
Control and Cybernetics

vol. 45 (2016) No. 4

The PM-M prototype selection system∗

by

Karol Grudziński

Department of Physics, Kazimierz Wielki University,
Aleja Powstańcw Wielkopolskich 2, 85-090 Bydgoszcz, Poland

grudzinski.k@gmail.com

Abstract: In this paper, the algorithm, realizing the author’s pro-
totype selection method, called PM-M (Partial Memory - Minimiza-
tion) is described in details. Computational experiments that have
been carried out with the raw PM-M model and with its majority en-
sembles indicate that even for the system, for which the average size
of the selected prototype sets constitutes only about five percent of
the size of the original training datasets, the obtained results of clas-
sification are still in a good statistical agreement with the 1-Nearest
Neighbor (IB1) model which has been trained on the original (i.e. un-
pruned) data. It has also been shown that the system under study
is competitive in terms of generalization ability with respect to other
well established prototype selection systems, such as, for example,
CHC, SSMA and GGA. Moreover, the proposed algorithm has shown
approximately one to three orders of magnitude decrement of time
requirements with respect to the necessary time, needed to complete
the calculations, relative to the reference prototype classifiers, taken
for comparison. It has also been demonstrated that the PM-M system
can be directly applied to analysis of very large data unlike most other
prototype methods, which have to rely on the stratification approach.

Keywords: selection of reference instances, prototype selection,
k-Nearest Neighbors algorithm, classification of data

1. Introduction

Selection of prototype cases (instances, vectors) is a very important subfield of
machine learning. Selection of prototype instances constitutes a family within a
broader approach, known as reference vectors selection, training data compression
or training data pruning (Garcia et al, 2011; Grochowski and Jankowski, 2004;
Jankowski and Grochowski, 2004). Instances can be selected from a training set
for a variety of reasons. The fundamental case is provided by the need of finding
a very low number of interesting samples in data, such that carry a particularly
large amount of information. Another reason for data pruning may be the ne-
cessity to filter noisy samples or outliers from a training set. One may also need

∗Submitted: February 2012; Accepted: February 2017.

540 K. Grudziński

to reduce the size of a training set to speed up learning and instead of drawing
a random stratified sample from training data a reference vectors selection ap-
proach can be used. If a classifier employed is a minimal-distance one, pruning
of data may also significantly reduce the time requirements for the testing phase
(i.e. classification of unseen samples). Prototype selection is a necessary step in
extraction of prototype-based rules (Duch and Blachnik, 2004; Duch and Grudzin-
ski, 2001). The importance of reference vectors selection methods in application
to data analysis cannot be overestimated. In Grudzinski (2004) we described our
PM-M prototype system and gave some preliminary numerical results. In this
paper we provide for the first time the algorithm for the PM-M system. We also
study its generalization ability on a much larger number of datasets and give new
numerical results that justify the usefulness of this method.

The PM-M algorithm evolved in time from a simple implementation, which
initially had only been a part of our Similarity Based Learner software (Grudzinski
and Duch, 1996-2017), to the model being also a part of WEKA workbench (Hall
et al., 2009), modified by us and called SuperWeka (Grudzinski, 2006-2017).

In order to establish a general idea behind the PM-M system, imagine that to
each of the training cases a binary weight has to be assigned, indicating whether
a sample should be retained or not. Thus, if n is the number of training samples,
we have the n-dimensional vector of parameters to optimize. A downhill simplex
method (Nelder and Mead, 1965) for function minimization is then used to find
this optimal set of parameters. The cost function returns the root mean squared
error that the underlying arbitrary classifier makes either by performing cross-
validation on a pruned training partition (the first variant of the method) or by
training it on a compressed training partition and evaluating it on the whole
original training set (the second variant).

Despite employing the simplex minimization method which is often computa-
tionally expensive, the PM-M method can be surprisingly fast. There are at least
two reasons for it. First, we use the simplex minimization method, modified by
us, which we call ‘EkPMinimizer’ and which is based on M. Lampton’s implemen-
tation of a classic simplex minimization algorithm (Lampton, 2004). Restriction
of the number of simplex points to just a few in the simplex initialization phase
and using the first variant of learning with a low cross-validation fold makes the
system often converge in a couple or in a dozen of iterations. The second reason
for high performance of the PM-M system is its way of learning. A user is given
the option of controlling in advance the number of samples retained by initializ-
ing the simplex with a different proportion of zeros and ones. Thus, for example,
initializing the simplex in such a way that only about one percent of samples is
retained, causes that the underlying classifier will cross-validate on approximately
one percent of the samples. In the case of the second variant of learning, the clas-
sifier will be built only on a compressed dataset, which constitutes approximately
one percent of the size of the current training partition and will be evaluated on
the whole original training data to obtain training accuracy. This is the reason
for a relatively low computational cost of the method.

The user of the PM-M system has, therefore, a lot of freedom in tuning the

The PM-M prototype selection system 541

input parameters to cope with both very large and very small data. Another
advantage of the PM-M system over most other reference vector selection methods
is the possibility of using an arbitrary underlying classifier to select prototypes,
because the majority of PM-M competitors rely on the k-Nearest Neighbor rule.

The paper has the following structure. In the next section a concise expla-
nation is given of what prototype selection methods are. Section 3 is devoted
to the description of the PM-M system and the algorithms that constitute this
method. In Section 4 three numerical experiments are performed. The first study
is conducted on 39 small datasets not exceeding 2000 samples each. These are the
same databases as those studied in one of the tests that have been conducted in
Garcia et al. (2011). The IB1 (i.e. 1-Nearest Neighbor) method has been taken
as the reference classifier in our comparison. Additionally, from the large number
of prototype selection models tested in Garcia et al. (2011), we have taken the
CHC, SSMA and GGA systems for our comparison. The latter three methods
turned out to be among the best ones of many algorithms tested in the study
referred to. In the experiment here reported, the majority committees of twenty
PM-M models are confronted with the reference classifiers.

In the second study, which has been conducted on small datasets not exceeding
500 samples, the committees of the PM-M systems are confronted with the CHC
ensembles. This calculation tests how the PM-M system performs on very small
data and to what extent the committees influence generalization and stabilize the
models under study.

The third numerical experiment has been conducted on one very large dataset
consisting of nearly half a million samples, and was meant to show that the PM-M
system can easily cope with very large data. Experiments on medium and large
datasets will be more thoroughly studied elsewhere (Grudzinski, in preparation)
and their analysis is out of the scope of this paper.

In this publication it is shown that the results, obtained with the PM-M system
and compared with the reference ones using the corrected resampled T-Test (Hall,
2009) justify the usefulness of our PM-M method in data analysis. The last section
contains conclusions that follow from the paper.

2. The prototype methods

The prototype selection methods constitute a family within a broader area, known
as reference vector selection algorithms (Garcia, 2012; Jankowski and Grochowski,
2004; Grochowski and Jankowski, 2004). If n is the number of training samples,
a reference vector selection method can be defined as a process of finding the
smallest optimal set S (out of 2n− 1 subsets) of cases representing the same pop-
ulation as the original training set T and leading to the correct classification of
the unseen cases. Quite often, a statistically indistinguishable difference in the
results of classification between the prototype selection methods and the ones,
in which the original unpruned training sets are taken, is obtained. Sometimes,
usually for noisy data, prototype instance selection algorithms may lead to statis-
tically significant improvement of generalization ability. The improvement often

542 K. Grudziński

depends on the size of the datasets under study. For very large datasets, which
consist of hundreds of thousands of samples, the standard deviation of classifi-
cation accuracy is often lower than one percent. In such cases, there is a higher
chance for a prototype method to arrive at a statistically significant improvement
of generalization over the one attained on the unpruned data. One obviously has
to have a sufficiently fast prototype method at hand in order to cope with such
large data.

Prototype generation (Triguero et al., 2011) extends the prototype selection
framework by letting the samples change their positions. The best known ex-
ample of the prototype generation algorithm is the LVQ system (Hyninen, 1996;
Kohonen, 2001).

A certain number of techniques sharing the same strategies can be identified
in the family of reference vector selection algorithms.

2.1. Noise filters

Noise filters or editing rules constitute a category of reference vector selection
algorithms that is based on rejecting noisy cases or outliers from a training set
T . These techniques are employed as the first data preprocessing step. The rate
of data pruning is usually low. After performing this step other methods come
into play. ENN, RENN (Wilson, 1972), All k-NN (Tomek, 1976) and ENRBF
(Jankowski, 2000) are the key examples of the algorithms belonging to this group.

2.2. Data condensation algorithms

Data condensation algorithms or data pruning (compression) techniques aim at
attaining the highest possible training data reduction with minimal sacrifice of
generalization. The aim of the algorithms belonging to this group is to find
and to remove the training vectors that have a small influence on learning and
thus their presence negatively affects classifier time requirements and memory
consumption. This is usually accomplished by discarding these instances that are
located far from decision borders. CNN (Hart, 1968), RNN (Gates, 1972), GA,
RNGE (Bhattacharya et al., 1981), ICF (Brighton and Mellish, 2002) and Drop
1-5 (Wilson and Martinez, 1997; 2000) are among the most important systems
that can be included in this group.

2.3. Prototype selection methods

This group of reference vector selection algorithms is aimed at finding an ex-
tremely low number of samples that carry particularly large amount of informa-
tion and which are capable of representing a large number of training cases. The
difference between data condensation algorithms and prototype selection methods
is, definitely, a very subtle one. In our opinion, the prototype selection methods
push the reduction of the training set to the extreme, thus allowing for slightly
larger degradation of generalization ability than it is the case for the data con-
densation algorithms. It should not be surprising that some of the algorithms,

The PM-M prototype selection system 543

particularly these that permit controlling the number of samples to be retained,
may be assigned either to data condensation or to the prototype selection group
of reference vector selection methods. MC1 and RMHC (Skalak, 1994), IB3 (Aha,
1991), ELH, ELGrow and Explore (Cameron-Jones, 1995) and our own methods
PM-M (Grudzinski, 2004) and EkP (Grudzinski, 2010) belong to the prototype
selection group of methods.

3. The PM-M system

As it has been mentioned in the introduction, the general idea behind the PM-
M system is as follows. To each of the training cases a binary weight∗ is to
be assigned, this weight indicating whether a sample should be retained or not.
Thus, if n is the number of training samples, we have the n-dimensional vector
x of parameters xi (i = 1 . . . n) to optimize. In order to find this optimal set
of parameters, we use the modified version of a downhill simplex method for
function minimization written by Lampton (Lampton, 2004). We refer to this
as ‘EkPMinimizer’. Typically, in order to find a minimum of a cost function
T (x1, x2, . . . xn), where {x1, x2, · · · , xn} is a vector of parameters to be optimized,
a simplex has to be built by initializing its n+1 points with the values of the cost
function. When the initialization is completed, the simplex method is started and
the minimum is found after a certain number of iterations. In fact, in the case of
minimization with the ‘EkPMinimizer’ system, in order to find a ‘good’ minimum,
usually only a few simplex points are required to be initialized. Thus, in cases of
very highly dimensional minimization problems and/or very computationally time
demanding cost functions, the time requirements for the simplex minimization
method can be reduced significantly.

3.1. The algorithms

On the following pages the pseudocode for the main functions behind the PM-M
system is given. Here, C denotes a completely arbitrary classifier that is built
on the prototypes when they are selected. In this paper, as the C classifier, the
IB1 (i.e. 1-NN) method has been used exclusively. NPTS is the input parameter,
which takes values from the range [2,∞] and denotes the number of simplex points
initializing the minimization procedure. In the Algorithm 1 the Random() function
returns a random value from the range [0,1]. The variable prototypeSetSize is
the input variable, which approximately determines how many prototypes will be
selected. Further on in the text of this paper we sometimes refer to it as ‘the
strength of a training set compression’. For example, the value of 0.01 will leave
approximately 1% of the samples in partial memory and the value of 0.5 will
prune the training set to approximately half of its size. Another input parameter

∗Because of technical reasons, the weights used in the computer implementation of the al-
gorithms, presented in this paper, are real numbers, not binary ones, and they are casted from
the floating to integer type when it is needed. It is, however, easier to explain the idea of the
algorithm when these weights are treated as if they were binary.

544 K. Grudziński

Algorithm 1 The simplex initialization function. This algorithm has the complexity of

O(NPTS ∗ (n + OCF)), where NPTS is the number of simplex points, n is the number of

training samples and OCF is the complexity of the cost function algorithm.

double best = double . MaxValue ;

void in i t ia l i z eS implexPM−M(in t NPTS, C l a s s i f i e r C,
DataSet Train , double p ro to typeSe tS ize){

/∗ The NPTS va r i a b l e i s the number o f ‘ s implex
po ints ’ . paramVector i s a vec tor o f parameters
that are optimized . I t c on ta in s we ights
i nd i c a t i ng whether a sample should be
r e ta i n ed or r e j e c t e d . For example
paramVector [5] s t o r e s the weight o f the s i x th
t r a i n i n g sample .

∗/

double paramVector [Train . numInstances ()] ;
double simplex [NPTS] [Train . numInstances () + 1] ;

f o r (i n t i = 0 ; i < NPTS; i = i + 1){
f o r (j = 0 ; j < Train . numInstances () ; j = j + 1){

paramVector [j] = Random() + pro to typeSe tS iz e ;
s implex [i] [j] = paramVector [j] ;

}

simplex [i] [Train . numInstances ()] =
costFunct ion (paramVector , C, Train) ;

}
}

(appearing only in the case of the first variant of learning) is the number of internal
cross-validation folds used for learning. In the headers of the algorithm listings,
the information concerning the complexity of these algorithms is provided.

3.2. Complexity analysis

Let us start our discussion by analyzing the complexity of both variants of the
cost function algorithm. The first loop in the listings of the Algorithms 2 and
3, which iterates over all n training samples is common for both variants of the
cost function algorithm. Thus, both algorithms will have the complexity of at
least O(n). Let us denote by OCTr and OCTst the complexities of of the training
and testing phases of the underlying classifier C, classifying the samples in the
current training partition. Thus, the complexity of both variants of the cost
function algorithm takes the value OCF = O(n) + OCTr + OCTst . Recall that in
this paper the IB1 method has been used exclusively as the underlying classifier
C. In the first variant of learning, the C classifier crossvalidates on p prototypes.
The complexity of training the IB1 classifier is O(1) and the complexity of testing
a single sample by the IB1 method is O(p), because there are p samples in partial
memory. Therefore, the complexity of a testing phase of the IB1 system is O(p2).
Thus, the overall complexity of the Algorithm 2 (i.e. the first variant of the cost
function algorithm) is O(n + p2).

The PM-M prototype selection system 545

Algorithm 2 The first variant of the cost function algorithm (learning via internal cross-

validation on prototype data). If the IB1 model is taken as the underlying classifier (i.e. C≡IB1)

the complexity of this variant of learning takes the value OCF1 = O(n + p2), where p is the

number of prototypes.

double costFunct ion (f l o a t paramVector [] ,
C l a s s i f i e r C, DataSet Train){

DataSet Proto = Train ; // Start from the whole t r a i n i g s e t

f o r (i = Train . numInstances () − 1 ; i >= 0; i = i − 1){
i f (((i n t) paramVector [i]) <= 0)

d e l e t e I n s t anc e (i , Proto) ;
}

Evaluation ev ;

f o r (i = 1 ; i <= numFoldsLearn ; i = i + 1){
t r a i n = GetTrain (Proto , i) ;
t e s t = GetTest (Proto , i) ;

B u i l dC l a s s i f i e r (t ra in ,C) ;
ev . Eva l u a t eC l a s s i f i e r (t e s t ,C) ;

}

i f (ev . rootMeanSqErr () < best) {
best = ev . rootMeanSqErr () ;
optimalParamV = paramVector ;

}

re turn best ;
}

Algorithm 3 The second variant of the cost function algorithm (learning via testing the

underlying classifier on a whole training partition and building it on prototype cases). By

choosing the IB1 model as the underlying classifier (i.e. C≡IB1) the complexity of this variant

of learning takes the value of OCF2 = O(n+ pn), where p is the number of prototoypes and n

is the number of training samples.

double costFunct ion (f l o a t paramVector [] ,
C l a s s i f i e r C, DataSet Train){

DataSet Proto = Train ; // Start from a whole t r a i n i g s e t

f o r (i = Train . numInstances () − 1 ; i >= 0; i = i − 1){
i f (((i n t) paramVector [i]) <= 0)

d e l e t e I n s t anc e (i , Proto) ;
}

Evaluation ev ;
Bu i l dC l a s s i f i e r (Proto ,C) ;
ev . Eva l u a t eC l a s s i f i e r (Train ,C) ;

i f (ev . rootMeanSqErr () < best){
best = ev . rootMeanSqErr () ;
optimalParamV = paramVector ;

}

re turn best ;
}

546 K. Grudziński

In the second variant of learning, the C classifier is trained on p prototypes
and is evaluated on the entire training partition, instead of crossvalidating on the
training partition consisting of p prototypes, as this was the case of Algorithm 2.
An analysis similar to the one above, conducted for the case of the second variant
of the cost function algorithm will lead us to the conclusion that the complexity
of the Algorithm 3 is O(n + p ∗ n).

Taking into account the number of attributes d in a problem domain, the
complexities of both variants of the cost function algorithm take the forms O(n+
d ∗ p2) and O(n + d ∗ p ∗ n), respectively.

In the same way, the complexity of the Algorithm 1 (i.e. the simplex initial-
ization algorithm) can be analyzed. The complexity of this algorithm takes the
value O(NPTS ∗ (n + OCF)).

Thus, if we restrict ourselves to the slower variant of the cost function al-
gorithm (i.e. Algorithm 3), the complexity of the initialization of the simplex
method is O(NPTS ∗n+NPTS ∗ p ∗n), which means, in fact, O(NPTS ∗ p ∗n).
Because in real applications NPTS ≪ n and p ≪ n, this complexity is very
promising.

Application of the PM-M system to very large datasets shows that the entire
minimization process can often be completed in less than 100 cost function calls.
This proves that the method under study is easily capable of analyzing very large
datasets (see Section 4.3).

4. Numerical experiments

In order to show the usefulness of the PM-M system, three numerical experiments
have been conducted in which the SuperWeka system has been used (Grudzinski,
2006-2017). Thirty nine small databases (i.e. the ones that consist of no more
than two thousand samples each) from the UCI repository (Lichman, 2013) and
Keel repository (Alcalá-Fdez, 2011) have been taken for our first study (Table
1). The second experiment has been performed on 24 very small datasets that
remained by rejecting these domains, used in the first study, which had more
than 500 samples. The third experiment has been conducted on only one domain
(kddcup) consisting of about half a million examples.

In the first experiment, we have employed majority committees (Kittler et
al, 1998; Bauer and Kohavi, 1999; Kuncheva, 2004;) of twenty homogeneous
(i.e. all with the same configuration) PM-M models, all of which have been
trained with the first variant of learning. The IB1 (i.e. 1-Nearest Neighbor)
system in all three experiments has been used as the reference classifier, as well
as the underlying method for the PM-M systems with which the prototype cases
were found. Additionally, the CHC, SSMA and GGA (Garcia, 2011) prototype
selection methods have also been taken for comparison in our first numerical
study†.

†The latter three prototype methods are part of the Keel (Alcalá-Fdez, 2009) software, and
they have been brought to the SuperWeka system by the author of this paper.

The PM-M prototype selection system 547

The aim of the second experiment is to show that even though the ‘raw’ PM-
M system is slightly unstable when applied to very small datasets, its majority
committees can very well compete with the majority committees of the best ref-
erence classifier taken for comparison, i.e. the CHC system. In this experiment,
the CHC and PM-M majority committees have been constructed from 20 mod-
els all having the same configuration. The PM-M system has been trained this
time with the second variant of learning and the number of simplex points has
been set to be equal to the number of training cases.‡ There are two reasons for
the choice of only very small datasets, consisting of no more than 500 samples,
in this experiment. First, the datasets have to be small enough in order to be
able to complete the calculations in reasonable time. This concerns primarily
the CHC model, which is very time consuming. Moreover, the second variant of
learning, with which the calculations for the PM-M system have been conducted
in this study, is much more time consuming than the first version of learning and
therefore only small datasets were used. The second reason for the selection of
only small datasets is, obviously, the need to observe to what extent the commit-
tees stabilize both methods used for the experimentation and how they influence
generalization.

The 10-fold stratified cross validation test has been performed in all our ex-
periments. The calculations have been repeated ten times in the first and the
second study and the percentage of classification accuracy and the prototype set
size averaged over hundred partial results have been recorded. In order to esti-
mate the statistical significance of the difference between the obtained results, the
corrected resampled T-Test with the significance factor 0.05 has been employed
(Hall, 2009).

In our third calculation, carried out on the kddcup data, the 10-fold cross-
validation test without repetition has been preformed. This study is a preliminary
experiment, whose aim is to show that the PM-M system can easily cope with
very large data by applying this method directly.

4.1. Discussion of the results of the first experiment

The numerical results of the first experiment are summarized in Tables 2–4. CHC,
SSMA and GGA – the PM-M competitors – performed extremely well in our
study. CHC has compressed the size of the training sets to the average value
of 2.7% of their original size. This method outpaced the IB1 classifier on ten
datasets, on the remaining seventeen databases the statistically indistinguishable
results of classification accuracy have been obtained. Thus, only on twelve do-
mains the degradation of generalization has occurred. SSMA and GGA have
given similar classification accuracy on test sets as CHC, but these models re-
quired slightly more of the samples (4.25% and 5.85%, respectively).

Comparing the results of classification obtained with the latter two models

‡The detailed comparison of both variants of learning and the influence of each of the PM-M’s
input parameters on generalization and time requirements of the PM-M system will be given in
Grudzinski (in preparation).

548 K. Grudziński

Table 1. Characteristics of the datasets used in our experiment
Dataset Ex. Atts. Num. Nom. Cl.

1 appendicit. 106 7 7 0 2

2 australian 690 14 8 6 2

3 automobile 205 25 15 10 6

4 balance 625 4 4 0 3

5 bands 539 19 19 0 2

6 breast 286 9 0 9 2

7 bupa 345 6 6 0 2

8 car 1728 6 0 6 4

9 cleveland 303 13 13 0 5

10 contrace. 1473 9 9 0 3

11 crx 690 15 6 9 2

12 dermatol. 366 34 34 0 6

13 ecoli 336 7 7 0 8

14 flare-solar 1066 11 0 11 6

15 german 1000 20 7 13 2

16 glass 214 9 9 0 7

17 haberman 306 3 3 0 2

18 hayes-roth 160 4 4 0 3

19 heart 270 13 13 0 2

20 hepatitis 155 19 19 0 2

21 housevotes 435 16 0 16 2

22 iris 150 4 4 0 3

23 led7digit 500 7 7 0 10

24 lymphogr. 148 18 3 15 4

25 mammogr. 961 5 5 0 2

26 monk-2 432 6 6 0 2

27 newthyr. 215 5 5 0 3

28 pima 768 8 8 0 2

29 sahart 462 9 8 1 2

30 sonar 208 60 60 0 2

31 spectheart 267 44 44 0 2

32 tae 151 5 5 0 3

33 tic-tac-toe 958 9 0 9 2

34 vehicle 846 18 18 0 4

35 vowel 990 13 13 0 11

36 wine 178 13 13 0 3

37 wisconsin 699 9 9 0 2

38 yeast 1484 8 8 0 10

39 zoo 101 16 0 16 7

Average 533.74 13.33 10.23 3.10 3.77

T
h
e
P
M

-M
p
ro

to
ty

p
e
se
le
c
tio

n
sy

ste
m

5
4
9

Table 2. Summary of the results of classification accuracy (%) of 39 small datasets obtained with the CHC, SSMA and GGA prototype selection systems.

The IB1 method (i.e. 1-NN) which was trained on the whole training partitions has been taken as the reference classifier. The pairwise comparison of the

results has been done using the corrected resampled T-Test (Hall, 2009) with the significance factor σ = 0.05

Dataset IB1
std.
dev.

CHC
std.
dev.

size
(b/
t/
w)

SSMA
std.
dev.

size
(b/
t/
w)

GGA
std.
dev.

size
(b/
t/
w)

1 appendicit. 80.96 9.30 85.06 9.41 2.89 84.75 8.91 3.61 85.52 8.80 3.55

2 australian 80.87 4.11 83.38 5.59 0.79 82.36 5.07 1.49 82.72 4.31 3.16

3 automobile 74.40 10.27 46.10 10.67 4.81 * 53.54 10.70 9.26 * 53.03 11.34 10.48 *

4 balance 78.29 4.24 87.87 3.19 1.07 v 87.71 2.78 2.51 v 86.80 2.97 4.49 v

5 bands 62.78 6.23 59.24 5.61 1.82 60.13 6.45 4.23 59.33 6.28 6.07

6 breast 67.89 7.52 72.67 6.91 1.64 71.20 7.73 2.28 69.24 8.17 2.85

7 bupa 62.92 8.19 62.12 7.91 2.66 63.69 7.71 5.34 64.12 8.78 6.84

8 car 77.30 3.18 67.46 4.93 1.08 * 69.42 4.37 3.01 * 74.71 2.97 8.39

9 cleveland 52.47 7.41 58.42 5.57 1.43 v 56.49 5.79 2.28 54.78 6.60 3.80

10 contrace. 42.56 3.21 49.73 4.34 0.79 v 48.32 4.19 3.24 v 47.16 4.84 8.07 v

11 crx 82.78 4.37 77.55 6.98 0.87 * 76.13 7.67 1.51 * 78.46 4.58 3.35 *

12 dermatol. 95.60 3.16 92.87 4.45 2.46 92.97 4.02 3.41 93.08 3.89 3.73

13 ecoli 79.61 6.18 79.31 6.96 3.45 80.45 6.63 5.05 79.64 6.68 6.20

continued in next page

5
5
0

K
.
G
r
u
d
z
iń
s
k
i

Table 2 continued

Dataset IB1
std.
dev.

CHC
std.
dev.

size
(b/
t/
w)

SSMA
std.
dev.

size
(b/
t/
w)

GGA
std.
dev.

size
(b/
t/
w)

14 flare-solar 60.36 6.70 66.93 5.78 0.55 v 66.33 4.59 0.56 v 66.80 4.58 2.64 v

15 german 72.24 3.59 68.72 4.49 0.92 69.40 3.97 3.15 69.55 3.79 6.39

16 glass 72.01 9.32 62.88 10.26 5.03 * 64.26 9.63 7.15 64.94 8.63 8.11

17 haberman 65.75 7.40 73.76 5.50 1.47 v 73.89 5.61 1.90 v 74.21 5.77 2.94 v

18 hayes-roth 75.47 10.49 49.96 12.68 5.09 * 71.08 13.04 9.55 52.40 14.76 8.06 *

19 heart 76.15 8.48 82.04 6.75 1.56 v 79.78 7.43 2.65 80.59 7.99 3.53

20 hepatitis 81.40 8.55 81.41 10.04 3.56 80.96 9.70 4.34 82.55 8.18 5.23

21 housevotes 92.23 3.95 91.98 4.67 1.18 91.32 4.60 1.51 92.18 4.72 2.33

22 iris 95.20 4.75 91.20 7.92 3.19 90.87 8.08 3.93 91.60 8.02 4.07

23 led7digit 64.04 8.34 64.66 7.45 3.44 75.84 6.64 3.11 v 64.54 7.70 4.66

24 lymphogr. 81.72 10.40 79.31 9.75 3.83 75.99 10.70 5.73 73.33 10.64 7.39 *

25 mammogr. 74.07 3.80 80.08 6.05 0.63 v 80.94 4.79 1.09 v 79.77 3.64 3.98 v

26 monk-2 76.68 6.89 96.69 3.49 0.94 v 95.95 3.57 2.45 v 88.65 5.20 6.38 v

Continued in next page

T
h
e
P
M

-M
p
ro

to
ty

p
e
se
le
c
tio

n
sy

ste
m

5
5
1

Table 2 continued

Dataset IB1
std.
dev.

CHC
std.
dev.

size
(b/
t/
w)

SSMA
std.
dev.

size
(b/
t/
w)

GGA
std.
dev.

size
(b/
t/
w)

27 newthyr. 96.93 4.16 91.50 6.05 2.34 * 92.55 5.96 2.81 90.74 7.48 3.20 *

28 pima 70.40 4.50 73.35 5.82 1.18 72.78 4.08 2.39 72.08 4.46 4.95

29 sahart 65.15 6.47 70.52 6.47 1.42 69.92 6.40 2.71 69.88 6.94 3.38

30 sonar 85.98 8.62 74.49 10.86 3.85 * 74.38 9.95 8.01 * 76.54 8.77 10.25 *

31 spectheart 69.59 6.93 77.92 5.60 1.65 v 77.13 6.65 2.56 v 76.07 6.97 3.62 v

32 tae 63.28 12.73 51.01 11.36 4.19 * 51.10 12.63 7.28 * 51.34 11.17 8.00 *

33 tic-tac-toe 80.71 4.00 67.84 4.41 1.56 * 73.97 4.58 5.32 * 77.59 4.41 8.58

34 vehicle 69.59 3.77 63.12 5.02 2.56 * 65.82 4.75 6.45 65.52 4.50 8.58 *

35 vowel 99.04 1.07 72.79 5.34 16.40 * 87.20 4.34 15.34 * 77.41 4.93 17.08 *

36 wine 95.22 4.63 94.49 5.19 2.81 94.72 5.30 3.55 94.49 4.91 4.02

37 wisconsin 95.42 2.24 95.95 3.13 0.55 95.88 4.24 0.69 96.15 3.21 0.97

38 yeast 52.47 4.17 56.79 4.15 1.20 v 57.23 4.10 3.13 v 55.27 4.43 7.75

39 zoo 96.32 5.42 91.97 5.96 8.59 * 95.92 6.19 11.30 93.72 6.76 10.99

Average 76.05 74.18 2.70
(10/
17/
12)

75.70 4.25
(9/
23/
7)

74.53 5.85
(7/
23/
9)

(v/ /*) - Statistically significant improvement or degradation, σ = 0.05

552 K. Grudziński

against the baseline system, we conclude that SSMA performed better than the
IB1 classifier on nine datasets, whilst GGA won seven times. At the same time,
only on seven datasets SSMA performed worse than the IB1 system. In the
case of GGA model, only nine times out of thirty nine the degradation of the
classification accuracy has been observed. The results of classification obtained
with these three prototype methods are summarized in Table 2. In the columns,
which are labeled by (b/t/w), this label standing for (better/ties/worse), the
information is provided about whether the relevant prototype method has been
better, worse or gives the same results as the baseline classifier, with respect to
the given dataset. The ‘v’ mark stands for improvement, the asterisk ‘*’ denotes
statistically significant degradation of the classification accuracy and the lack of
any mark denotes the ties.

Similar results to these obtained with the CHC, SSMA and GGA method
have been attained with the first majority ensemble of twenty homogeneous PM-
M systems. By the term ‘homogeneous’ we understand that all of the PM-M
models, comprising the committee, have the same configuration. In this particu-
lar case we have chosen for the PM-M models the following values of the input
parameters: the first variant of learning through 3-fold cross-validation, only two
simplex points, on which ‘simplex’ has been built, and the initial value of 0.0585
(i.e. 5.85%) for the parameter prototypeSetSize, controlling the strength of the
training set compression.

As it can be seen from Table 3, the results obtained with the first majority
committee lead to similar generalization as in the case of calculations conducted
with the CHC, SSMA and GGA models. The same holds for the training data
compression. The obtained average level of data pruning of 5.95% is not much
different from the value, with which each of the PM-M models started, i.e. 5.85%.
This is good, because it means that the target size of the prototype memory can
be estimated in advance and very precisely controlled.

What concerns the time requirements of our proposed method, the calcula-
tions required to complete the test by the first majority ensemble lasted more
than roughly two orders of magnitude shorter than in the case of its prototype
competitors (Table 4). Dividing this value by twenty, which is the number of
models comprising the ensemble, leads to the decrement by more than three or-
ders of magnitude concerning the time requirements of the ‘raw’ PM-M model
with respect to the reference prototype systems studied. The results of general-
ization, obtained with the second ensemble, taken for our experimentation, are
even better. In this case, the average value of classification accuracy is higher
than the one attained with IB1 by about 1.5% and the number of datasets, on
which the ensemble performed worse than the baseline system, drops to only two.
Despite setting the data compression parameter to the value of thirty percent,
the resulting committee has still required less time to complete the test by more
than one order of magnitude than its prototype competitors.

T
h
e
P
M

-M
p
ro

to
ty

p
e
se
le
c
tio

n
sy

ste
m

5
5
3

Table 3. Summary of the results of classification accuracy (%) of 39 small datasets obtained with the two majority voting
ensembles composed of 20 homogeneous IB1-based PM-M systems and with the IB1 method, trained on the whole training
partitions, used as a baseline classifier. The number of internal cross-validation learning folds, denoted by the -X flag, was
set to 3. The number of used simplex points was first set to 2 and then to 10% of the training set size (flag -N). The pairwise
comparison of the results was done using the corrected resampled T-Test (Hall, 2009) with the significance factor σ = 0.05

Dataset IB1
std.
dev.

Vote
−X = 3
−N = 2

20

std.
dev.

initial
size

5.85%

(b/
t/
w)

Vote
−X = 3

−N = 10%
20

std.
dev.

initial
size
30%

(b/
t/
w)

1 appendicitis 80.96 9.30 82.48 5.31 5.85 86.90 7.56 29.97

2 australian 80.87 4.11 86.01 3.61 5.89 v 84.71 3.67 29.98 v

3 automobile 74.40 10.27 52.29 9.58 5.95 * 69.19 10.07 30.28

4 balance 78.29 4.24 87.79 2.50 5.86 v 83.74 3.31 30.04 v

5 bands 62.78 6.23 58.98 5.84 5.86 62.87 6.19 29.92

6 breast 67.89 7.52 72.37 4.55 5.83 72.48 6.05 30.16

7 bupa 62.92 8.19 61.56 7.14 5.86 62.73 8.06 30.00

8 car 77.30 3.18 85.20 2.74 5.86 v 86.34 2.37 30.04 v

9 cleveland 52.47 7.41 57.86 4.65 5.91 56.50 7.47 29.92 v

10 contraceptive 42.56 3.21 48.20 4.06 5.87 v 45.55 3.53 30.02 v

11 crx 82.78 4.37 85.87 4.22 5.87 v 86.22 4.11 30.00 v

12 dermatology 95.60 3.16 95.14 3.60 5.89 96.48 2.65 30.00

13 ecoli 79.61 6.18 74.12 6.65 5.87 * 81.76 6.02 30.04

14 flare-solar 60.36 6.70 64.95 4.19 5.82 63.04 5.61 30.03

15 german 72.24 3.59 72.46 2.95 5.88 73.05 3.54 29.99

16 glass 72.01 9.32 61.65 8.84 6.06 * 70.05 8.79 30.01

17 haberman 65.75 7.40 74.03 4.51 5.86 v 69.64 5.80 30.02

18 hayes-roth 75.47 10.49 45.73 11.68 5.88 * 57.88 14.49 30.33 *

19 heart 76.15 8.48 82.00 6.78 5.89 v 79.81 7.03 29.96

20 hepatitis 81.40 8.55 80.82 5.10 5.88 83.06 8.69 30.14

Continued in next page

5
5
4

K
.
G
r
u
d
z
iń
s
k
i

Table 3 continued

Dataset IB1
std.
dev.

Vote
−X = 3
−N = 2

20

std.
dev.

initial
size

5.85%

(b/
t/
w)

Vote
−X = 3

−N = 10%
20

std.
dev.

initial
size
30%

(b/
t/
w)

21 housevotes 92.23 3.95 91.70 3.97 5.86 92.95 3.64 30.01

22 iris 95.20 4.75 93.93 5.85 6.14 95.27 5.04 29.92

23 led7digit 64.04 8.34 73.66 6.63 5.91 v 71.34 6.74 30.05 v

24 lymphography 81.72 10.40 79.56 9.56 6.01 84.17 8.09 30.13

25 mammographic 74.07 3.80 81.14 3.71 5.87 v 78.69 3.80 30.09 v

26 monk-2 76.68 6.89 81.53 6.86 5.92 89.45 4.99 30.00 v

27 newthyroid 96.93 4.16 87.22 5.86 5.95 * 94.61 4.37 29.96

28 pima 70.40 4.50 73.32 4.26 5.86 73.08 4.53 30.00 v

29 sahart 65.15 6.47 70.80 5.64 5.84 v 67.70 5.63 30.03

30 sonar 85.98 8.62 72.01 8.95 5.86 * 84.57 8.10 30.09

31 spectheart 69.59 6.93 79.11 5.80 5.87 v 73.54 6.81 29.97

32 tae 63.28 12.73 50.11 12.38 5.94 * 56.43 11.68 30.16

33 tic-tac-toe 80.71 4.00 87.17 2.97 5.89 v 89.86 3.64 29.96 v

34 vehicle 69.59 3.77 68.39 4.38 5.87 70.80 4.27 30.00

35 vowel 99.04 1.07 62.14 5.07 5.88 * 96.19 2.10 30.07 *

36 wine 95.22 4.63 95.96 4.67 6.18 96.41 4.41 30.11

37 wisconsin 95.42 2.24 96.22 2.44 5.80 96.58 2.20 29.99

38 yeast 52.47 4.17 57.94 3.88 5.86 v 56.70 3.83 30.00 v

39 zoo 96.32 5.42 83.66 9.07 8.09 * 94.14 6.35 30.17

Average 76.05 74.75
real
size

5.95%

(13/
17/
9)

77.81
real
size

30.04%

(12/
25/
2)

(v/ /*) - Statistically significant improvement or degradation, σ = 0.05

The PM-M prototype selection system 555

Table 4. The program average user execution times (seconds) obtained by running each

of the models that has been used in our experiments on a single cross validation fold.

Tr stands for average user training time, Tst - average user testing time, and Tot is the

user total time. The -P input option denotes the strength of training data compression.

The -X input option denotes the internal cross-validation learning fold with which the

first variant of the cost function is executed. Finally, the -N input variable denotes the

number of ’simplex points’ taken for the calculation. The values with the % mark denote

the used options expressed in terms of percentage of the training set size

IB1 CHC SSMA GGA Vote 1 Vote 2

Tr 0.0417 16.9790 9.9369 16.5900 0.0169 0.4979
Tst 0.0037 0.0001 0.0002 0.0004 0.0063 0.0276
Tot 0.0454 16.9791 9.9371 16.5904 0.0232 0.5255

Vote 1 Settings: -P 5.85% -X 3 -N 2 20 models
Vote 2 Settings: -P 30% -X 3 -N 10% 20 models

4.2. Discussion of the results of the second experiment

In the second study, the majority committees, composed of twenty PM-M models,
have been confronted with twenty model-based committees of the CHC systems.
The experiments in this section have been conducted on 24 small datasets that
have been filtered out from the ones listed in Table 1 by rejecting these domains,
which had more than 500 cases. Let us first discuss the results obtained with
the ‘raw’ (i.e. not committee) models. The PM-M competitor, the CHC system,
performed extremely well in this study. In the 10-fold cross-validation test, which
has been repeated ten times, the ‘raw’ CHC system attained 75.93% of classifica-
tion accuracy on unseen samples. At the same time, with the IB1 system, which
was trained on the whole original training partitions, 77.79% of classification ac-
curacy has been obtained. As it is usually the case of the CHC system, a very
large training set compression ratio has been recorded in this calculation. The
size of the outcoming prototype sets had the size, on the average, of only 3.06%
of the original training sets. In order to perform a fair comparison between the
‘raw’ CHC model and the ‘raw’ PM-M system, the latter should be evaluated in
the same way as its competitor. Additionally, one has to assure that the PM-M
selects the prototype sets of approximately the same size as CHC. This can be
done with PM-M by initializing the simplex with the appropriate proportion of
0’s and 1’s. Despite choosing for the PM-M system this time the settings that
assure its best performance, i.e. the second variant of learning and initializing
all the simplex points, in this test the CHC system outperformed the raw PM-M
model, with which only 63.15% of classification accuracy has been obtained. The
average size of the dataset compressed by PM-M has been equal to 3.91%. This
result indicates that the calculations with the ‘raw’ PM-M model lead to poor
generalization when this method is trained on not sufficiently large learning sets
and, additionally, a very low number of prototypes is expected to be obtained.

556 K. Grudziński

Things look completely different when committees of PM-M models are used.
The results of the second experiment are summarized in Table 5. The role of the
baseline classifier is now played by the majority committee of twenty CHC models.
All the PM-M models, comprising the committee, have been used with the same
configuration, the same as the one with which the raw PM-M system has been
used (namely with the second variant of learning and with the initialization of all
simplex points). As it has been already mentioned, the raw IB1 system attained
in this study 77.79% of classification accuracy. The committee of twenty PM-M
systems has been very competitive with respect to the CHC ensemble. PM-M
outperformed CHC on one dataset out of 24, and at the same time CHC won
twice on two different domains. For the remaining databases, the statistically
indistinguishable differences of the results of classification have been obtained.
What concerns the user training time of the models under study, the PM-M com-
mittee outpaced the CHC ensemble about four times, and the calculations with
these two models lasted, on the average, 4.37 and 16.92 seconds, respectively, on a
single cross-validation fold. Majority committees very much stabilized the results
obtained with the PM-M system. The average standard deviation of classification
accuracy which was taken over all 24 datasets and which has been obtained by the
PM-M ensemble, was equal to 6.63%. At the same time, the value of 11.12% has
been obtained when the raw PM-M system has been taken for the calculation.
The influence of using the committee on stabilization of the CHC system was
marginal, with about 1% decrement of the average standard deviation of classifi-
cation accuracy with respect to the value, which was obtained with the raw CHC
model.

As the results illustrate this on the small datasets, the majority voting makes
the PM-M system competitive with respect to the best prototype classifiers in the
field. This holds not only in the case of classification accuracy, but also in the case
of size of prototype sets. There is, however, a problem with the interpretation
of importance of the selected prototypes. In the case of the majority voting, the
information about the significance of the particular prototypes for classification
is scattered in committee models. This issue requires further examination. One
of solutions for this problem seems to be the application of prototype based com-
mittees (Grudzinski, 2006). With the help of the prototype based committees
there will probably be no need to look for other prototype selection methods than
PM-M when analyzing also very small datasets. Although the prototype based
committees have been used with good results earlier, their utility needs to be
experimentally verified again on a larger scale.

4.3. Suitability for very large data analysis

The study of suitability of the PM-M system for medium and very large data
analysis is out of the scope of this paper. Classification of medium and large
datasets as well as the other PM-M properties will be studied in Grudzinski (in
preparation). Therefore, for purposes of this paper the experiment on only one
very large dataset has been performed. This particular experiment was meant to

The PM-M prototype selection system 557

Table 5. Summary of results of classification accuracy (%) of 24 small datasets (i.e. not

exceeding 500 samples) obtained with the IB1 method and majority voting ensembles of

PM-M and CHC prototype selection systems. The CHC committee has been taken as

the reference (baseline) classifier. The pairwise comparison of the results has been done

using the corrected resampled T-Test (Hall, 2009) with the significance factor σ = 0.05.

Dataset Vote

CHC

20

std.

dev.

size IB1

std.

dev.

(b/

t/

w)

Vote

PM-M

20

std.

dev.

size (b/

t/

w)

1 appendicit. 85.15 8.58 2.87 80.96 9.32 86.88 8.61 4.31

2 automobile 54.27 8.41 4.91 74.40 10.29 v 55.53 7.58 4.39

3 breast 75.11 6.55 1.68 67.89 7.52 * 74.10 5.66 3.21

4 bupa 65.79 7.71 2.65 62.92 8.19 64.24 7.12 3.58

5 cleveland 59.60 4.97 1.45 52.47 7.41 * 58.08 4.20 3.34

6 dermatol. 95.57 3.73 2.50 95.60 3.16 96.39 2.96 4.18

7 ecoli 81.97 6.30 3.52 79.61 6.18 77.44 6.16 4.05 *

8 glass 68.56 8.81 5.04 72.01 9.32 62.98 8.58 4.50

9 haberman 74.31 5.92 1.50 65.75 7.40 * 75.10 4.87 3.12

10 hayes-roth 52.51 13.71 5.11 75.47 10.49 v 56.94 14.02 4.43

11 heart 83.37 7.03 1.67 76.15 8.48 * 82.41 6.19 3.25

12 hepatitis 82.72 8.17 3.48 81.40 8.55 84.77 7.89 4.06

13 housevotes 94.57 3.06 1.19 92.23 3.95 94.51 3.34 3.27

14 iris 93.93 6.15 3.22 95.20 4.75 94.93 5.62 4.42

15 ed7digit 71.90 6.21 3.42 64.04 8.34 * 75.14 6.43 4.04 v

16 lymphogr. 83.80 8.27 3.91 81.72 10.40 81.46 8.54 3.97

17 monk-2 97.22 2.66 0.97 76.68 6.89 * 87.64 4.93 3.32 *

18 newthyr. 94.47 4.26 2.34 96.93 4.16 94.22 4.46 3.79

19 sahart 71.03 6.46 1.37 65.15 6.47 * 73.22 5.98 3.04

20 sonar 77.65 9.07 4.00 85.98 8.62 v 75.13 8.72 3.96

21 spectheart 80.24 4.23 1.61 69.59 6.93 * 80.43 3.79 3.58

22 tae 53.20 11.26 4.38 63.28 12.73 51.80 12.73 4.59

23 wine 96.90 3.81 2.82 95.22 4.63 97.36 3.52 4.02

24 zoo 92.45 6.20 8.55 96.32 5.42 v 89.71 7.15 7.75

Average 78.60 3.09 77.79 (4/
12/
8)

77.93 4.01 (1/
21/
2)

(v/ /*) - Statistically significant improvement or degradation, σ = 0.05

558 K. Grudziński

convince the reader that the PM-M system is, as well, a very good tool in large
data analysis.

Direct application of most of the known prototype selection methods to large
data is usually avoided because of the computational cost involved. Instead, a
stratification procedure can be performed (Cano, 2005). The PM-M system can
cope with large data directly, provided that the outcoming target prototype set
is sufficiently small and a very low number of simplex points is chosen.

We have taken the kddcup dataset consisting of 424,020 instances, 42 at-
tributes (including the class attribute) and 23 classes for our experimentation.
Because for such a large dataset the standard deviation of classification accuracy
is low, only one repetition of the 10-fold cross-validation test with the IB1 and
PM-M classifier has been performed. It took 0.16 second of user training and
about 121 minutes of user testing time for the IB1 model to complete the calcula-
tion on a single cross-validation fold. The average testing classification accuracy
(the average was taken over all 10 folds) of 99.96% have been obtained. At the
same time, the PM-M system completed the classification of all the samples from
a single cross-validation fold on the average in 38.22 seconds. It took only 8.17
seconds of the user training time to train this classifier and the testing phase lasted
for 30.05 seconds of the user testing time. Classification accuracy of 99.49% has
been attained with the PM-M system on unseen samples. What concerns the
values of the input parameters that have been set for the PM-M method, the first
variant of learning has been used by performing 3-fold internal cross-validation.
The value of the strength of the instance compression parameter has been set
to 0.005 and 50 simplex points have been taken for the calculation. It took on
the average only 101 cost function calls for the PM-M system to converge to a
minimum root mean squared classification error on a single cross-validation fold.
The training set partitions have been compressed by the PM-M model on the
average to 0.5% of their original size. Taking more simplex points and increasing
the value of the compression parameter would probably result in attaining bet-
ter generalization by the PM-M system, but this requires empirical verification.
Thus, further experiments, aiming at investigation of the influence of each of the
input parameters on generalization ability and on the time requirements of the
method need to be conducted and their results will be reported in the subsequent
publications (Grudzinski, in preparation).

5. Conclusions and further research

In this paper, the algorithm for the PM-M system has been provided. Numerical
experiments on small datasets not exceeding 2000 samples and on one very large
dataset (424,020 instances) indicate that the system under study is a competitive
prototype selection method and that it allows to reduce substantially the training
set size, while keeping classification accuracy at a statistically good level. How-
ever, classification accuracy, although definitely very important, is not the only
measure of the suitability of the method. The advantage of the proposed system
over most of other reference selection algorithms is the possibility of selection of

The PM-M prototype selection system 559

the target prototype sets, which are of the size that can be approximately esti-
mated and controlled in advance. Thus, the PM-M system may be used to prepare
the training data of arbitrary size for other slow algorithms that could normally
not cope with large data. Finally, a strong side of the proposed algorithm is its
speed. With this respect, the PM-M system has the advantage over many other
methods.

What requires further study is the influence of the adopted number of simplex
points on generalization ability of the method and on the time requirements of
this method. The same concerns the choice of the learning variant, with which
the PM-M method is trained. A larger scale comparison with other well known
reference selection methods has to be conducted and sensitivity to noise has to
be examined. Optimal values for the number of selected prototypes for individual
datasets have to be found and after that, the computations have to be repeated.
More calculations on very large datasets have to be performed in order to show
that the method can cope with large data. Thus, further experiments aiming at
investigation of the mentioned issues will be conducted and the results will be
presented in the subsequent publications (Grudzinski, in preparation).

Acknowledgments

I would like to thank my colleagues, R. Adamczak, M. Blachnik and M. Gro-
chowski, for reading the draft of this paper and for very valuable remarks that
helped in preparation of the final version of this article.

References

Aha, D., Kibler, D. and Albert M. (1991) Instance-based learning algo-
rithms. Machine Learning, 6, 37-66.

Alcalá-Fdez, J., Sánchez, L., Garćıa, S., del Jesus, M. J., Ventura,

S., Garrell J. M., Otero, J., Romero, C., Bacardit, J., Rivas, V.

M., Fernández, J. C., Herrera, F. (2009) KEEL: A Software Tool to
Assess Evolutionary Algorithms to Data Mining Problems. Soft Computing

13:3 307-31.
Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garćıa, S.,

Sánchez, L., Herrera, F. (2011) KEEL Data-Mining Software Tool:
Data Set Repository, Integration of Algorithms and Experimental Analysis
Framework. Journal of Multiple-Valued Logic and Soft Computing 17:2-3,
255-287.

Bauer, E., Kohavi, R. (1999) An empirical comparison of voting classification
algorithms:bagging, boosting and variants. Machine Learning 36, 105-142.

Bhattacharya, B., Poulsen, R. and Toussaint, G. (1981) Application
of proximity graphs to editing nearest neighbor decision rule. In: IEEE

International Symposium on Information Theory, Santa Monica. IEEE.

560 K. Grudziński

Brighton, H. and Mellish, C. (2002) Advances in instance selection for
instance-based learning algorithms. Data Mining and Knowledge Discovery

6, 153-172.
Cameron-Jones, R. (1995) Instance selection by encoding length heurystic

with random mutation hill climbing. In: Xin Yao, ed., Proceedings of the

Eighth Australian Conference on Artificial Intelligence, Canberra. World
Scientific Publishing, River Edge, 99–106.

Cano, J. R., Herrera, F. and Lozano, M. (2005) Stratification for scaling
up evolutionary prototype selection. Pattern Recognition Letters, 26, 7,
953–963.

Duch, W., Blachnik, M. (2004) Fuzzy rule-based systems derived from simi-
larity to prototypes. Lecture Notes in Computer Science, 3316, 912-917.

Duch, W., Grudziński, K. (2001) Prototype based rules - new way to under-
stand the data. IEEE International Joint Conference on Neural Networks,
Washington D.C., 1858–1863.

Garca, S., Derrac, J., Cano, J. R. and Herrera, F. (2012) Prototype Se-
lection for Nearest Neighbor Classification: Taxonomy and Empirical Study.
IEEE Transactions on Pattern Analysis and Machine Intelligence 34:3 417–
435.

Gates, G. (1972) The reduced nearest neighbor rule. IEEE Transactions on

Information Theory 18, 665–669.
Grochowski, M. and Jankowski, N. (2004) Comparison of Instances Se-

lection Algorithms II: Results and Comments. Lecture Notes in Artificial

Intelligence, LNAI 3070, 580–585 .
Grudziński, K. (2004) SBL-PM-M: A System for Partial Memory Learning.

Lecture Notes in Artificial Intelligence, LNAI 3070, 586–591.
Grudziński, K. (2006) Prototype-Based-Committees. In: A. Cader, L. Rutkow-

ski, R. Tadeusiewicz, J. Zurada, eds., Artificial Intelligence and Soft Com-

puting. Academic Pblishing House Exit, Warsaw, 237-244.
Grudziński, K. (no date) SuperWeka: A modified Weka version developed by

Karol Grudziński.
Grudziński, K. (2010) Selection of Prototypes with the EkP System. Control

and Cybernetics, 39, 2, 487–503.
Grudziński, K. (no date) Further Experiments with the EkP and PM-M

Prototype Selection Systems. In preparation.
Grudziński, K. and Duch, W. (1996-2017) SBL: Similarity Based Learner:

Software developed by Karol Grudziński and W lodzis law Duch.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and

Witten I. H. (2009) The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11, 1.

Hart, P. (1968) The condensed nearest neighbor rule. IEEE Transactions on

Information Theory 14, 515–516.
Jankowski, N. (2000) Data regularization. In: L. Rutkowski, R. Tadeusiewicz,

eds., Proc. of the Fifth Conference: Neural Networks and Soft Computing,
Zakopane, Poland, 209–214.

The PM-M prototype selection system 561

Jankowski, N. and Grochowski, M. (2004) Comparison of Instances Selec-
tion Algorithms I: Algorithms Survey. Lecture Notes in Artificial Intelli-

gence, LNAI 3070, 598–603.
Kittler,J., Hatef, M., Duin, R. P. W., Matas J. (1998) On combining

classifiers. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 20, 3, 226–239.
Kohonen, T., Hyninen, J., Kangas, J., Laaksonnen, J., and Torkolla,

K. (1995) LVQ PAK: The Learning Vector Quantization Program Package.
Version 3.1. Helsinki University of Technology, Laboratory of Computer
and Information Science.

Kohonen, T. (2001) Self-Orgainizing Maps. 3rd ed. Springer-Verlag, Berlin,
Heidelberg.

Kuncheva,L. (2004) Combining Pattern Classifiers: Methods and Algorithms.
John Wiley and Sons, Inc..

Lampton M. (2004) neldermead.java: an implementation of the Nelder & Mead
simplex method. www.ssl.berkeley.edu/∼mlampton/neldermead.java

Lichman, M. (no data) UCI Machine Learning Repository [http://archive.
ics.uci.edu/ml]. Irvine, CA: University of California, School of Informa-
tion and Computer Science.

Nelder, J. and Mead, R. (1965) A simplex method for function minimization.
Computer Journal 7, 308-313.

Skalak, D. (1994) Prototype and feature selection by sampling and random
mutation hill climbing algorithms. In: Proceedings of the Eleventh Interna-

tional Conference on Machine Learning. Morgan Kaufman, 293–301.
Tomek, I. (1976) An experiment with the edited nearest neighbor rule. IEEE

Transactions on Systems, Man, and Cybernetics 6, 448–452.
Triguero, I., Derrac, J., Garca, S. and Herrera, F. A Taxonomy and

Experimental Study on Prototype Generation for Nearest Neighbor Clas-
sification. IEEE Transactions on Systems, Man, and Cybernetics–Part C:

Applications and Reviews, 42. 1., 86-100.
Wilson, D. (1972) Asymptotic properties of nearest neighbor rules using edited

data. IEEE Transactions on Systems, Man, and Cybernetics 2, 408-421.
Wilson, D. and Martinez, T. (1997) Instance Pruning Techniques. In: D.

Fisher, ed., Machine Learning: Proceedings of the Fourteenth International

Conference. Morgan Kaufmann Publishers, San Francisco, CA., 404-417.
Wilson, D. and Martinez T. (2000) Reduction Techniques for Instance-Based

Learning Algorithms. Machine Learning, 38, 257-286.

