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Abstract: In this paper, we are concerned with a multi-objective
fractional extremal programming problem. Using the concept of sub-
differential of cone-convex set valued mappings, introduced by Baier
and Jahn (1999), together with the convex separation principle, we
give necessary optimality conditions. An example illustrating the
usefulness of our results is also provided.
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1. Introduction

In very recent years, the analysis and applications of D.C. mappings (difference
of convex mappings) have been of considerable interest. Genuinely, nonconvex
mappings that arise in nonsmooth optimization are often of this type. Hence,
of late, extensive work on the analysis and optimization of D.C. mappings has
been carried out. However, much work remains still to be done. For instance, if
the data of the objective function of a standard problem are not exactly known,
it makes sense to replace the objective by a set-valued objective representing
fuzzy outcomes.

Set-valued optimization is a vibrant and expanding branch of mathemat-
ics that deals with optimization problems, in which the objective map and/or
the constraints maps are set-valued maps, acting between certain spaces. Since
set-valued maps generalize the single valued maps, set-valued optimization pro-
vides an important extension and unification of the scalar as well as the vector
optimization problems.
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Let X be a real normed space, C be a closed subset of X and let Fi : X ⇒ R

and Gi : X ⇒ R, q ∈ N, i ∈ I = {1, ..., q} be given R
+-convex and continuous

set valued mappings such that

yi > 0, zi > 0 for all i and all yi ∈ Fi (x) , zi ∈ Gi (x) , x ∈ C.

In this paper, we are concerned with the following fractional vector problem
involving multiapplications

(P ) :







Y + −Min H (x)

subject to : x ∈ C,

where Y + ⊂ R
q is a pointed (Y + ∩ −Y + = {0}) closed convex cone with

nonempty interior Y ++ introducing a partial order in Y = R
q, and H : X ⇒ Y

is the set valued mapping, defined by:

h ∈ H (x) ⇔ ∀i ∈ I, ∃yi ∈ Fi (x) , zi ∈ Gi (x)

such that h =

(

y1
z1

,
y2
z2

, ...,
yi
zi
, ...,

yq
zq

)

.

We pay main attention to deriving the necessary optimality conditions for (P ) .
Let x ∈ C and h ∈ H (x) . The point

(

x, h
)

is said to be a weak local Pareto min-
imal point with respect to Y + of the problem (P ) if there exists a neighborhood
V of x such that H (V ∩C) ⊂ h+ Y \ (−Y ++) ; i.e.

h− h ∈ Y \
(

−Y ++
)

∀h ∈ V ∩ C. (1)

For the convenience of the reader, note that when Y ++ is empty, the use of
the relative interior of Y + in place of Y ++ would be appropriate. Recall that
the relative interior of Y +, denoted ri Y +, is the interior of Y + relative to the
closed affine hull of Y +. The non-emptiness of the latter (ri Y + 6= ∅) results
from the fact that Y + is convex and the dimension of the space Y is finite.
In counterpart, the relative minimality (Bao, Gupta and Mordukhovich, 2010)
should be used instead of the above weak Pareto minimality; this can be done
simply by replacing Y ++ by ri Y + in (1) .

The optimization problem (P ) is general and inclusive. It can be seen either
as a fractional multiobjective optimization problem or as a set valued opti-
mization problem. Thanks to this structure, it brings together several other
problems, previously studied by several authors. In its framework, (P ) includes
convex and D.C. set valued optimization problems, vector fractional optimiza-
tion problems, mathematical programming problems, etc. In Gadhi (2008), nec-
essary and sufficient optimality conditions were provided for a special case of
(P ) using convexificators. Liang, Huang and Pardalos (2001) presented also suf-
ficient optimality conditions and duality results for a special class of (P ) (where
p = 1, m = 1 and k = 1). In Bao, Gupta and Mordukhovich (2010), using the
quotient rule of generalized differentiation from Bao, Gupta and Mordukhovich
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(1999), the optimality conditions for a multiobjective fractional program with
equilibrium constraints were obtained.

In order to get the optimality conditions for this complex problem, we had
to go through several intermediate problems that are equivalent to it in a cer-
tain way. After that, our approach was to use the convex separation principle
together with the weak and strong subdifferentials of the set valued mappings,
introduced by Sawaragi and Tanino (1980) and Baier and Jahn (1999). Our
technique extends the results obtained in the D.C. scalar case by Hiriart-Urruty
(1989), for the D. C vector case by Gadhi and Metrane (2004) GM, for the D.
C. set valued case by Gadhi (2005), and for the convex set valued case by Baier
and Jahn (1999) and Taa (2003).

The rest of the paper is structured as follows. In Section 2, we recall basic
definitions and preliminary material. In Section 3, we establish the necessary
optimality conditions for a set valued fractional programming problem.

2. Preliminaries

Let C be a nonempty subset of X and let F : X ⇒ Y be a set valued mapping
between Banach spaces X and Y. In the sequel, we denote the domain and the
graph of F , respectively, by

dom (F ) := {x ∈ X : F (x) 6= ∅} and gr (F ) := {(x, y) ∈ X × Y : y ∈ F (x)} .

If V is a nonempty subset of X, then

F (V ) = ∪
x∈V

F (x) .

Let A be a nonempty subset of Y and y ∈ A. Then, y is said to be a weak
Pareto minimal point of A with respect to Y + if

(A− y) ∩
(

−Y ++
)

= ∅. (2)

We shall denote by W.Min (A) the set of all weak Pareto minimal points of A.
Since cone-convexity plays an important role in the following investigations, we
recall the definition of cone-convex mappings.

Definition 1 (Corley, 1988) Let C ⊂ X be a convex set. The set valued
mapping F from C into Y is said to be Y +-convex on C, if ∀x1, x2 ∈ C, ∀λ ∈
[0, 1] ,

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ) x2) + Y +.

The following definition has been introduced by Sawaragi and Tanino (1980).

Definition 2 (Sawaragi and Tanino, 1980) Let S be a nonempty subset of
X and let F be a set valued mapping from S into Y. Considering x ∈ S and
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y ∈ F (x) , a linear mapping L : X → Y is said to be a weak subgradient for y
of F at x if

y − L (x) ∈ W.Min ∪
x∈S

(F (x) − L (x)) .

The set of all weak subgradients for y of F at x is called the weak subdifferential
for y of F at x and is denoted by ∂WF (x, y) .

Proposition 1 gives a characterization of the above weak subdifferential.

Proposition 1 Let F : X ⇒ Y be a set valued mapping and let (x, y) ∈ gr (F ) .
Suppose that F is Y +-convex. Then, L ∈ ∂WF (x, y) if and only if there exists
y∗ ∈ (−Y +)

◦
\ {0} such that

〈y∗, y − y − L (x− x)〉 ≥ 0 for all x ∈ X and all y ∈ F (x) .

Proof. The argument is standard. Observing that ∪
x∈X

(F (x)− L (x)) is a

convex set and that
(

∪
x∈X

(F (x)− L (x))− y + L (x)

)

∩
(

−int Y +
)

= ∅,

the result follows by using the separation theorem. ⊠

Another way of introducing subgradients of set valued mappings is the use of
the concept of contingent epiderivative, as given in Jahn and Rauh (1997).

Definition 3 (Jahn and Rauh, 1997) Let S be a nonempty subset of X and
let F : S ⇒ Y be a set valued mapping.
1. The set

epi (F ) :=
{

(x, y) ∈ X × Y : x ∈ S, y ∈ F (x) + Y +
}

is called the epigraph of F.
2. A single valued mapping DF (x, y) : X → Y , whose epigraph equals the
contingent cone to the epigraph of F at (x, y) , i.e.,

epi (DF (x, y)) = T (epi (F ) , (x, y)) ,

is called the contingent epiderivative of F at (x, y) .

Bear in mind that the contingent cone T (epi (F ) , (x, y)) consists of all tangent
vectors

h := lim
n→∞

λn ((xn, yn)− (x, y)) ,

with

λn > 0, (x, y) = lim
n→∞

(xn, yn) , (xn, yn) ∈ epi (F ) , for all n ∈ N.

Properties of the contingent epiderivative can be found in Jahn and Rauh (1997).
On the basis of the concept of contingent epiderivatives, Baier and Jahn (1999)
introduced a subdifferential of cone-convex set valued mappings.



Optimality conditions for a set valued fractional programming problem 151

Definition 4 (Baier and Jahn, 1999) Let C ⊂ X be a convex set and sup-
pose that F is Y +-convex on C. If in addition, the contingent epiderivative
DF (x, y) of F at (x, y) exists, then
1. A linear mapping L : X → Y, with

DF (x, y)− L (x) ∈ Y + for all x ∈ X,

is called a subgradient of F at (x, y) . Moreover, every subgradient L of F at
(x, y) fulfills

y − y − L (x− x) ∈ Y + for all x ∈ C and y ∈ F (x) . (3)

2. The set

∂F (x, y) :=
{

L : X → Y linear / DF (x, y) (x)− L (x) ∈ Y + for all x ∈ X
}

of all subgradients L of F at (x, y) is called the subdifferential of F at (x, y) .

Remark 1 Obviously, the subdifferential is not defined, if the contingent epi-
derivative does not exist. Conditions ensuring the existence of the contingent
epiderivative can be found in Theorem 1 in Jahn and Rauh (1997).

Remark 2 When F = f is only a convex function, ∂F (x, y) reduces to the well
known classical subdifferential in the sense of convex analysis

∂f(x) = {x∗ ∈ X∗ : f (x)− f (x̄) ≥ 〈x∗, x− x〉 for all x ∈ X} .

3. Necessary optimality conditions

In this section, we maintain the notations given in the previous section and
we give the necessary optimality conditions for the multi-objective fractional
programming problem (P ) . In the sequel, F : X ⇒ Y and G : X ⇒ Y will be
the set-valued mappings, defined by

F (x) = (F1 (x) , ..., Fq (x)) = F1 (x) × F2 (x) × ...× Fq (x)

for all x ∈ dom (F ) =
⋂

i∈I

dom (Fi)

and

G (x) = (G1 (x) , ..., Gq (x)) = G1 (x) ×G2 (x)× ...×Gq (x)

for all x ∈ dom (G) =
⋂

i∈I

dom (Gi) .

Let x ∈ C and let


















yi ∈ Fi (x) i ∈ I,
zi ∈ Gi (x) , i ∈ I,

hi =
yi
zi
, i ∈ I,

y =
(

y1, y2, ..., yq
)

, z = (z1, z2, ..., zq) , h =
(

h1, h2, ..., hq

)

, u = (x, y, z) .
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Consider the following problem (P1) with respect to Y + :

(P1) :















Y + −Minimize m (x, y, z) = (m1 (x, y, z) , ...,mq (x, y, z))

subject to :







yi ∈ Fi (x) , i ∈ I,
zi ∈ Gi (x) , i ∈ I,

x ∈ C,

where

mi (x, y, z) := yi − hizi, ∀i ∈ I.

The following Lemma compares the set of all weak local Pareto minimal points
of the problem (P ) and the set of all weak local Pareto minimal points of (P1) .

Lemma 1 Let
(

x, h
)

be a weak local Pareto minimal point of the problem (P ) .
Then, there exist y ∈ F (x) and z ∈ G (x) such that (x, y, z, 0) is a weak local
Pareto minimal point of (P1) with respect to Y +.

Proof. To the contrary, suppose that, for any neighborhood U of x, there exist
x0 ∈ U ∩ C, y0 ∈ F (x0) and z0 ∈ Gi (x0) such that

m
(

x0, y0, z0
)

−m (x, y, z) ∈ −Y ++.

Since yi − hizi = 0, one has

y0i − hiz
0
i < 0 ∀i ∈ I.

Then,

y0i
z0i

−
yi
zi

< 0 ∀i ∈ I,

a contradiction with the fact that x is a weak local Pareto minimal point of the
problem (P ) . ⊠

The following result is a direct consequence of Lemma 1.

Lemma 2 Let
(

x, h
)

be a weak local Pareto minimal point of the problem (P ) .
Then (x, 0) is a weak local Pareto minimal point of

(P2) :

{

Y + −Minimize F (x)−K (x)
subject to : x ∈ C

where

K (x) = (K1 (x) , ...,Kq (x)) ,

and

Ki (x) := hiGi (x) ∀i ∈ I.
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Assuming that the contingent epiderivative DG (x, z) (respectively DG
(

x, k
)

)
exists, we have the following result. Theorem 1 provides necessary optimality
conditions for the multiobjective optimization problem (P ) .

Theorem 1 Suppose that
(

x, h
)

is a weak local Pareto minimal point of (P ) .

Then, for all T ∗ =
(

T ∗

1 , ..., T
∗

q

)

, T ∗

i ∈ ∂Gi (x̄, zi) , there exists y∗ ∈ (−Y +)
◦

such that y∗ 6= 0Y ∗ and

q
∑

i=1

hi y
∗

i T
∗

i ∈ ∂W

(

q
∑

i=1

y∗i Fi

)

(x, 〈y∗, y〉) +N (x;C) .

Moreover, if
q
⋂

i=1

int epi (Fi) 6= ∅ then

q
∑

i=1

hi y
∗

i T
∗

i ∈

q
∑

i=1

y∗i ∂WFi (x, 〈y
∗

i , yi〉) +N (x;C)

where N (x;C) denotes the Clarke’s normal cone.

Proof. Since
(

x, h
)

is a weak local Pareto minimal point of (P ) , by Lemma
2, (x, 0) is a weak local Pareto minimal point of (P2) . Thus, there exists a
neighborhood V of x such that for all x ∈ V ∩ Ω

F (x)−K (x) ⊂ Y \
(

−Y ++
)

. (4)

Let T ∗ =
(

T ∗

1 , ..., T
∗

q

)

, T ∗

i ∈ ∂Gi (x̄, zi) , and let L∗ =
(

h1T
∗

1 , ..., hqT
∗

q

)

.
Consider the following set

∆ := {p ∈ Y : ∃x ∈ C ∩ V such that

(F (x)− L∗ (x− x)− p ) ∩
(

y − Y ++
)

6= ∅
}

.

The proof of this theorem consists of several steps. First, we prove two important
properties of this set ∆ and then we apply a separation theorem in order to
obtain the multiplier rule.

• ∆ 6= ∅. Indeed, r ∈ ∆ for all r ∈ Y ++.
• 0 /∈ ∆. By contrary, suppose that there exists x ∈ V ∩ C such that
(F (x)− L∗ (x− x)) ∩ (y − Y ++) 6= ∅.
Consequently, for all i ∈ I, there exist yi ∈ Fi (x) such that

yi − yi − hiT
∗

i (x− x) < 0. (5)

Since T ∗

i ∈ ∂Gi (x̄, zi) , one has

zi − zi − T ∗

i (x− x) ≥ 0, ∀x ∈ X, ∀zi ∈ Gi (x) . (6)

Combining (5) and (6) , one gets

yi − hizi < yi − hiz, ∀i ∈ I, (7)

a contradiction with (4) .
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• Let us prove that ∆ is a convex subset of Y. Let λ ∈ [0, 1] , p1 ∈ ∆ and
p2 ∈ ∆. From the definition, there exist x1 ∈ V ∩C and x2 ∈ V ∩C such
that

(F (x1)− L∗ (x1 − x)− p1) ∩
(

y − Y ++
)

6= ∅

and

(F (x2)− L∗ (x2 − x)− p2) ∩
(

y − Y ++
)

6= ∅.

Consequently, there exist z1, z2 ∈ y − Y ++ such that

z1 ∈ F (x1)− L∗ (x1 − x)− p1, z2 ∈ F (x2)− L∗ (x2 − x)− p2.

Fix x := λx1 +(1− λ) x2, z := λz1 +(1− λ) z2 and p := λp1 +(1− λ) p2.
From the convexity assumption of F, one gets

z ∈ F (x)− L∗ (x− x)− p+ Y +.

On the one hand, there exist u0 ∈ Y + and v0 ∈ Y + such that z − u0 ∈
F (x)− L∗ (x− x)− p. On the other hand,

mz − u0 ∈ y − Y + − Y ++ ⊂ y − Y ++.

Consequently, (F (x)− L∗ (x− x)− p)∩(y − Y ++) 6= ∅; which means that
p ∈ ∆.

• In the next step of the proof we show that ∆ is open.
Indeed, consider p ∈ ∆. From the definition, there exists x ∈ V ∩ C such
that (F (x)− L∗ (x− x)− p) ∩ (y − Y ++) 6= ∅. Consequently, there exist
z ∈ y − Y ++ such that z ∈ F (x)− L∗ (x− x)− p. Since Y ++ is an open
set, there exists δ > 0 such that

z−a ∈ y−Y ++ and z−a ∈ F (x)−L∗ (x− x)−(p+ a) , ∀a ∈ BY (0, δ) .

Consequently,

(F (x) − L∗ (x− x)− (p+ a)) ∩
(

y − Y ++
)

6= ∅, ∀a ∈ BY (0, δ) .

Then, p+ BY (0, δ) ⊂ ∆. Thus, ∆ is open.
• In this step, we prove the theorem. Since ∆ is an open convex subset
of Y with 0 /∈ ∆ ( due to (4)) , using a separation theorem, one can find
0Y ∗ 6= y∗ ∈ Y ∗ such that

〈y∗, p〉 ≥ 0 for all p ∈ ∆.

Let x ∈ V ∩C, y ∈ F (x) , r ∈ Y ++ and ε > 0.
Taking p = y − y − L∗ (x− x) + εr, one obtains that p ∈ ∆; then

〈y∗, y − y − L∗ (x− x) + εr〉 ≥ 0. (8)



Optimality conditions for a set valued fractional programming problem 155

For x = x, y = y and h = h, we have

ε 〈y∗, r〉 ≥ 0, (9)

as ε > 0, (9) yields 〈y∗, r〉 ≥ 0. Since r is arbitrary in Y +, one deduces
that y∗ ∈ (−Y +)

◦
.

Now, reconsidering (8) , we have (ε is arbitrary)

〈y∗, y − y − L∗ (x− x)〉 ≥ 0. (10)

Consequently, by Proposition 1, y∗◦L∗ ∈ ∂W (y∗ ◦ F ) (x, 〈y∗, y〉)+N (x;C) .
Then,

q
∑

i=1

hi y
∗

i T
∗

i ∈ ∂W

(

q
∑

i=1

y∗i Fi

)

(x, 〈y∗, y〉) +N (x;C) .

• Now, suppose that
q
⋂

i=1

int epi (Fi) 6= ∅. Using the generalized Moreau-

Rockafellar theorem (see Taa, 2003),

q
∑

i=1

hi y
∗

i T
∗

i ∈

q
∑

i=1

y∗i ∂W (Fi) (x, 〈y
∗

i , yi〉) +N (x;C) .

The proof is thus finished. ⊠

With the following example, we illustrate the usefulness of our result.

Example 1 Let Ω be a closed subset of Rn, and let f1 : Rn → R, ..., fq : R
n →

R and g1 : Rn → R, ..., gq : Rn → R be given convex continuous functions
such that fi (x) > 0 and gi (x) > 0 for all x ∈ Ω. We consider the set valued
mappings Fi and Gi : R

n ⇒ R with

Fi (x) := {y ∈ R : f (x)− y ≤ 0} and Gi (x) := {z ∈ R : g (x)− z ≤ 0} , ∀i ∈ I.

Under these assumptions, we investigate the optimization problem

(

P⊲
)

:















(

R
q
+

)

−Min H (x, y, z) =

(

y1
z1

, ...,
yq
zq

)

Subject to : yi ∈ Fi (x) , zi ∈ Gi (x) , i ∈ I,
x ∈ C.

This is a special case of the general type (P ) . In this example, the values of the
objective may vary depending of the values of several known functions.
Next, assume that u = (x, y, z) is a weak local Pareto minimal point of the
problem (P⊲) . Then, there exists y∗ ∈ (−Y +)

◦
such that y∗ 6= 0Y ∗

and
q
∑

i=1

fi (x)

gi (x)
y∗i ∂gi (x̄, z) ⊆ ∂

(

∑

i∈I

y∗i fi

)

(x) +N (x;C) .
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