (1), mixed (2), faint (3) 
7. Calcification distribution: none (0), scattered (1), intermediate (2), clus-

tered (3) 
8. Asymmetric density: either zero or in mm. 

Table 1. The features and rating system used for assessing mammograms in the 
current study. Assessment was made by the domain expert (Wasson). 

over the 95 available patterns. 
After evaluating all existing (parent) networks, the 250 weight sets were 

used • to generate 250 offspring weight sets ( one offspring per parent). This 
was accomplished in a two-step procedure. For each parent, the self-adaptive 
parameters were updated as: 

(1) 
where T = b:-

2 
, T1 = b, N(0, 1) is a standard normal random variableV"n y2'1,i 

sampled once for all n = 31 parameters of the vector CJ, and Ni(0, 1) is a standard 
normal random variable sampled anew for each parameter. The settings for T 
and T1 have been recommended as robust in Back and Schwefel (1993). These 
updated self-adaptive parameters were then used to generate new weight values 
for the offspring according to the rule: 

x  = xi + CJ C 

where C is a standard Cauchy random variable 
1 

f(y) = 7r(l +y2)' -oo < Y < 00 

(2) 

(3) 

( determined as the ratio of two independent standard Gaussian random vari-
ables). Traditional methods in evolutionary programming and evolution strate-
gies have relied on Gaussian mutation, however, recent research in Yao and Liu 
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(1996), Saravanan and Fogel (1997), and others, have suggested a possible ben-
efit of using Cauchy variation because it has a greater probability to generate 
longer jumps than the Gaussian. This offers a greater chance of escaping local 
optima on a error surface at the expense of poorer fine tuning. Initial observa-
tions with both Gaussian and Cauchy mutations on the existing data appeared 
to favor the Cauchy distribution, however a more careful analysis remains for 
future study. All of the offspring weight sets were evaluated in the same manner 
as their parents, 

Selection was applied to eliminate half of the total parent and offspring 
weight sets based on their observed error performance. Following typical meth-
ods in evolutionary programming (Fogel 1995), a pairwise tournament was con-
ducted where each candidate weight set was compared against a random sample 
from the population. The sample size was chosen as 10 ( a greater sample size 
indicates more stringent selection pressure). For each of the 10 comparisons, if 
the weight set had an associated classification error score that was lower than 
the randomly sampled opponent it received a "win". After all weight sets had 
participated in this tournament, those that received the greatest number of wins 
were retained as parents of the next generation. 

This process was iterated for 100 generations, whereupon the best available 
network as measured by the training performance was used to classify the held 
out input feature vector. The result of this classification was recorded (i.e., the 
output value of the network and the associated target value) and the process 
was restarted by replacing the held out vector and removing the next vector in 
succession until all 96 patterns had been classified. 

Each complete series of cross validation was repeated 10 times for both the 
multilayer perceptron and receptive field networks. 

4. Results

A typical rate of optimization in each training run is shown in Figure 2. The 
overall training error often fell as a nearly linear function of the number of 
generations without saturation. This suggests that further training time might 
be warranted. 

The probability of detection, P(D), and false alarm, P(F A), vary as a func-
tion of the discrimination threshold applied to the output of the networks. As 
the threshold value is lower, the network can correctly identify a greater number 
of cancers, but this comes at the expense of a higher false alarm rate. Conversely, 
the false alarm rate can be lowered by raising the threshold value, but this in 
turn decreases the sensitivity of the procedure. 

The effectiveness of the classification procedures can be assessed using re-
ceiver operating characteristic (ROC) analysis, where the probability of detect-
ing a malignancy is traded off as a function of the likelihood of a false positive 
result. Typical ROC curves for the multilayer perceptron and receptive field 
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Figure 2. A typical rate of optimization in an evolutionary training of the neural 
networks on 95 patterns (one held out) over 100 generations. The error of the 
best member ( weight set) in the population is seen to decrease nearly linearly 
as function of the number of generations. With further training, the observed 
best error would eventually saturate at an asymptote. The error is taken as the 
sum of the squared difference between the target value and the realized output 
from the network generated as a result of each input pattern. 
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networks are shown in Figure 3. The area under the curve provides a useful 
measure for comparison. 

To compare the effectiveness of the multilayer perceptron architecture with 
the receptive field, the area under the ROC curve for each of the 10 trials of cross 
validation with each method was estimated. This was accomplished by perform-
ing a polynomial regression of at least third order to the available samples of 
fraction of false alarms versus fraction of detections in each ROC curve. Re-
gression models were determined by choosing the lowest order polynomial that 
provided (1) an R2 value of at least 0.99, and (2) was non-decreasing over false 
alarm rates from zero to one (see Figure 4). The models were integrated over 
the range [O, 1] to compute the desired areas. The mean area under the ROC 
curve (and standard deviation) for the perceptron and receptive field networks, 
respectively, were 0.787611 ± 0.022346 and 0.739060 ± 0.035574. Under a two-
sample meant-test (which assumes populations of normally distributed values), 
these data indicate statistically significant evidence in favor of the perceptron 
(sigmoid) networks (P < 0.01). 

5. Conclusions
Under the assumptions of normally distributed integrals of the ROC curves, 
the data suggest that partitioning functions (as offered by sigmoid filters) may 
be more useful than clustering functions (as offered by Gaussian filter:s) for 
classifying the radiographic features and patient age as being indicative of a 
breast malignancy. The longer-term relevance of this result is yet unclear due 
at least to (1) the relatively small sample size, and (2) the constraint that all 
patterns were derived from mammograms that presented sufficient radiographic 
findings to suggest biopsy. Current efforts are directed to obtaining a larger 
sample. 

Comparisons of the overall performance offered here with the results offered 
in Floyd et al. (1994) must be made with caution. The composition of the 
260 samples in Floyd et al. (1994) was 64.6% benign cases, with only 35.4% 
malignancies. In contrast, the current data set offered almost the obverse condi-
tions. Further, the demographics between the studies were different. The data 
in Floyd et al. (1994) were derived from examinations at Duke University Medi-
cal Center, whereas the data for the current study were collected from radiology 
centers on the island of Maui, which can be expected to provide a more diverse 
racial mix (24% part-Hawaiian, 22% Caucasian, 17% Japanese, and so forth). 
This greater diversity might be expected to pose a more significant challenge 
for a classification algorithm. 

In separate analysis, evolutionary programming was used to train a two-
hidden node perceptron over the entire 96 available patterns. Using an output 
threshold of 0.5 (i.e., greater than 0.5 indicates a diagnosis of a malignancy), 
it was possible, after more than 2000 generations, to find a weight vector that 
misclassified only 3 of the 96 patterns (i.e., it was in error on two malignancies 
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Figure 3. Typical ROC curves for the ( a) perceptron and (b) receptive field neu-
ral networks. As the probability of a false alarm (i.e., indication of malignancy 
when none is present) increases, so does the probability of detection. 
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Figure 4. An example of using polynomial regression to estimate the ROC curve 
based on the observed pairs of probabilities for false alarm and detection. The 
equation shown is P(D) = 4.742 x P(FA)-8.897 x P(FA)2 + 7.452 xP(FA)3 -

2.295 X P(F A) 4. The goodness-of-fit is R 2 = 0.999. Note that the regression 
equation is constrained to pass through the origin. Regressions were conducted 
for each of the 10 complete cross validation studies with both the perceptron and 
receptive field networks in order to determine the area under the approximate 
ROC curve. 

and one benign case). Yet when this same architecture was used in the cross val-
idation trials, this degree of overall performance was not attained. This suggests 
that (1) further training in the cross validation trials may be useful, and/or (2) 
the current neural architecture overfits the available data, in which case future 
analysis on a larger collection of samples should yield a closer correspondence 
between the error rates when training on all available data and when train-
ing/testing in cross validation. Other possibilities for improving the discrimi-
nation performance of the evolved networks include imposing small amounts of 
random noise on the input patterns to increase the possible generalizability (i.e., 
essentially creating a larger sample size) and reducing the degrees of freedom of 
the neural networks by limiting the input parameters to a subset of the current 
assortment. 
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