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Abstract: The set criterion is an appropriate defining approach
regarding the solutions for the set-valued optimization problems. By
using approximations as generalized derivatives of set-valued map-
pings, we establish necessary optimality conditions for a constrained
set-valued optimization problem in the sense of set optimization in
terms of asymptotical pointwise compact approximations. Sufficient
optimality conditions are then obtained through first-order strong
approximations of data set-valued mappings.
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1. Introduction

During the last decades, the set-valued optimization theory and its applications
have been investigated by many authors; see, in particular, Aubin and Cel-
lina (1984), Jahn (2004), Khan, Tammer and Zǎlinescu (2015), or Klein and
Thompson (1984) and the references therein. We may distinguish at least three
approaches: vector, lattice, and set approach (Khan, Tammer and Zǎlinescu,
2015). The most frequently used in the literature is the vector criterion, which
is known also as the Pareto efficient solution. Set-valued optimization prob-
lems considering this approach have been studied in various frameworks, see,
for instance, Alonso and Rodriguez-Marin (2008), Jahn (2004), Khan and Tuan
(2011, 2015), Luc (1989), or Mordukhovich (2006), and the references therein.
This solution criterion cannot be treated as the appropriate criterion when the
decision maker’s preference is based on comparing all image sets. It is just
what the set criterion does. More realistic order relations for the comparison of
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sets have been introduced to optimization by Kuroiwa (1998), see also Kuroiwa,
Tanaka and Ha (1997). Since then, the optimality conditions for set-valued op-
timisation problems using the set relations have been derived in different ways.
Several authors introduced notions of directional derivatives for set-valued maps
in order to formulate necessary and sufficient optimality conditions for such
problems using the l-less order relation (Kuroiwa, 2009; Rodriguez-Marin and
Sama, 2007).

In this paper, we are concerned with the constrained set-valued optimization
problem

(P ) :

{
minF (x)

subject to G(x) ∩ (−Z+) 6= ∅, x ∈ S,

where S is a closed subset of X, F : X ⇒ Y and G : X ⇒ Z are set-valued
mappings between Banach spaces X, Y, Z, and Z+ ⊂ Z is a closed convex cone
with a non empty interior.

Let

Ω =
{
x ∈ S : G (x) ∩

(
−Z+

)
6= ∅

}

be the feasible set of (P ) and let Y + ⊂ Y be a closed convex cone with a non
empty interior.

Using the notion of set criterion, introduced by Kuroiwa (2008), together
with first order approximations of set-valued mappings, we give necessary opti-
mality conditions for (P ) in terms of asymptotical pointwise compact approxi-
mations. The concept of asymptotical pointwise compact approximations of a
set-valued mapping assumes proper importance in the case of unbounded ap-
proximations. Our results are obtained without any convexity assumption. In
order to get sufficient optimality conditions, first-order strong approximations
of the set-valued mappings F and G are used. To the best of our knowledge,
there is no paper studying the optimality conditions for set-valued optimiza-
tion problems in the sense of set optimization via first-order approximations.
Since the set criterion of solution can be viewed as a weaker version of vector
criterion, see Rodriguez-Marin and Hernández (2007, Proposition 2.10), our op-
timality results are sharper than those of Khan and Tuan (2011, 2015), where
the notion of an efficient solution was used. We supply appropriate examples to
illustrate the advantages of our results over some recent existing ones dealing
with necessary optimality conditions using the l-less order relation.

The outline of the paper is as follows: the preliminaries and basic definitions
are provided in Section 2; main results are established in Sections 3 and Section
4; a conclusion is given in Section 5.
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2. Preliminaries

Our notations are rather standard. N = {1, ...., n, ...} and ‖.‖ stands for the
norm in any normed space (the context makes it clear what space is concerned).
We denote by L (X,Y ) the set of continuous linear mappings between X and
Y, BY denoting the open unit ball of Y centered at the origin, BY - the closed
unit ball of Y centered at the origin, SY -the unit sphere of Y and X∗ - the
continuous dual of X. The collection of nonempty subsets of Y will be denoted
by P (Y ) . We write 〈., .〉 for the canonical bilinear form with respect to the
duality 〈X∗, X〉 . Let A be a nonempty subset of Y and let D be a nonempty
convex subset of Y.

Let C be a nonempty subset of X. The convex hull of C and the closure of
C are denoted by conv C and cl C, respectively. The negative polar cone C◦ is
defined by

C◦ = {v ∈ X∗ : 〈v, c〉 ≤ 0, ∀c ∈ C}.

The contingent (or Bouligand) cone of C at x is

T (C, x) =
{
d ∈ X : ∃tn → 0+, ∃dn → d, ∀n ∈ N, x+ tndn ∈ C

}
.

For a set-valued mapping F : X ⇒ Y, the domain of F and the graph of F are

domF = {x ∈ X : F (x) 6= ∅} and grF = {(x, y) ∈ X × Y : y ∈ F (x)}.

Let A and B, A 6= B, be two nonempty subsets of Y. Let <l be the following
relation defined by

B <l A ⇐⇒ A ⊆ B + intY +

where intY + denotes the topological interior of Y +. Using the set relation <l,
Kuroiwa (2008) introduced the following notion of weakly l-minimal set.

Definition 1 Let S ∈ P (Y ) . It is said that A ∈ S is a weakly l-minimal set
of S if

∄B ∈ S such that B <l A.

We consider the following constrained set-valued optimization problem with
a geometric constraint

(Q) :

{
Y + - Min F (x)

subject to : x ∈ S.
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A point x ∈ S is said to be a local weak l-minimal solution of (Q) in set
criterion if there exists a neighborhood U of x such that for all x ∈ S∩U, x 6= x,
we have

F (x) ⊀l F (x) .

Equivalently, if there exists a neighborhood U of x such that for all x ∈ S ∩ U,
there exists y ∈ F (x) satisfying

y /∈ F (x) + intY +.

We shall need the following definitions.

Definition 2 (Khanh and Tuan, 2011) Let M ∈L(X,Y ) and Mn∈L(X,Y ),
n ∈ N. The sequence (Mn) is said to pointwise converge to M and is written

Mn
p
→ M or M = p-lim

n
Mn if

lim
n

Mn (x) = M (x) , for all x ∈ X.

Definition 3 (Kuroiwa, 1998) A subset A ⊆ L (X,Y ) is called (sequen-
tially) asymptotically pointwisely compact, or (sequentially) asymptotically p-
compact if

• each norm bounded sequence (Mn) ⊆ A has a subsequence (Mnk
) and

M ∈ L (X,Y ) such that

M = p− lim
k
Mnk

,

• for each sequence (Mn) ⊆ A with lim
n→∞

‖Mn‖ = ∞, the sequence

(
Mn

‖Mn‖

)

has a subsequence, which pointwisely converges to some M ∈ L (X,Y ) \ {0}

For a subset A ⊂ L (X,Y ) , let

A = (p-cl A) ∪ [(p-A∞) \ {0}]

where

p-cl A = {M ∈ L (X,Y ) : ∃ (Mn)n ⊆ A, M = p- limMn}

and

p-A∞ =
{
M ∈ L (X,Y ) : ∃ (Mn)n ⊆ A, ∃tn → 0+, M = p- lim tnMn

}

stand for the p-closure and the p-recession cone of A, respectively. As mentioned
in Khanh and Tuan (2011, Remark 3.1), if X and Y are finite dimensional,
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convergence occurs if and only if the corresponding pointwise convergence does;
moreover, there is no difference between the asymptotical p-compactness and
the asymptotical compactness.

The following definition of approximation is slightly different from that of
Khanh and Tuan (2011, Definition 3.2) since the approximation does not depend
on any element y ∈ F (x) .

Definition 4 Let x ∈ X.

• A subset AF (x) of L (X,Y ) is said to be a first-order approximation of F
at x if for each ε > 0, there exists δ > 0 such that

(F (x)− F (x)) ∩ (AF (x) (x− x) + ε ‖x− x‖BY ) 6= ∅, (1)

for all x ∈ (x+ δBX) ∩ domF.
• A subset As

F (x) of L (X,Y ) is said to be a first-order strong approximation
of F at x if for each ε > 0, there exists δ > 0 such that

F (x)− F (x) ⊆ As
F (x) (x− x) + ε ‖x− x‖BY , (2)

for all x ∈ (x+ δBX) ∩ domF.

Example 1 For x = (0, 0): let F : R2
⇒ R be the set-valued mapping defined

by

F (x1, x2) =

{ {
y ∈ R : 2 |x1|

1

2 + x4
2 ≤ y ≤ 1

|x1|+|x2|

}
if (x, y) 6= (0, 0)

{0} if (x, y) = (0, 0) .

• The set AF (x) = {(0, 0)} is a first-order approximation of F at x.
• The set

As
F (x) = (R∗ × {0}) ∪ ({0} × R∗)

is a first-order strong approximation of F at x.

First-order approximations are not unique, since any set containing an ap-
proximation is also an approximation. Evidently, if F is single-valued, the set
AF (x) collapses to the corresponding notions, defined in Allali and Amahroq
(1997) for single-valued maps. In Allali and Amahroq (1997), it is shown that
when F is a locally Lipschitz function, it admits as an approximation the Clarke
subdifferential of F at x; i.e.

AF (x) = ∂F (x) := cl co {Lim ∇F (xn) ;xn ∈ dom∇F and xn → x} .

Notice that, in general, first-order approximations are not closed and may exist
even for these set-valued mappings, which are neither upper semicontinuous nor
lower semicontinuous at a given point (Khanh and Tuan, 2011); see Example 2.
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Example 2 (Khanh and Tuan, 2011) Consider the real function F : R ⇒ R,
defined by

F (x) =





{y ∈ R | y ≥
√
x} if x > 0,{

y ∈ R | y ≤
1

x

}
if x < 0,

{0} if x = 0,

Even if F is neither upper semicontinous nor lower semicontinuous at x = 0,
it admits the open set AF (x) = ]α, +∞[ , for any α > 0, as a first-order
approximation at x. For more details, see (Khanh and Tuan, 2011, Example
3.1).

Basic calculus rules needed for effective applications of approximations as
generalized derivatives were given by Khanh and Tuan (2011, 2015). Below, we
recall a rule for compositions of maps; for more details see (Khanh and Tuan,
2015, Proposition 3.2).

Proposition 1 (Khanh and Tuan, 2015) Let F : X ⇒ Y, G : Y ⇒ Z, (x0, y0) ∈
grF, (y0, z0) ∈ grG and ImF ⊆ domG.

• Suppose that F and G admit bounded first-order strong approximation
AS

F (x0, y0) and AS
G (y0, z0) at (x0, y0) and (y0, z0) . Then, AS

G (y0, z0) ◦
AS

F (x0, y0) is a first-order strong approximation of G ◦ F at (x0, z0) .
• Suppose that F and G admit bounded first-order approximation AF (x0, y0)

and AG (y0, z0) at (x0, y0) and (y0, z0) . Then, AG (y0, z0) ◦ AF (x0, y0) is
a first-order approximation of G ◦ F at (x0, z0) .

3. Necessary optimality conditions

The following theorem gives, in terms of first-order approximations, necessary
optimality conditions of the problem (Q) .

Theorem 1 Let x be a local weak l-minimal solution of the problem (Q), such
that

F (x)− F (x) ⊆ Y \ − intY +.

Suppose that AF (x) is an asymptotically p-compact first-order approximation
of F at x. Then, for each v ∈ T (S, x) \ {0} , there exists A ∈ AF (x) such that

A (v) /∈ −intY +.

Here,

AF (x) := (p− clAF (x)) ∪ (p− (AF (x))∞ � {0}) .
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Proof Let v ∈ T (S, x)\ {0} be arbitrary and fixed. By the definition of a
contingent cone, there is (tn, vn) → (0+, v) such that x+ tnvn ∈ S for all n ∈ N.

• On the one hand, since x is assumed to be a local weak l-minimal solution
of the problem (Q) , for n large enough, we have

F (x+ tnvn) ⊀l F (x) .

That is,

F (x) * F (x+ tnvn) + intY +. (3)

Then, there exists y ∈ F (x) such that

y − yn /∈ intY +, ∀yn ∈ F (x+ tnvn) . (4)

• On the other hand, for n large enough, we have

[F (x+ tnvn)− F (x)] ∩AF (x) (tnvn) + ε ‖tnvn‖BY 6= ∅.

Then, there exist ỹn ∈ F (x+ tnvn) and ỹ ∈ F (x) such that

ỹn − ỹ ∈ AF (x) (tnvn) + ε ‖tnvn‖BY .

Consequently, there exist An ∈ AF (x) and bn ∈ BY such that

ỹn = ỹ +An (tnvn) + ε ‖tnvn‖ bn. (5)

From (4) , since ỹn ∈ F (x+ tnvn) , we have

ỹn /∈ y − intY +. (6)

Combining (5) and (6) , we have

An (tnvn) + ε ‖tnvn‖ bn /∈ y − ỹ − intY +. (7)

Since

F (x)− F (x) ⊆ Y \ − intY +

we deduce

An (tnvn) + ε ‖tnvn‖ bn /∈ −intY +. (8)

• If {An} is norm bounded, one can assume that An
P
→ A ∈ p − clAF (x) .

Upon dividing (8) by tn and passing to the limit, one gets
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A (v) /∈ −intY +.

If {An} is unbounded, one can assume that ‖An‖ → ∞ and An

‖An‖

P
→ A ∈

p− (AF (x))∞ � {0} . Dividing (8) by ‖An‖ tn and passing to the limit leads to

A (v) /∈ −intY +.

The following example explains how to employ Theorem 1. Since F is not
compact valued, Theorem 1 of Amahroq and Oussarhan (2019) with this prop-
erty imposed, cannot be employed.

Example 3 Let X = R, Y = R, S = [0, 1] , Y + = R+, x = 0 and

F (x) =





{
y ∈ R : y ≤

1

x

}
if x > 0

{
y ∈ R : y ≥ 3

√
−x

}
if x < 0

{0} if x = 0

.

We have

F (x)− F (x) = {0} ⊆ R\ − intR+ and T (S, x) = R+.

In addition, for fixed a < 0, we have

AF (x) = ]−∞, a[ , clAF (x) = ]−∞, a] , AF (x)∞ = ]−∞, 0] and AF (x) = ]−∞, 0[ .

Taking v = 1 ∈ T (S, x), we obtain

A (v) < 0 for all A ∈ AF (x) .

Consequently,

A (v) ∈ −intR+ for all A ∈ AF (x) .

Using Theorem 1, we deduce that x is not a local weak l-minimal solution of the
problem (Q) .

Example 4 Let X = R, Y = R2, S = [0, 1] , Y + = R2
+, x = 0 and

F (x) =





∅ if x > 0{
(y, z) ∈ R2 : y ≥ 3

√
−x and z = x2

}
if x < 0

conv {(0, 0) , (−1, 1)} if x = 0
.

• On the one hand, x = 0 is a local weak l-minimal solution of the problem
(P ) .
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• On the other hand, we have

F (x)−F (x) = conv {(1,−1) , (−1, 1)} ⊆ R2\−intR2
+ and T (S, x) = R+.

In addition, for fixed a < 0, we have

AF (x) = ]−∞, a[×{0} , clAF (x) = ]−∞, a]×{0} , AF (x)∞ = ]−∞, 0]×{0}

and

AF (x) = ]−∞, 0[× {0} .

Let α < 0. For all v ∈ T (S, x)\ {0} , we can find A = (α, 0) ∈ AF (x) such
that

A (v) = (αv, 0) /∈ −intR2
+.

The necessary optimality conditions given in Theorem 1 are then satisfied
at x. Notice that, since F is not compact valued, Theorem 1 of Amahroq
and Oussarhan (2019) is out of use.

Proposition 2 Let x ∈ Ω be a local weak l-minimal solution of the problem
(P ), such that

G (x)−G (x) ⊆ Z+.

Then, for any z ∈ G (x) ∩ (−Z+) , x is a local weak l-minimal solution of the
problem

(P ∗) :

{
Min (F,G) (x)

subject to : x ∈ S

with respect to Y + × (Z+ + z) .

Proof Reasoning ad absurdum, suppose that there exists z ∈ G (x) ∩ (−Z+)
such that x is not a local weak l-minimal solution of the problem (P ∗). Then,
there exists xn ∈ S, xn → x, such that

F (x) ⊆ F (xn) + intY +

and

G (x) ⊆ G (xn) + int
(
Z+ + z

)
. (9)
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• By (9) , we get

G (x) ⊆ G (xn) + Z+ + z.

Then,

0 ∈ G (xn) + Z+ +G (x)−G (x) .

Since

G (x)−G (x) ⊆ Z+,

and since Z+ is a cone, we deduce that

0 ∈ G (xn) + Z+.

Consequently,

G (xn) ∩
(
−Z+

)
6= ∅.

Since xn ∈ S, we deduce that

xn ∈ Ω and F (x) ⊆ F (xn) + intY +.

A contradiction with the fact that x is a local weak l-minimal solution of
the problem (P ) with respect to Y +.

The following theorem gives the necessary optimality conditions of the problem
(P ) .

Theorem 2 Let x ∈ Ω be a local weak l-minimal solution of the problem (P ),
such that

F (x)− F (x) ⊆ Y \ − intY + and G (x)−G (x) ⊆ Z+.

Suppose that AF (x) and AG (x) are asymptotically p-compact first-order approx-
imations of F and G at x, respectively. Then, for each v ∈ T (S, x)\ {0} , we can
find A ∈ AF (x) and B ∈ AG (x) such that (A (v) , B (v)) /∈ −int (Y + × Z+) .

Proof Let v ∈ T (S, x)\ {0} be arbitrary and fixed. By the definition of a
contingent cone, there is (tn, vn) → (0+, v) such that x+ tnvn ∈ S for all n ∈ N.
Since x ∈ Ω, we have

x ∈ S and G(x) ∩
(
−Z+

)
6= ∅.

We can find z ∈ G (x) such that z ∈ −Z+.



Optimality conditions in set-valued optimization using approximations as derivatives 435

• By Proposition 2, x is a local weak l-minimal solution of the problem (P ∗)
with respect to Y + × (Z+ + z) . For n large enough, we have

(F (x) , G (x)) * (F (x+ tnvn) , G (x+ tnvn))+ int
[
Y + ×

(
Z+ + z

)]
.

Then, there exist y0 ∈ F (x) and z0 ∈ G (x) such that

(y0 − yn, z0 − zn) /∈ int
[
Y + ×

(
Z+ + z

)]
,

∀yn ∈ F (x+ tnvn) , ∀zn ∈ G (x+ tnvn) .

Thus, either

y0 − yn /∈ intY +, ∀yn ∈ F (x+ tnvn) , (10)

or

z0 − zn /∈ z + int
(
Z+

)
, ∀zn ∈ G (x+ tnvn) (11)

is satisfied.
• For n large enough, we have

[F (x+ tnvn)− F (x)] ∩AF (x) (tnvn) + ε ‖tnvn‖BY 6= ∅

and

[G (x+ tnvn)−G (x)] ∩AG (x) (tnvn) + ε ‖tnvn‖BZ 6= ∅.

Then, there exist ỹn ∈ F (x+ tnvn) , ỹ ∈ F (x) , z̃n ∈ G (x+ tnvn) , z̃ ∈

G (x) such that

ỹn−ỹ ∈ AF (x) (tnvn)+ε ‖tnvn‖BY and z̃n−z̃ ∈ AG (x) (tnvn)+ε ‖tnvn‖BZ .

Consequently, there exist An ∈ AF (x) , an ∈ BY , Bn ∈ AG (x) and
bn ∈ BY such that

ỹn = ỹ+An (tnvn)+ε ‖tnvn‖ an and z̃n = z̃+Bn (tnvn)+ε ‖tnvn‖ bn. (12)

From (4) , since ỹn ∈ F (x+ tnvn) and z̃n ∈ G (x+ tnvn) , we have

ỹn /∈ y0 − intY + or z̃n /∈ z0 − z − int
(
Z+

)
. (13)

By combining (5) and (6), we obtain

An (tnvn) + ε ‖tnvn‖ an /∈ y0 − ỹ − intY +

or

Bn (tnvn) + ε ‖tnvn‖ bn /∈ z0 − z − z̃ − int
(
Z+

)
. (14)



436 A. Gadhi and A. Ichatouhane

Since

F (x)− F (x) ⊆ Y \ − intY + and G (x)−G (x) ⊆ Z+

we deduce that

An (tnvn) + ε ‖tnvn‖ an /∈ −intY + (15)

or

Bn (tnvn) + ε ‖tnvn‖ bn /∈ −int
(
Z+

)
. (16)

• If {An} and {Bn} are norm bounded, one can assume that

An
P
→ A ∈ p − clAF (x) and Bn

P
→ B ∈ p − clAG (x). Upon dividing (8)

by tn and then passing to the limit one obtains

A (v) /∈ −intY + or B (v) /∈ −intZ+.

• If {An} and {Bn} are unbounded, one can assume that ‖An‖ → ∞, ‖Bn‖ →

∞, An

‖An‖

P
→ A ∈ p−(AF (x))∞ � {0} and Bn

‖Bn‖

P
→ B ∈ p−(AG (x))∞ � {0} .

Dividing (8) by ‖An‖ tn and (8) by ‖Bn‖ tn and passing to the limit leads
to

A (v) /∈ −intY + or B (v) /∈ −intZ+.

• If {An} is norm bounded and if {Bn} is unbounded, one can assume that

An
P
→ A ∈ p − clAF (x) and Bn

‖Bn‖

P
→ B ∈ p − (AG (x))∞ � {0}. Upon

dividing (8) by tn and then passing to the limit one obtains

A (v) /∈ −intY + or B (v) /∈ −intZ+.

• If {Bn} is norm bounded and if {An} is unbounded, one can assume that

Bn
P
→ B ∈ p− clAG (x) and An

‖An‖

P
→ A ∈ p− (AF (x))∞ � {0} . Dividing

(8) by tn and passing to the limit results in

A (v) /∈ −intY + or B (v) /∈ −intZ+.

The following example explains how to employ Theorem 2.

Example 5 Let X = R, Y = R, Y + = R+, Z+ = R+, S = R+, x = 0,

F (x) =





{
y ∈ R : y < 1

x

}
if x > 0{

y ∈ R : y ≥
√
−x

}
if x < 0

{0} if x = 0
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and

G (x) =





{
y ∈ R : y3x ≤ 1

}
if x > 0{

y ∈ R : y3 + x ≤ 0
}

if x < 0
{0} if x = 0

We have

F (x)− F (x) = {0} ⊆ R\ − intR+, G (x)−G (x) = {0} ⊆ R\ − intR+

and T (S, x) = R+.

Moreover, for fixed a < 0 and b < 0, we have

AF (x) = ]−∞, a[ , clAF (x) = ]−∞, a] , AF (x)∞ = ]−∞, 0] , AF (x) = ]−∞, 0[

and

AG (x) = ]−∞, b[ , clAG (x) = ]−∞, b] , AG (x)∞ = ]−∞, 0] , AG (x) = ]−∞, 0[ .

By taking v = 1 ∈ T (S, x), we get

(A (v) , B (v)) = (A,B) ∈ −int
(
R2

+

)
for all A ∈ AF (x) .

Consequently,

A (v) ∈ −intR+ for all A ∈ AF (x) and B ∈ AG (x) .

Using Theorem 2, we deduce that x is not a local weak l-minimal solution of the
problem (P ) . Notice that since F and G are not compact valued, Theorem 3 of
Amahroq and Oussarhan (2019) with this property imposed, cannot be employed.

4. Sufficient optimality conditions

Let us turn to sufficient optimality conditions. Before, let us start by some
recalls. The following definition has been introduced by Tanino (1988).

Definition 5 (Tanino, 1988) A base Q of Y + is a nonempty subset of Y +

with 0 /∈ cl (Q) and such that every c ∈ Y +\ {0} has a unique presentation as
follows

c = rq with r > 0 and q ∈ cl (Q) .

If Q is compact, we say that Y + has a compact base Q.

Remark 1 (Tanino, 1988) If Y is finite dimentional, then Y + has a compact
base.
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Remark 2 (Shi, 1991) The cone Y + has a compact base Q if and only if Y +∩

SY is compact.

Theorem 3 Let x ∈ S and z ∈ G (x) ∩ (−Z+) . Suppose that X is finite di-
mensional, that Y + × Z+ has a compact base and that AS

F (x) and AS
G (x) are

compact first-order strong approximations of F and G at x respectively. Impose
further that

(
AS

F (x) , AS
G (x)

)
(0) ∩ −

(
Y + × T

(
Z+,−z

))
= {(0, 0)} (17)

and

(
AS

F (x) , AS
G (x)

)
(v) ∩ −

(
Y + × T

(
Z+,−z

))
= ∅,

∀v ∈ (domAF (x) ∩ domAG (x))� {0} . (18)

Then, x is a local weak l-minimal solution of the problem (P ) with respect to
Y +.

Proof To the contrary, suppose that x is not a local weak l-minimal solution
of the problem (P ) with respect to Y +. Then, there exists xn ∈ Ω, xn → x,
such that

F (x) ⊆ F (xn) + intY +.

Consequently, for all y ∈ F (x) there exists yn ∈ F (xn) such that y − yn ∈

intY +; and thus y − yn 6= 0. Since xn ∈ Ω, we have

G (xn) ∩
(
−Z+

)
6= ∅ and xn ∈ S.

Then, we can find zn ∈ G (xn) such that −zn ∈ Z+; which implies

(y − yn, z − zn) 6= (0, 0) , (yn, zn) ∈ (F,G) (xn)

and

(y − yn, z − zn) ∈ Y + ×
(
Z+ + z

)
.

By setting

tn := ‖xn − x‖ and vn :=
xn − x

‖xn − x‖

we get

xn = x+ tnvn, xn → x, tn → 0+ and vn → v ∈ SX .
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Since

F (x+ tnvn)− y ⊂ AS
F (x) (tnvn) + ε ‖tnvn‖BY

and

G (x+ tnvn)− z ⊂ AS
G (x) (tnvn) + ε ‖tnvn‖BZ

we have

yn−y ∈ AS
F (x) (tnvn)+ε ‖tnvn‖BY and zn−z ∈ AS

G (x) (tnvn)+ε ‖tnvn‖BZ .

(19)

• Let

αn = ‖(y − yn,−zn)‖ , bn =
1

αn

(y − yn) and qn =
−zn
αn

.

Then,

‖(bn, qn)‖ = 1, y − yn = αnbn and − zn = αnqn. (20)

From (19) , we obtain

−αnbn ∈ AS
F (x) (tnvn)+ε ‖tnvn‖BY and −z−αnqn ∈ AS

G (x) (tnvn)+ε ‖tnvn‖BZ .

Thus, there exist Mn ∈ AS
F (x) , Nn ∈ AS

G (x) , βn ∈ BY and γn ∈ BZ

such that

Mn (tnvn)+ε ‖tnvn‖βn = −αnbn and Nn (tnvn)+ε ‖tnvn‖ γn = −z−αnqn

(21)

and

−αnbn ∈ −Y + and − zn ∈ Z+. (22)

Notice that by compactness of the approximations AS
F (x) and AS

G (x) ,
there exist M ∈ AS

F (x) and N ∈ AS
G (x) such that Mn → M and Nn → N.

Taking a subsequence, if necessary, we can assume that βn → β ∈ BY and
γn → γ ∈ BZ when n tends to +∞.

– From (20) and (22) , we have

‖(bn, qn)‖ = 1, bn ∈ Y + and qn ∈ Z+.

Consequently,

Mn (vn) + ε ‖vn‖βn ∈ −Y +.

By Remark 2, since Y +×Z+ has a compact base, there exist b ∈ Y +

and q ∈ Z+ such that

‖(b, q)‖ = 1, bn → b and qn → q. (23)
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– Since Z+ is convex and since −z ∈ Z+, we have Z+ ⊂ −z +
T (Z+,−z) . Since −zn ∈ Z+, we get

z − zn ∈ T
(
Z+,−z

)
.

By (20) , we have

z + αnqn ∈ T
(
Z+,−z

)
. (24)

Consequently,

Nn (vn) + ε ‖vn‖ γn ∈ −T
(
Z+,−z

)
.

The rest of the proof consists of several steps.

• Suppose that (αn)n∈N
has no convergent subsequence. Then,

αn → +∞.

Dividing (21) and (22) by αn yields

−bn = Mn

(
tnvn
αn

)
+ ε

∥∥∥∥
tnvn
αn

∥∥∥∥βn and − bn ∈ Y + (25)

and

Nn

(
tnvn
αn

)
+ε

∥∥∥∥
tnvn
αn

∥∥∥∥ γn =
−z

αn

−qn and
−z

αn

−qn ∈ −T
(
Z+,−z

)
. (26)

From (26) , letting n → ∞, we have

M (0) = −b ∈ −Y + and N (0) = −q ∈ −T
(
Z+,−z

)
. (27)

By combining (23) and (27) , we obtain

(
AS

F (x) , AS
G (x)

)
(0) ∩ −

(
Y + × T

(
Z+,−z

))
� {(0, 0)} 6= ∅

which contradicts (17) .

• Suppose that (αn)n∈N
has a convergent subsequence, that we note also

(αn)n∈N
, converging to some α ∈ [0, +∞[.

– Suppose that α 6= 0. Dividing (21) and (22) by tnαn we get

−
bn
tn

= Mn

(
vn
αn

)
+ ε

∥∥∥∥
vn
αn

∥∥∥∥βn and −
bn
tn

∈ Y +
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and

−z

tnαn

−
qn
tn

= Nn

(
vn
αn

)
+ε

∥∥∥∥
vn
αn

∥∥∥∥ γn and
−z

tnαn

−
qn
tn

∈ −T
(
Z+,−z

)
.

Consequently,

Mn

(
vn
αn

)
+ε

∥∥∥∥
vn
αn

∥∥∥∥βn ∈ Y + and Nn

(
vn
αn

)
+ε

∥∥∥∥
vn
αn

∥∥∥∥ γn ∈ −T
(
Z+,−z

)
.

Letting n → ∞, leads to

M
( v

α

)
+ε

∥∥∥
v

α

∥∥∥β ∈ −Y + and N
( v

α

)
+ε

∥∥∥
v

α

∥∥∥ γ ∈ −T
(
Z+,−z

)
.

Letting ε → 0, we get

M
( v

α

)
∈ −Y + and N

( v

α

)
∈ −T

(
Z+,−z

)
.

Consequently,

(
AS

F (x) , AS
G (x)

) ( v

α

)
∩−

(
Y + × T

(
Z+,−z

))
6= ∅ with

v

α
6= 0.

A contradiction with (18) .

– Suppose that α = 0. We have two cases

∗ Case 1 : z 6= 0
Letting n → ∞ in (21) and (22) , we obtain

0 = M (0) ∈ −Y +, −z = N (0) ∈ −T
(
Z+,−z

)
and (0,−z) 6= (0, 0) .

Then,

(0,−z) ∈
(
AS

F (x) , AS
G (x)

)
(0)∩−

(
Y + × T

(
Z+,−z

))
� {(0, 0)}

which contradicts (17) .

∗ Case 2 : z = 0
From (21) , (22) and (24) , we have

Mn (tnvn)+ε ‖tnvn‖βn = −αnbn and Nn (tnvn)+ε ‖tnvn‖ γn = −αnqn

and

−αnbn ∈ −Y + and − αnqn ∈ −T
(
Z+,−z

)
.

By setting

wn =
tnvn
αn

and ̟n =
1

‖wn‖
=

αn

tn ‖vn‖
=

αn

tn
,
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we obtain

Mn (wn)+ε ‖wn‖βn = −bn and Nn (wn)+ε ‖wn‖ γn = −qn (28)

and

−bn ∈ −Y + and − qn ∈ −T
(
Z+,−z

)
. (29)

⊲ Suppose that the sequence (wn) has a convergent subsequence,
that we note also (wn)n∈N

, to some w ∈ X. Letting n → ∞ and
ε → 0, we get

M (w) = −b, N (w) = −q, −b ∈ −Y + and −q ∈ −T
(
Z+,−z

)
.

Then,

−b ∈ M (w) ∩ −Y + and − q ∈ N (w) ∩ −T
(
Z+,−z

)
.

Thus,
(
AS

F (x) , AS
G (x)

)
(w)∩−

(
Y + × T

(
Z+,−z

))
� {(0, 0)} 6= ∅.

We have a contradiction with (17) if w = 0 or (18) if w 6= 0.
⊲ Suppose that the sequence (wn) has no convergent subse-
quence; that is, ̟n → 0. We have

αn

tn
= ̟n → 0.

Dividing (28) and (29) by tn, yields




Mn (vn) + εβn = −αn

bn
tn

= −̟nbn,

Nn (vn) + εγn = −αn

qn
tn

= −̟nqn

−̟nbn = −αn

bn
tn

∈ −Y +

−̟nqn = −αn

qn
tn

∈ −T (Z+,−z) .

By letting n → ∞ and ε → 0, we get

M (v) = 0, N (v) = 0, 0 ∈ −Y + and 0 ∈ −T
(
Z+,−z

)
.

We deduce that
(
AS

F (x) , AS
G (x)

)
(v) ∩ −

(
Y + × T

(
Z+,−z

))
6= ∅

which contradicts (18) .
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5. Conclusion

Using the notion of set criterion, introduced by Kuroiwa (2008) together with
first order approximations of set-valued mappings, we gave necessary optimality
conditions for a set-valued optimization problem (P ) in terms of asymptotical
pointwise compact approximations. With the help of first order strong approxi-
mations, we also proposed sufficient optimality conditions. For future research,
it would be interesting to investigate second order optimality conditions.
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