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Abstract: This paper is devoted to the discussion of the expo-
nential stability of a networked hyperbolic system with a circle. Our
analysis extends an example by Bastin and Coron about the lirits
of boundary stabilizability of hyperbolic systems to the case of a
networked system that is de ned on a graph which contains a cgle.
By spectral analysis, we prove that the system is stabilizate while
the length of the arcs is su ciently small. However, if the length
of the arcs is too large, the system is not stabilizable. Our esults
are robust with respect to small perturbations of the arc lemgths.
Complementing our analysis, we provide numerical simulatns that
illustrate our ndings.

Keywords: hyperbolic system, exponential stability, circle, net-
work

1. Introduction

In this paper, we discuss the boundary feedback stabilizatin of a networked
hyperbolic system with a circle. This is motivated by applications in engineering,

Submitted: January 2023; Accepted: August 2023



80 M. Gugat, X. Huang and Z. Wang

where networked systems (for example networks of gas pipeles) often contain
cycles, see Schmidt et al. (2017). The stabilization of treeshaped networks has
been studied in depth (see Gu and Li, 2011; Li and Dao, 2004). t8dies, where
cycles are not excluded are scarce (see, for example, GugatcaWeiland, 2021).

Figure 1 shows a network with a circle that we study in this paper. At the end

L, of Arc 1 a boundary feedback control action takes place.

Boundary Feedback Arc 2
control at L,
ul = Kyuf
| »
L@ Arc 1 Arc 4 0
Arc 3

Figure 1: A network with a circle in 4 edges

We consider a network with a circle and two additional edges.At one bound-
ary node, feedback control action takes place. At the other lbundary node, a
homogeneous Dirichlet condition is prescribed. Fork 2 f 1;2;3;4g, let real
numbersce > 0;"¢x 0, be given. We consider the following system:

U= 2 (7 @)k

t2 (0;+1); x2 (0;Ly); k2f1;2;3;4q;
ul(t; 0) = u?(t; 0) = u3(t; 0);
u?(t;L2) = ud(t;L3) = u’(t;L4);
k=1;2;3U%(t; 0) = 0;
k=2:3:4UK (L) = 0;
u*(t;0)=0;
“ul(tLy) = Kpui(tLg):

(1.1)

The real number K ; is the control gain. Besides, the initial state is given:

“ U(0;x) = (ut(0;x); 5 ut(0; X)) = (ug(x); 25 ug(x));

1.2
V(0;x) = (ut(0; x); 25 uf(0; X)) = ((v3(x); 5 vE(x)): (1.2
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We give a result about the well-posedness of the solution tohe system
@I in Lemmal[Zd in Section 2 of the present paper. The restlrequires the
regularity, namely uf§ 2 H(0;Lk);Vv§ 2 L2(0;Ly). Then we can investigate the
exponential stability of the system. The de nition of exponential stability is
given below:

Definition 1.1 The networked hyperbolic systen{@ 1)) is said to beH! expo-
nentially stable if there exist > 0 and C > 0 such that, for every

A Y
U@ )2 H'OLk); V(0;)2  L*0;Lk);
k=1 k=1
that satisfy the compatibility condition (Z.1), the solution to the system (L1

satis es:
kU(t; Yky:  Ce 'kU(O; )kqz; t O
with
x4 z Lk
KU(t; )kZ, = uk(t;x)2 + uk(t; x)2dx:
k=1 O

The (not necessarily exponential) stability of the system s de ned as follows:
Definition 1.2  We say that the system(L.1]) (L.2) is stabilizable if there exists

a control parameter K; 2 R, such that for all U(0; ) 2 @ HL(0;Ly); V(0;) 2
k=1
Q 201 .1
L<(0;Lk); we have
k=1

Jim KUt ke =0

If "x > ck, the exponential boundary feedback stabilization is posdile for
arbitrary lengths, because, in this case, the source term idissipative. Thus, for
the examples of the limits of stability, we assume that"y 2 [0; c«].

In Bastin and Coron (2016, Chapter 5.6, pp 197), Coron and Basn state
that for systems of balance laws, there is an intrinsic limitof stabilization under
local boundary control. A 2 2 system with stabilizing boundary feedback at
one point of the boundary has been discussed, for which, if # space interval
is su ciently long, stabilization is impossible for all con trol parameters. It is
proven that the following system

g@yl+ @y1+cy,=0; t2(0;+1); x2 (O;L);
@y @y2+ cy; =0;

2Yy2(tiL) = ya(tiL);

© ya(t; 0) = ky(t; O):

(1.3)
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cannot be exponentially stable with any control gaink 2 Rif L . Since
for L 2 (0; ;) the system is exponentially stable for suitablek, we obtain the
dichotomy value of the interval length of the closed-loop sgtem (L3),L. = ¢,
see Huang, Wang and Zhou (2022). This shows that in the boundar control
of hyperbolic systems, the relation between the source ternand the length of
the space interval matters. In this contribution, we want to explore the limits
of stabilizability for (LI).

Gugat and Gerster (2019) discuss the limits of stabilizabiity for the star-
shaped networks of strings, inspired by Coron. In Gugat and @rster (2019),
they show that the system is stabilizable if the lengths of the arcs are su ciently
small and that it is not stabilizable in some other cases. Nakiand Veselc (2020)
consider the perturbation of eigenvalues of our discussedperator, although
their analysis primarily approached the topic here consideed from an abstract
operator perspective.

De ne the matrices
° < . <
_ 1 0 . _ " c
D= 0 1 M= c "

Consider the rst order 2 2 system
Y+ DYy + MY =0: (1.4)

For " = 0, this yields the PDE in system (L3). If ¢ = "2, M is positive
semi-de nite. Note that twice continuously di erentiable s olutions of (1.4) also
satisfy the wave equation

Ye = Yo 27y ("% A)Y (1.5)

that is, both of the components satisfy the wave equation fran (LI)). This can
be seen as follows: Systeni (1.4) yields

Y¢ = D?Yy« (DM + MD)(D Y;+ D MY)+ M2Y:

Since
D?= |

and
(DM + MD)D =2"I and M2 (DM + MD)DM =(c& "?)I

this yields ([LH). Systems of the form [I.#) can occur as theimearization of
quasilinear hyperbolic systems that appear in many applicéions, for example of
the isothermal Euler equations that describe gas pipeline ow, see, for example,
Gugat and Giesselmann (2021).
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In this paper, inspired by Bastin and Coron (2016) and Gugat and Gerster
(2019), we study the limits of the stabilizability of a networked hyperbolic sys-
tem with a circle by spectral analysis. This second-order sstem is equivalent
to the 2 2 rst-order system (L.4) under suitable variable substitution. We
begin with a simple subcase of the system{1l1). It is an instictive result for
the system with circles.

The main result of this article is the following:

Theorem 1.1 Assume thatce = ¢ =¢>0, "y ="1=">0, Lx=1L; =1L,
that is the length of the arcs in the network and the parameterare the same
for all arcs. Assume that for the initial state the compatibility conditions (.1
are satised and " 2 (0;c).

p_
fL<L min = iréff”—’ the system ([IL1)-(L.2) is stabilizable (with jK 4j
su ciently small);

fL>L max = P the system ([L.1))-([L.2) is not stabilizable.

For the proof see Proposition[3.1 and Propositiori Z11.

Remark 1.1 Note that if " is su ciently close to ¢ > 0, the value ofL,, can

become arbitrarily large. If c is su ciently large, the value of L, can become
arbitrarily small. There is still a gap betweenL i, and L , and the idea of
eliminating the gap is to analyze all eigenvalues on the imagimy axis for each

interval length L. However, on account of the complexity of the characteristic
equation, the result cannot be obtained as of this writing.

Now we state a result for the special case, whete= 0. In this case, L max
is minimal as a function of ".

Proposition 1.1  Under the assumptions of Theoreni L]1, foc > 0 and " =0
we obtain the statement

If L>L max = 3¢, system ([LI)-([L.2) is not stabilizable.

For the proof see Proposition[4.1. Note that for" = 0 the spectral analysis for
L <L min does not yield eigenvalues with strictly negative real pars. Therefore
we do not have a stabilizability result in this case. The structure of this paper
is as follows. In Section 2, some preliminary results are psented. Then in
Section 3, we use spectral analysis to prove the stability reult and we make
perturbations on the length of arcs Ly and on the control parameter K; and
obtain the rst statement of Theorem LI] In Section 4, we nd a real eigen-
value that is bigger than O under a certain condition for all discussed control
parameters, which means the system is not stabilizable. Ttd demonstrates the
second statement of Theoreni_I]1. Finally, some numerical sults are given in
Sections 5 and 6.
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2. Preliminaries

In this section, we rst introduce the well-posedness of thesystem and then
give some preliminaries that will be used in the proof of our heorem.

The well-posedness issue is fundamental to the control prdems. Here we
only present the results without proof, which can be derivedby classical meth-
ods, such as the method of characteristics or by the theory aftrongly continuous
one-parameter semigroups of linear operators, see Pazy (@9).

Lemma 2.1 Assumeu§ 2 H(0;Lk);Vv§ 2 L?(0;Lx) and that they satisfy the
compatibility condition (Z7)) de ned below:

u5(0) = u3(0) = ud(0); uj(L2) = ud(Ls) = ug(La);

u(0)=0: 2.1)

Then, for each T > 0, there exists a unique weak solution

u(6x) 2 CO; THH(0: L)\ CH[O; TILA(0:Lw)); k212,34

of the initial boundary value problem ([L.1]).

Let %(t;x) = uk(t;x)e". For the functions &%, from (1), we obtain the system

e'(t; 0) = 8%(t; 0) = 83(t; 0)

B(t;L2) = @%(t;L3) = @*(t;L4);

k=12;38%(t; 0) = 0; (2.2)
% k=2;3.48%(t; L) = 0;

g*(t;0)=0;
Cep(tly) = Ky oei(tLy)  tet(tla) ¢

8
ga{} = ek +c2e; t2(0;+1); x2(0;Lk);k2f1;23;4g;

Remark 2.1 From the results of Catherine Bandle and Joachim von Below
(von Below, 1988), the eigenvalue problem of the systerf.2) is a Sturm-
Liouville eigenvalue problem on the network withK; = 0. As stated by Joachim
von Below and Gilles Frarcois at the end of the second sectioin von Below
and Frarcois (2005), the eigenvalue problem of the systen?.?) is still a Sturm-
Liouville eigenvalue problem withK ; 6 0. Although in von Below and Frarcois
(2005), only the boundary condition with" = 0 is covered explicitly, the corre-
sponding result for" 6 0 also holds. The corresponding eigenfunctions of the
discussed systenfZ.2) form a complete orthonormal system in the solution space
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H, which is the completion with respect to the norm correspondig to the scalar
product (Z3) of the set

f18.0X); 1B(%); B (%); (%) 81(X); 82(X); 83(X); a(X) ' 2

\%
C2[0; L] C2[0; L]
k=1 k=1

i (x); e (x) (k =1;2;3;4) satisfy (BC)g;

with the condition (BC) de ned as follows:

S R(0)= B0) = B0); B(La)= B(La) = BilLa);
%@(ow (0) + 1(0) = 0; B(Ly)+ B(Ls)+ E(La) = 0;

%(0)=0;

81(0) = &(0) = &3(0); g2(L2) = g(L3) = @(La); (BC)
%g&’(ow &(0) + 62(0) = 0; g3(Lo)+ g2(La)+ gl(La) =0

&(0)=0;

CEL1) = Ka(gd(Li) "fA(Li)):

Let B=(f1;f5:f5:7)T:8 = (01 00;06;00)7 . Let
N x4 z Lj
K(F: 8) = . f; (x)g (x)dx:
i=1

The inner product in the Hilbert spaceH is
. EE

. E ,
Fjl B = K(ﬁl;ﬁz)*' K(Qﬂéz): (2.3)

L g, e,

Thus, H is a subspace of@ L2(0; Ly).
k=1

From Remark[Z1], the spectral properties of the system[{Z]1¥irectly determine
on the growth of the solution.

We will apply the analytic implicit function theorem in Theo rem[3.1. The
analytic implicit function theorem is stated as follows:

Lemma 2.2 (Fritzsche and Grauert, 2002) LetB C" C™ be an open
set,f =(fy;:5fm) B! C™ a holomorphic mapping, and(zy; wp) 2 B a point
with f (zo;wp) =0 and

det —
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Then there is an open neighborhood) = U® U% B and a holomorphic map
g:U°% U%such that

f(z;w) 2 U° U%:f(zzw)=0g= f(z;9(2):z2 U%:

We also use Roucte's theorem in the following form:

Lemma 2.3 Let C be a closed, simple curve (i.e., not self-intersecting). Let
h(z) = f(z)+ g(z). If f and g are both holomorphic on the interior of C, then
h must also be holomorphic on the interior ofC. Then, if

if(2)i>jh(z) ()i

for every z in C, then f and h have the same number of zeros in the interior of
C.

3. Stability results
3.1. The essential result

In this section, we discuss the stability of the system usingspectral analysis.
We suppose that for all arcs the parametersc and " in the partial di erential

equation are constants, i.e.ck = ¢ = C;"k 5 "1 = ". First, in this subsection,
arctan

we can prove that forL < L min = 49(:272% the system (1) with K; =0
andLy = L (k=1;23;4)isL? exponentially stable. Here all arcs have the
same lengthL. Then, in subsection 3.2 we consider small perturbations othe
lengths of the arcs. The system is still exponentially stabé even though the
input edge and the output edge have slightly di erent lengths. In Section 3.3
we study perturbations of the control gain K;. For L <L pj, , the system {1.1)
with Ly = L (k =1;2;3;4) is L? exponentially stable if jK 1j is su ciently
small.

Proposition 3.1  Assume thatc > 0 and " 2 (0;c).

arctan = Z
CZ [V

The following system(@1) is L? exponentially stable ifL <

ul(t; 0) = u?(t; 0) = u3(t; 0);
u?(t;L) = ud(t L) = ud(t;L);
k=1;2;3U%(t; 0) = 0;

k=2 34Uk (L) =0;

u*(t;0) =0;

“ui(tL)=0:

8
§utkt:u)'§x 2'uk ("2 A)uk; t2(0;+1); x2 (0;L);k 2f1;2;3;4g;

(3.1)
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Proof From Remark[Z2] the eigenvalue problem is a Sturm-Liouvilleeigenvalue
problem. We can make a spectral analysis of the systeni (3.1).

Let 2 C be the eigenvalue of the system[{3]1); we look for a nontrivia
solution

U(t;x) = (ul(t;x); = ud(t; x))

of the system [3:1) with the form uX(t;x) = e!' «(x), where ' ((x) are the
corresponding eigenfunctions.

Such aU(t; x) is a solution of the system only if for allk 2 f 1;2;3; 4g

21 K = ' EO om K ("2 C2)‘ K (32)
which yields:
 +M2 A= (33)

From (B3), we have' ((x) = Ri1xe* + Ryxe * and note that:
2=( +"? & (3.4

Using the boundary condition (BC), we have

8
Ri;1+ R2;1 = R+ Ro2 = Rz + Rz

Ri;1+ Rz + Ry;3 = Ron + Rz + Rajs;
Rizel + Raoe b = Rygel + Rpze b = Ryget + Roge b
Rioet + Ryzet + Ryzet = Ryoe b + Ryze B + Roge b
§ R14+ R24 =0;
"Ryzet +Rya( e - =0:

(3.5)

Using the fth equation in (5), we can take R;.4 =1;R4= 1.
Then, using the rst four equations in (8.5), we obtain:

%Rl;Z = Rl;g e L (%eL %e L );
Rz2= Rzz=e- (et e ')

3Rii= 1+ 30+ e 7t

' Rg;lz% %GZL %GZL:

Finally, we get the characteristic equation by substituting the values ofR;.1
and Ry.; into the last equation in (B.5):

( cosh(L)+9cosh(3L))=0: (3.6)
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Since cosh(X) = 4cosh®(x)  3coshk) and costf(x) = 1(cosh() + 1), we
obtain:

cosh(L) 5+9cosh(2L) =0: (3.7

We now discuss the solutions of the characteristic equatiorf3.7):

If =0, wehave' ((X) Rix+ Rzk. Using boundary condition (35),
" K(x) 0, so we cannot obtain an eigenvalue.

If cosh(L)=0,let = Re4+ Imj(Re.Im 5 Ry we obtain
cos "ML cosh ReL +isin ML sinh RéL =0:
If sin "ML =0, wehavejcos 'L j=1,
then cosh RéL cos 'L 60, so the equation cannot hold.
If sinh RéL =0, then we have R® =0, socos 'L =0. We get

itz

a sequence of solution$ ; = (—2)igj2z.

If 3+ 3Jcosh(2L)=0,let = Re+ Imj( Re; Im 2Ry we obtain
L. . 5
cos2 L cosh2 ReL +isin 2 'L sinh 2 ReL = 5

If sin 2 '™L =0, we havejcos2 "ML j=1, then cosh2 ReL =
g. Thus, we have no solution for R¢ 2 R.

If sinh 2 RL =0, then we have R¢ =0, cosh2 RéLL =1, so that
cosh2 'mL = g We get two sequences of solutions

e £

2. .. : 1
?+j Nigi2z [f :f( arctan

1 2 .
C (arctan = ] )igaz:
From Remark 2.1, the corresponding eigenfunctions form a coplete orthonor-
mal system in the Hilbert space that is the completion of innerproduct space
H.

The corresponding eigenfunctions Jk (x) of ; satisfy

)= tEo(x); k2f1,234g )22

The functions' Jk+ (x) and' 'k (x) with the same|j andk are linearly dependent.
We just need to take one branch of solutions and without loss of generality,
we take =

. 1 2 .
fpd 1= E(arctan 7+j )igj2z:
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The corresponding eigenfunctions jk(x) of ; also satisfy:
= e j2z

We nally obtain two sequences of j; :

2 . . it
2t Ngi2z [T j2) j2=( )igian: (3.8)

fja 1= 1(arctan
i p1= L L

All corresponding eigenvalues j; and eigenfunctions k' (x) satisfy (j 2 Zforl =
landj 2 Nforl=2,k=1;2;3;4)

(p+"2= §+c

' Jkl (X) = Rji'.ke B X 4 Rgl_ke X (39)

;i are two roots of the eigenfunction( §' ;" § ;* &' ;" I'). Thus, for any initial
condition

T o’ Fomagy gy
w@o;x) _ X Pmilyy o R ' 2(x)
u3(0: x) = . Cim1 r3n;1(x) + - Cin;2 g;z(x) ;
u*(0; x) ARC I A0

T o T omagy” gy
wox) _ X BRI 20
e B ¢ BN Y N
u(0; x) AR ¢9) "2 (X)

We can represent the solution in the form

+
Com: .1C1m: Com: .1C1m: .
Uk(t;X) — 2.m,}r m; 1 l,m,le :n; ,t 2.m,}r m; 1 l,m,le m oot m‘l(X)
m22z m; 1 m; 1 m; 1 m; 1

X o Cion- Con- t Cin

+ 2:n; 2 n; 2 1,n,2e ;;zt 2:n; 2 n;2 l,n,ze ot n;2(

+ +
n2N n;2 n;2 n; 2 n;2

X):
(3.10)

So, if there exists min < 0, such that for all '
Re( j;|) mn < 0

the system (Z22) isL? exponentially stable. Recalling [3:8) and [39),
: E_&

1
A+ 4 4+ 5,=0 [z actan

jil
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If j yj<c, we havec®+ 7 >0,

E £

— u B 2 2 " 2 1 f2 .
Re( J-;l)— ¢+ + C F(arctan $) <0

Ifjj cwehaec?+ 3 ORel )= "<O0.

. t z
While L < %37, we have

E =

~NN|

1
Re( j)< mn = "+ ¢ F(arctan )2< 0

Thus, we have shown that the system[[ZP) isL? exponentially stable. ]

3.2. Perturbation of the arcs Lk

We show that the stability result also holds if the input edge and the output
edge have slightly di erent lengths. For technical reasons we have to assume
that the edges in the cycle are of equal length.

Theorem 3.1 Assume thatc > 0, " 2 (0;c) and L < L min . We consider a
small perturbation of the lengthsLy (k = 1;2;3;4) of the following form:

8

2B =L+ dr;

S Ez = Eg =L+ dor; (311)
' E4 = L + dsr:

Here, di, dy, d4 and r are real constants. We consider the system:

ul(t; 0) = u?(t; 0) = u(t; 0);
u?(t; By) = ud(t; B3) = ui(t; Ba);
k=1;2;3U% (t; 0) = 0;

k=2 ;3.aUx (t; B ) = 0;

u(t; 0) = 0;

" ui(t;E)=0:

8
gtkt:u';x 2'ul ("2 AUk t2(0;+1); x 2 (0;E); k212 3;4g;

(3.12)

If jrj is su ciently small, the system (@B.13) is exponentially stable .
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Proof From Proposition 3.1, system [312) is exponentially stabé with r =
0; K1 = 0. Recall that we obtain all eigenvalues and corresponding of the
system (3.12) with B, = L (k =1;2;3;4).
The sequence of is e
2
7
The eigenvalues i (j2zZforl=1andj 2 Nforl=2,k=1;2;3;4) satisfy

. 1 L ) j 5.
fj1j1= E(arctan + )ig2z[f 2 j;zz(sz)ng-ZN: (3.13)

(p*"2= j+c (3.14)
More precisely,
Lo Eﬁ+c2, 2 +c2>0
i "t (Z+Pi; Z+E<0
:( " Ejzl+c, L +c2>0
. " (f+i fj+c<0

Furthermore, recall that the characteristic equation is:

cosh(L) 5+9cosh(2L) =0: (3.15)
While E; 8 E, = E3 8 E,4, from Remark[Z1 the eigenvalue problem is a Sturm-
Liouville eigenvalue problem. We can recalculate the chareteristic equation.
Let € 2 C. We look for a nontrivial solution U(t;x) = (el(tx); et x))
of the system [312). The form iseX(t;x) = e® ‘g (x), with the eigenvalues of
the system®. The corresponding eigenfunctions ofey (x) are a*(t; x).

Such aU(t; x) can only be a solution of the system if
e2g, = 'e)%+ cP'ey: (3.16)
From (BI6), we have'ex(x) = Rixe* + Ryxe * and
(+")2=e?+ ¢ (3.17)

Using the boundary condition, we have

Ryi+ Riz+ Rz = Ran+ R+ Ry ) )
R12€%2 + Roe 2 = Ryge®s + Ryge 2 = Ryse® + Rpge 4,
Ri2e® + Ryge®s + Ryge = Ryze 2 + Ryge o + Ryue
Ri4+ Rz =0;

8
% R1:1+ Ro;1 = Rya + Ro2 = Ryz + Rojs;
’ e(Rl;leeyl Rg;le egl) =0:
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(3.18)

If e=0, we have'ex(Xx) Rix + Raxk. Using the rst, third, and fth equation
in (B18), 'ex(x) 0. We cannot obtain an eigenvalue, so we suppose§ 0.

Using the fth equation in (318}, we can take R;.4 =1;Rz4 = 1
We use the right part of the rst and third equations and obtai n:
R1;2 = Rl;g; R2;2 = R2;3: (319)
Then, using the third and fourth equations in (B.18) and (3.19), we obtain:
Riz= Rig= e (jets e o),
R22 = Ra3 = eepz(%eeu“ e ele):
Using the rst and second equations in [3.I8) and [3.IP), we ofain:
Ri1= 3Ro2 1Ry
Ra1= IR2p+ 3Ry

The last equation in @.13) yields:

Ri1 = Raae 2% (3.20)
Then we have: L . .
€ € S € S € S

9cosh el’; +3cosh e, 3coshels coshely, =0: (3.21)

with
C1= Ei+ Ey+ Ey; C2= E. E, Ey I’-\3= Ei+E, Ey C4= E. E,+Ey

We now introduce the following lemma:
Lemma 3.1 Let - -
H(Ey; Bz Eyi€) = 9005h€e(§1 +E,+ E)) +3 cosh€e(§1 +E, E4)Sv
3005h€e(91 + E, §4)S cosh€e(§1 E, + E4)S:
Fe®=(8+")? & e~
For each ,,, there exists an open neighborhooW; *; Vi V% (k = 1;2) and
holomorphic mapshy; : Vit 1 VI and g V1 V% such that
H EB1; B By hy (B1; B2 B4) =0;
F hji (B1;E2;,B4); gy (B1;E2;B4) =0
for all (Eq;E,; By) 2 \/J'f1

Furthermore, hjy (L;L;L) = ji, gﬁ. (L;LL) = ]+| : gjz;I LLLy= 4.
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Proof The sums of holomorphic functions are holomorphic, st (E;; E,; Ey4; €)
is a holomorphic function. From LemmalZ.2, if @@[*(L; L;L; j1) 60, there is
an open neighborhoodU; = U U R® C and a holomorphic function
hjy 1 U Uﬁo such that

|
(I
f§(§1; B2 Biie)2U° UXH (BB By e)=0g=
E1; B2 i h(B1 B By) 1 (B1 By By) 2 UC
and hy (L;L;L) =
We have:
H
%(L; LiL, ji)=
il 98inh(3 il L) 3L 3Sinh( il L)L 3sinh( il L)L sinh( jil L)L
= gl L 27sinh(3 il L) sinh( il L) : (3.22)
Recall that for x 2 C
sinh(3x) = sinh(x) 3 +4sinh?(x) :

: . . . (3.23)
27sinh(3) sinh(x) = sinh( x)(80 + 108 sinh“ x):
P~
While | =1, due to sinh( j;1L)= -2i; sinh®( j;:L)= 2 and (3.23),
p_
@H 56 2 .
@(L; LiL j1)= 3 j1L1 60: (3.24)
While | =2, due to sinh( j;oL)= i, sinh?( i2L)= 1land @2Z23),
%_'(L; LiL; j2)= 28;,Li60: (3.25)

Then, from Lemma[2.2, we obtain the existence of the holomorpic function
hji (E1; B2, Bg) with hyy (LiLL)= .

F(e ©) is a holomorphic function. From Lemmal[22, if %( il 1+I ) 60,
then there is an open neighborhoodV} = W;*  W;i? C C and a holo-
morphic function f : W' 1 W such that

§ a
f(e )2 Wj;ll;l Wj;ll;2 :F(e€)=0g= efjj(e) :e2 WJ-;ll;l

andf]-ﬁ( j;l): ]+|
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Q@F.
We compute &

@F_
@&
We obtain function 7 (&) : Wit 1 W2 with £( ;)= 7.
The compositions of holomorphic functions are holomorphic Denote
gi = hp o fh c(hp) TUPY WEH U0 Wi

2( ;; +") 60:

(hjy ) 1is the inverse function ofh;, (Ey; Ez; Ey). gj%l (E1; B By) is still a holo-
morphic function. Moreover,

9j}| (LLL)= fjﬁ ()= ,+| :
Making the same analysis of (¢ €) on( j; ; i1 ), we obtain open neighborhoods
Wjﬁ;l;Wj;zl;2 and holomorphic functionsf 3 (€); g (B1; E2; By).
Denote the open neighborhood
Vit = (hy ) TR W,
Vi ® = (U W,
3= 1.
Vi = Uy Wi
j22zZforl=1andj 2 Nforl=2,k=1;2 Then we have
Vit U Vit W VT U
Furthermore, gj'f, (Eq; Es BY) \/j;‘l“1 ! Vj'fz satisfy:
gi (LLL)= s diLLL)= 5
With Lemma B.I] we obtain the following holomorphic functions:
Pt (r) = hy (L + L + oL+ car);
Gax (1) = Ffi (L+ can L + cor L + car):
The eigenvalues“—‘j;I and corresponding j; have the following asymptotic ex-
pansion in the Vi :
R (s) s
g = pt Py Or

=1

1]

€= i+ 4,0
=1

1%}

€1 = ut  Ggr,Ore
=1

S
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We suppose

BTt Dr + il @2+

& = i+t p@Qr+ p@ra+ (3.26)

Using 3.13) (3.17) (3.26) and taking the rst-order mean approximation, we
have:

il (1) :( il + " il (1): (3.27)

Notice that if = 1+ sr,e= + (1)r+ O(r?),
eeﬁ: eI +(s + ()Dr+0(r?) - e| (1+(S + (1)|)r)+ O(rZ):

Thus,

€S 1
cosh ef = E(e9'3+ e ) =cosh(1)+sinh( 1)(s + (@)Dr+ O(r?):

Then, using (318), (3.21) and [3.26) and taking the rst-order mean approxi-
mation, we obtain:

9sinh@Bjy L) 3ju(A)L+ j(ca+ o+ cy) +
+3sinh( L) QL+ 3 ( o+ o+ C)
3sinh( L) @@L+ p(a+c ca)
sinh( L) @@L+ p(a c+c) =0:
After computation, we have:
0= (1) 27sinh(3 L) sinh( ;L) L+

+ 1 9sinh(3 jy L)(cr+ G+ ca) +sinh( jy L)( 7ci+ 6o +5¢4) © (3.28)

While | = 1, the equation (3.2) yields:
0=128 il (AL + i 1(27¢cy +45¢, + 54¢4): (3.29)
While | = 2, the equation (3.2) yields:

0= 7 il (1)L i 2(4c, +2Cp + ¢y): (3.30)
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Then, from (B.Z17), we have:
8

> - 2 1(27c1+45 co+54 ¢4) |

s 128L( ;,+) (3.31)
> )= Pal4civ2cotca) '
N TL( o+ ")

There exists m; such that while jmj <m 4,

2+ 2..>0,
and while jmj  m;
c+ 2., O

A nite number of eigenvalues (with su ciently small m) lie on the real axis
and the real part of the other eigenvalues is equal to " (large m).
While jmj <m 4, by (314),
m:1 + " are on the real axis.
m: 1(1) are on the real axis. Recall the proof of Proposition 3.1,
E

Re( m;l) < min = "+

2
Using the continuity of g,k (r), there exists a su ciently small r; such
that while jmj <mq, jrj<r,

1
Re(em;l) < E min < (0

While jmj mgq, by 314),
m:1 + " are on the imaginary axis.

Due to (8.14) (3.14), for higher derivatives . 1(s), we obtain:

(m1*") m1(®+ G 11D 1@ (s 1) =

=H® m1 m1(1); m1(@);05 ma(s) ¢ (3.32)
It is an important fact that G®° and FS have a quadratic form.
We claim the following statement and prove it later in Remark 3]

forall s2 N*, .1(s) are on the imaginary axis. (3.33)

We now use mathematical induction to prove that fors 2 N*, .,(s) are
on the imaginary axis. Let P(n) be the statement

m: 1(S) are on the imaginary axis fors n:
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Base case: From (B31), ..,(1) is on the imaginary axis, so the state-
ment P (1) holds.

Induction step

If P(n) holds, G"** .1 (1); m1(@);5 ma(n) 2R

From B33), H® m:1; m1(1); m1(2);:; ma(s) 2 Rforall s2 N*.
Recall that ., + " (6 0) is on the imaginary axis, and from (3.2),

(m1t") ma(n+)= G @) na(n) +
HY o ma@)in ma(n+1) 2R

Thus,
Gn+1 + Hn+l
m; 1(n + 1) = ;

m;1+

is on the imaginary axis.

That is, the statement P(n+1) also holds, establishing the induction step.
Since both the base case and the induction step have been prey as true,
by mathematical induction, the statement P(n) holds for every natural

number n.

Then we have:
Re(em; 1) = Re( m; 1) = ! 0:

There also existsn; such that while n < n ;, we havec? + ﬁ;z > 0 and while

inj

ni, we havec?+ 2, 0. Using similar arguments as in the analysis of

€1, We obtain the following statements:

while n < n 1, there exists su ciently small r, such that
e 1 .
Re(®,.,) < 5 min <O

while n>n 4,
Re(en;Z) = Re( n; 2) = " 0:

Taking ro = minfrq;r,g, we know that for all ej;l (jjj2 Zforl =1 andj 2
N for 1 =2), if jrj<ry,

1
Re(ej;l ) < 5 min <0

The system (3.12) isL? exponentially stable if r is su ciently small. ]

Remark 3.1 For all s2 N*, j; (s) are on the imaginary axis.
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Proof of Remark 3.1 [_]
We still use mathematical induction to prove the result. Observing 3.21) and
separately writing the real part and the imaginary part of (s);e, and

e=a+ §;
= a+ b
(s) = a(s) + his)i;
with a;8;a;b;dk); (k) 2 R, the characteristic equation (3.21) yields:

€ S € S € S € S € S € S
9coshal'; cos®’; +3cosh al, cos®, 3coshal; cos®;

€ S € S € S € S € S € S
coshally cos®', = i 9sinh al’; sin ®'; +3sinh al, sin &,

€ S € S € S € S
3sinh al'; sin &3  sinh al', sin 8, (3.34)

Let Q(n) be the statement:
a(s)=0 fors n.

Base case: From the rst order approximation before in (329) and (830), the
numbers (1) are purely imaginary and a(1) = 0. The statement Q(1) holds.

Induction step

If Q(n) holds,
a= a(n+1)r"* + o(r"*?):
Thus,
| |
€S * ' % '
cos Bl =cos(bl)cos b(s)rs sin(bl) sin b(s)rs

s=1 s=1
=cos(bl)  sin(bhb(1)Ir + o(r?); |

€ R R
sin 81 =sin(bl)cos b(s)r® +cos(bl)sin b(s)rs
s=1 s=1

=sin(bl) + cos(bl)b(1)Ir + O(r?);

and
cosh@l) =1+ O(r?"*?);

sinh(al) = a(n + 1) [N+l 4 O(rn+2 ):

Taking the n+1 -order approximation of the imaginary part of (B.2), we obtain:

a(n+1)L 27sin(3L)+3sin(bL) 3sin(bL) sin(bL) b(1)=0:
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Using a(1) =0 and (3.23) we obtain:

b1)= i (1)60;
27sin(3L) sin(bL) = i(27sinh(3L) sinh(L)) 60:

Thus, a(n+1) = 0, which means that the statementQ(n+1) holds, establishing
the induction step.

Since both the base case and the induction step have been praw as true,
by mathematical induction the statement Q(n) holds for every natural number
n. ]

3.3. Perturbation of control parameter K1

In this section, we want to prove that the system can be stabiized even if
K1 60, but is su ciently small.

Theorem 3.2 Assume thatc > 0 and " 2 (0;c). The following system is
exponentially stable ifL <L i, and jK4j is su ciently small:

ul(t; 0) = u?(t; 0) = u3(t; 0);
u?(t;L) = u(t;L) = u?(t;L);
k=1;2;3U5 (t; 0) = 0;

k=2 ;3.4Uk (L) =0;

u(t;0) =0;

Cul(tL) = Kaud(tL):

8
§u§=u§X 2'uk ("2 AUk, t2(0;+1); x2 (0;L); k 2f1;2;3;4g;

(3.35)

Proof From Remark [Z1, the spectral properties of the system[{TI1directly
determine the growth of the solution.

Let € 2 C. We look for a nontrivial solution Y(t;x) = (@(t;x); :::; e%(t; X))
of the system with the form &*(t;x) = €% ‘e, (x), with the eigenvalue € of the
system. The corresponding eigenfunctions of thaX (t;x) are ‘e (x).

Similarly as in the analysis before, such :L'(t; x) can only be a solution of the
system if'ex(X) = R1xe¥ + Ryxe ¥ and e satisfy the following characteristic
equation:

h i h i
ecosh@ ) 5+9cosh(2e) + © ( )Kysinh(d ) 1+9cosh(2d ) =0:
(3.36)
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The function € ( ) is the solution of € in the following equation (3.31):
(E+"M)?2= e+ & (3.37)

While K, =0, the sequence of is

2 . S N _
-+ Ngi2z [f j2) j2=( )igian: (3.38)

fiqg 1= 1(arctan
T L

The eigenvalues i (j 2z forl=1andj 2 N for | =2) satisfy

(g*+"= f+c& (3.39)
More precisely,
( E__
N N R
i "+ (R + @i Z+cE<q
( E__ " ’
N A

i " (4 +c);, fj+c<oO
Furthermore, the characteristic equation is:
cosh(L) 5+9cosh(2L) =0: (3.40)

Observe that for any "; > 0 (that will be determined later) there exists Ry,
such that while jej >R 4,

j€ e<"u

We try to divide the solution of (836) into two parts V; := f&jj(¢+ ")? 3>
R3gand V, := f€jj(®+ ")2 ] R3g (Ro is decided later).

We use Rouctle's theorem to state that there are only nitely many elements in
the set V;.

Proposition 3.2 If Ky = r is su ciently small, there is only a nite number
of eigenvalues of the systen@.35) in the set V; that we have de ned above.

Proof De ne:
f()= cosh(L) 5+9cosh(2L) ;

g()=©€ ()rsinh(L) 1+9cosh(2L) ;
h()=f()+9a():
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We have de ned h( ) in such a way that the roots of h( ) are equivalent to
solutions to (3.38) with K1 = r and the roots off ( ) are equivalent to solutions

to (B40), that is
. 1 2. .. . it
fog[f 1 1= E(arctan -+ Nigi2z [T 2 j:ZZ(?NQJZN:

Let T=SMO;R)=f ] R, Re() Rz Rz Im() Rzg, with Fig. 2
showing the range ofT.

R2 Rz Re()

Figure 3.2: The range ofT = S(0; R»)

Ro + q if there exists j;1 such that j j;j = Ro;

R2 =
Ro else:

We take g > 0 as an arbitrary small real number that makes surej j; j& Ri+ g
for any j;|. De ne

@T=f jRe( )= Rz; R Im() Rag;

@3I=f jlm()= Rz Rz Re() Rz
We have the following estimation on the boundary @T:

jf()i=jj jcosh(L)j j 5+9cosh(2L)j
infi j in fj cosh(L )j infi 5+9cosh(2L )j
minfi i gg%JCOS( )ig min 1l cosh(2L )jg

R, sinh(R;L)  5+9cosh(2R,L) > O 8 2@T:
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And
jg( )i=r j& ()j jsinh(L)j j1+9cosh(2L)j
i T i€ () fj sinh( L )j fi 1+ 9cosh(2L )j
I 1] max] ()ig rggﬁjsm( )ig max f] cosh(2L )jg

E___
jri( %R§+ c? + ")cosh(2R,L) 1 +9cosh(2R,L)

<10rj( 2RZ+ ¢+ ") cost?(2R,L); 8 2@T:
Similarly, we have the following estimation on the boundary @¥%:
if()j=jj jcosh(L)j j 5+9cosh(2L)j

rznénﬁfj ig rzn(i_l)nEfj cosh(L )jg rznénﬁfj 5+ 9cosh(2L )jg

RojcosR2L) 5+9cos(2R,L) j> 0 8 2@7:
And

jg( )i=jrj i€ ()j jsinh(L)j j1+9cosh(2L )j
jrj ry%)éfj € ()ig ‘T%)éfj sinh( L )jg T%)éfj 1+9cosh(2L )jg

E
jri( 2R3+ c2+ ") cost(2R,L)+sinh?(2R,L)
q

1+9cosh(2R,L) % +81sinh?(2R,L)
E_
< 20irj(  2R2+ 2 + ")cost(2R,L); 8 2@7T:

Taking
b = minfR,sinh(R,L)  5+9cosh(2R,L) ;RyjcosRoL)  5+9cos(2R,L) jo;
if()i>d1;8 2@T:
Now, taking rq < 20(p 2R§+cz+qi)cosh2(2R2L)’ if jri<rq:

E
jg( )i < 20rj( 2R3+ 2+ ")costf(2RoL) <q1; 8 2 @T;

which means
iFC)>a1>jg()j=jh() f()i;8 2@T:

Notice that @Tis a closed, simple curve (i.e. not self-intersecting). Usig

LemmalZ.3, we obtain thatf and h have the same number of roots inT.

From the above analysis, there are nite numbers of roots off ( ) in T, thus,
there are nite numbers of roots of h( ) in T. For xed e, there are no more

than two numbers €(€,, ( j; )) that satisfy (8:37).
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Recall that e je < Rg;e is the solution of (3:38) T and, by the de -
nition of V;, we obtain the result. [ ]

Forevery j; 2 T, we take a su ciently small neighbourhood Vj; of j;, and
upon making the same analysis as in Propositiofi 3]2, we couldbtain only one
root g; of h( ) in V; . With suciently small r (jrj <rj ), its corresponding
ej;l (ej;I ( 1)) still lie on the left half plane. Moreover, observe thatf and h
have the same number of roots inT, these g, are all roots ofh( ) in T:

[f1j y 27of 2 Virin()=0g[f 0g=f 2Tjh( )=0g:
From Proposition 3.2, there is a nite number of complex numbers j; in T, so
we have nite numbers of rj; . Taking jrj < o .minZT fri;ri 0, we have:
B 2Tg
Vi f jRe( )< 0Og:

We then make an analysis of the eigenvalues iv,. Denote:

F (o) = e ()K; 2+7tanh?(d ) _
e tanh(d ) 5+4tanh?(d )
2
Ge) = K, + 2+ 7tanh(d)

tanh(ed ) 5+4tanh?(e )

De ne F( ) in such a way that the roots of F (e) are equivalent to solutions to
@B35).
While jej > Rgand F(e)=0:

e "
iG(e)j j F(e)j+ jF(e) G(e)j:j( () e)K1j< |1qKzl:

Without loss of generality, we suppose thatK; = r < 1;R, > 1, then solve
iG(e)j <" 1.
If Iilm tanh(L )= 1 ;thatis e= TT_k i (k2 Z), we have
e

G(e)=r
E_
If tanh(e ) = 2j, thatis e=

P
( arctan = 242k ).

T i (k2 Z); we have
G(e)=r:

Let tanh(é. ) = y and denotegy(y) = 52y+f4yy23. The inequality yields:

jou(y) + rj<"q: (3.41)
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E
N%tice that the roots of the equation g1(y) =0 arey; = 1 ; y, =
2.
i

2
7

v Y3

From the properties of the cubic polynomial, using the implicit function
theorem, we obtain that for any ", > 0, there exists ; such that

fy 2 Cjjau(y)

19 B(y1;"2) [ B(y2;"2) [ B(ys;"2):
We now analyzey(s) = tanh( s) neary = yi;V2;VYs:
p

z

2 i;sg= arctan 3

Let ", £ —~ be given. Ifé/(s) 2 B(y2;"2) [ B(ys;"2), dene s; =
arctan 2 Z i that satisfy ys) = ;.
Then we have

itanh(s s)j = jtanh(s) tanh(sj)j

"2
j1 tanh(s)tanh(s;)j 1 j tanh(s)jjtanh(s)j
II2

.-2:

17
If y(s) 2 B(y1;"2), we denes; = ithat satises y(si) = yi. So, we have
. . jtanh(s) tanh(sy)] "5 .
tanh = - - - = - :
jranh(s  s.); j1 tanh(s)tanh(s;)] jtanh(s)jjtanh(s;)j 1 2
We obtain the following estimation:

Proposition 3.3 If ", < 1, z2 C satis es jtanh(z)j

p_, p_,
z: 2 ( tanh 1€pg ajtanh (" 2'g) ;
2 2 arctan

"5, then we have:

'S
25 + Kk
wheretanh 1(x) is the inverse function oftanh(x).
Proof

2", + k; arctan (k 2 2);

If z= z; + 2,i 2 C (z1;22 2 R) satis es jtanh(z)j <" 2,

_ tanh(z,) + tan( zy)i
h(za + 25i) = '
tanh(z; + z5i) 1 +tanh( z;)tan(z)i’

jtanh(zy + zoi)j2 = tanh(z1)° + tan( z,)*

1+ tanh(zy)tan(zy) 2
Suppose’; < 1, if jtan(zz)j > 1,

2
jtanh(zy + 2i)j2 tan(zz))

tan(z,))? > 1:
1+ tanh(zy)tan(zy) ’
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This contradicts jtanh(z)j <" ,, so we havejtan(z;)j 1. Then we have
tanh(zy)? +tan( z2)® "2 1+ (tanh(z1)tan(z2))?  2'%;
which means that
z12  tanh 1(IO 2",);tanh 1(p 2"5) ;
€ S

2,2 arctan pé"z + k ; arctan pi"z +k (k22):

_ €_ S
For brevity, denote A; = tanh l(p 2",); A, = arctan P 2"> , then we have:

fs2 Cjja(tanh(s))j 19

f s2Cjy(s) 2 B(y1;"2) [ B(y2;"2) [ B(ys;"2)g f sjjtanh(s si)j "29
fsi+z+ 2ijz12( A1;A1):;222( A+ k;A2+k ) k2Zi=1;23g:

Substituting s = &, and supposing thatjrj 4, we have:

fejG(e)j < Elg f ejjoi(tanh( e )) 19
fejy(e ) 2 B(y1;"2) [ B(y2:"2) [ B(ys:"2)g

S .. A Ap As A;

—+ 7, + — ) —~ + k—:—=+ k-):
Frrarzizn2( = )0z22( ki ko)
k22Z;i=1;2;3g: (3.42)

Recall (337), ife= 1+ i
3 P
Re(®)= " I g+ci+ (52 §+C2)2+4f§:

Re(®) < 0 is equivalent to

p
% %+CZ+ (% %+C2)2+4%%<n2.
2 L

that is

12+( 7 F+cA)?<t (3.43)

P

Recall (33), we know that 12 ( 4%;4

", such that 4 < 7, then @43) can b
P Gl I

2 np 2
1

), and so, if we take su ciently small
written as follows:

D r
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Observing that:
(C2 "2)"2 + %"2 CZ"Z n2

w2 = w2
1 1

if jej2>c2 3", we obtain

2_ 2 2
2=1¢ 1>¢C

The correspondingRe(®) < 0.

We take suciently small ", < 1 such that ’T_—l § then we have the
corresponding 1.
Taking "1 = 4, jrj< %, Ro=maxf2c® 2"2;R;g. We obtain that if jej >R
and F (e) = 0, the real part

Re(®) < O

In conclusion, while jrj < minf 2;ry;rj g, the system (1.1) is exponentially
stable. ]

4. Results on instability

In this section, we prove that for su ciently large lengths o f the edges and
for any K1 2 R, there exists an eigenvalue that lies in the right half plane and
thus system (I.3) withcc = ¢ = ¢, "k = "1 = "and Ly = L; = L cannot be
L2 exponentially stable.

Proposition 4.1 ~ While L Lmax = P55 & = @ = € >0, " =

"1 =" 2[0;c)and Ly = L; = L, for any K; 2 R, the system ([.7]) is not
L2 exponentially stable.

Proof Let 2 C. We look for a nontrivial solution U(t;x) = (u®(t;x); ::;; u?(t; x))
of the system having the formu®(t;x) = et ' ((x), with the eigenvalue of the
system. The corresponding eigenfunctions of theiX(t;x) are"' (x).

Such aU(t; x) can only be a solution of the system if
("2 =" P 4.1)
From (B1), we have' ((x) = Rixe* + Ryxe * and

Z=( ") & 4.2)
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Similarly as in the analysis before, using the boundary conitions, we get the
following characteristic equation:
h i h i
cosh(L) 5+9cosh(2L) + K ;sinh(L) 1+9cosh(2L) =0: (4.3)
We want to discuss the solution = !i (! 2 R) on the imaginary axis.

Ths real paH of the corresponding is greater than O if and only if ! 2
( "2, "2), Moreover,

We can rewrite the characteristic equation:

5+9cos(2L )
497 Ittt S A
oL ) T g cos@l )

! 2 7tan?(IL)

"+ @ 12 5 4tan?(IL) cot(L ): (4.4)
For! 2 ( pc2 "2;Ioc2 "2), we de ne:
] 2(1
F(1)= g 2 Ttans(IL) cot(IL ):

2 12 5 4tan?(lL)
|

f(t)= Pﬁ

2 T7tan?(IL)

an(!L)cot(!L ):

a')=

Figure 3 shows the graphs of and g.

i i
| |
| |
| |
| |
| |
| |
| | .
5
t t
-‘B - -1 1 2 I‘B B -wy 2 W1 w2 Wy 3
| St | -
I I
| -0t |
| |
| |
I I
| |
i i

Figure 3:c=5; "=4; L=1; p027"2:3

If we can prove that the range ofF (! ) coversR, the system has an eigenvalue
> Ofor any K; 2 R. Thus, the system cannot be exponentially stable for any
Ki2R.
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c2

= 4 2
We havef 0(| )_ c22 ||22 B > O go(| )_ 28tan “(!L )+11ltan “(!L )+10 L< O

sinZ('L )(4tan 2(IL ) 5)2
We now discuss the range of (! ), rstly,

lim F(')—Ilm f(M)o(l) = ) :%: 2_.
o (1=g('))°~ 5=2 5(c ")’
p
i = j = "2y = .
!!phcrznu2 F() !!‘Llrcr; uzf(!)g(!) 1 g( 2 )=1:
As long asp 02 "2 5, we de ne the set of discontinuity points and roots
of F(1)in[0; ¢@ "2)as . We obtain
flaitatsg
arctan pz
that ig, the set  contains at least three elements: ! ; = ———F; !, =
amti%; 3= o in . Besides,
lim F(')= Ilm f()g(')=f(1) 0=0;
Py oy £
arctan g
lim F(l)— I|m f(M)o')=f(—) (1 )= 1 ;
e, L .
E_
arctan 2
I|m+ F(')— I|m f(' )g(t) = f(i) 1 =1,

[ l2

Jdim F()= lim f(!)g(!):f(z) 0=0:

From the continuity of F(! ), the range ofF (! ) coversR in the interval [! 1;! ][
['2;! 3]

In conclusion, whileL  Lpax = P for any K; 2 R, the system has
a real eigenvalue that is greater than 0, so it cannot be stabized. [

Remark 4.1 We have the following estimate folL <L max = P!
p

S Tl arctan z . arctan z s
If ¢ "2< —/——" ie L< ===, from Proposition BI] K; =0

can stabrglize the system.

If arctan B arctan

L < P ¢z "2«< % the set of discontinuity points and
roots |s equal tof! ;0: From the continuity of F(! ), the range of F(! ) is
(1 ;Ca),

p

Ci:= inf F()<1:
1203 1)

Hence, the range ofF (! ) does not coverR.
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P< S
If amaniz < P ¢? "2 < 5, the set of discontinuity points and roots
is equal tof!4;! 20. From the continuity of F(!), the range of F(! ) is

(1 ;Cy[ (Cx1),

Ci= inf F(l)<1; C,:= su F(')> 0:
' 120! 1) ( ) 2 !2(!2;’)227"2) ( )

We try to make a simulation of F(! ) for a de nite case.

Takingc=5; " =4; L =0:5, we obtain the following Fig. 4 for the graph of
F(!). It shows that the range of F (! ) does not coverR in this case (C; < C»).

| 20+ |
| |
| |
: 107 :
| |
1 1 : L 4 : 1 1
3 -2 : -1 1 : 2 3
| |
| |
—F@ | 201 |
F(w)=0 | }
-~ F(w) =00/ 20 }
| |

Figure 4: F(! ) with c=5; "=4; L =05

Thus, while Lmin <L <L max , We cannot prove that for any control K 1, the
corresponding system has an eigenvalue bigger than 0. Howay¢he numerical
results indicate that the system can probably not be stabilzed by someK ; (see
Section 6, Example 2).

5. Examples

From the stability result in Section 3, we can obtain an explicit expression
of the solutions if K; = 0 and all arcs have the same length. So, in this section,
we give some results of the explicit solution.
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5.1. lllustration of the eigenfunctions

In this subsection, we present the gures of some of the ﬁi@mtions in
system (3.1) generated with MATLAB. We take " = ;c = 101 L = 1,
from B38) (B9) in Proposition Bl we can obtain the eigenvéues and the corre-
sponding eigenfuctions. The following gures (Fig. 5) showthe eigenfunctions
corresponding to the eigenvalues

E E—
= . 2 2 2. p.i .
01~ + 1.01 arctan - 02=( 1+ 076);
E =

= . 2 5 2;- — p.i ‘.
1= +A 1:01 2 + (arctan - + )% 12 = + 124 i;

E E—
- . 2 2 2:. _ pi .
21 = + 1:01 2 + (arctan = +2 )2 20 = + 524 i

5.2. The time wise evolution of the state

In this subsection, we present solutions of systeni(3]1) gemated with MAT-
LAB for some special initial values. We also give some gures wich show the
evolution of the L2-norm energy over time.

We take " = ;¢ = 101", and from Theorem 1.1 we obtain the critical
length E
arctan 2

While L < L ¢, the system is exponentially stable, and whileL > L g, the
system is not exponentially stable. We takeL; =1 <L gandL, =2 >L ¢ with
the same initial value (I\V1),

8 : :
2u©x)=Im  Ee0+ E200
0

k
49
. . V1
> uf(0;x) = Im . 49‘ o)+ E2(x) 5 k2123 4g; VD
j
1; i 4 m=1:21=12 .
i.e. Cnji = Oj lee] S m=1:2 '“ ;' 1(x) is de ned before in
B9).

From (B.I0) in Section 3, we obtain that the explicit solution of the system

BDis
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Figure 5.1.. The eigenfunction ' ., (x) Figure 5.2: The eigenfunction ' ;.,(x)
- _Pige2 - 7
2 T 4 /L Pipe 4
0 _ N Pipe 3
2 05
4 0
15 1 0.5 0 05 1 15 00
Figure 5.3: The eigenfunction ' ;.,(x) Figure 5.4: The eigenfunction ' ;.,(x)
3
2 Pipe 1 o2 Pipe 4 ) Pire T
1 Qs Vs O e Y
0 | 0 Pipe 3
- 05 05
2
2 0 0
-3 -4
A5 4 w5 0 05 1 15 ° 45 4 05 0 o5 1 15 0P
Figure 5.5: The eigenfunction ' ,.,(x) Figure 5.6: The eigenfunction ' ,.,(x)
X W9 + .
uk(’[;x) = Im —_— ml  amat 4 *e m ot Jk'l (x) ;
1=1;2 j=0 m; 1 m; 1 m; 1 m; 1
k 2f1;2;3;4g:

The time evolution of the network can be shown in Figs. 6 and 7 gnerated
by MATLAB. The initial data used for Figs. 6 and 7 contain highl y oscillatory
parts that vanish rather quickly with time.

We also present the variation of thel 2-energy for both two values in Figure
8 (L =1) and Figure 9 (L = 2):
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Figure 6: The time evolution (from left to right and theﬁ from up to down) of
the network with the initial value (Ivl)and "= ;c = 101;L =1
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Figure 7: The time evolution (from left to right and theﬁ from up to down) of
the network with the initial value (Ivl)and "= ;c = 101;L =2
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10°

10-1 !

0 25 50 75 100

time
Figure 8: The L2-energy of the network under the time evolution with the
initial value (IV1) K;=0; L=1; T =100

10

L*-norm
H
o
R

20 |
0 20 40 60 80 100

time
Figure 9: The L2-energy of the network under the time evolution with the
initial value (IV1) K1 =0; L=2; T =100

10°

6. Simulations

In this section, we present some numerical results generatewith MATLAB
of the upwind implicit scheme for the system (1.1). Gugat andGerster in (2019)
also use the upwind scheme for simulations for the star-shagd system.
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We rst use the variable substitution v/ = Z(uj + uj + ";u’) to rewrite the
system as a2 2 system:

ul(t; 0) = u?(t; 0) = u3(t; 0);

8 . . -
U + AU, + B'U'=0; t2(0;+1); x2[OL;];i 2f1;2;3;4g;
% u?(t;L,) = ud(t;L3) = u*(t;L4);

k=1:2:3UK(t; 0) = 0; (6.1)
k=2:3.4UK (L) =0;
u(t; 0) = 0;
Cul(tLy) = Kpvi(tLg);
3 < L) <
. i o 1 0 ; "I G
[ - Toyi)T - — . [ - 1
with U' =(u";v')'; A= 0 1,B— G "

For numerical illustrations, each arc [O; L] is divided into J; cells by a space
discretization x> 0 such that xJ; = L; with cell centers x; := (] %) X
for j =1;2;::3;. Ghost cells with centersxo and x;,+1 are added outside the
domain. The discrete time steps are denoted ag ;= k tfork2 Nand t> 0
such that the CFL-condition holds. Cell averages atty are approximated by

) z Xjs 1 ) z ST
uf ful(tx)dx; v 2V (t; x)dx:
X. X.
] ]

N
N

The advection part can be approximated by the left and right-sided upwind
scheme and the reaction part by an implicit Euler step that takes the charac-
teristic speeds into account, i.e.

K+l _ ki et k+1 i v K+ K+1iiy.
u; = U —X(uj Uiy t("u; + oy );
K+1 i ki b ket K+ i K10, e K+L i
ALY R (VA ¥ KALD oy kLY.
v v x (V41 Vi) t(cy; Vi)

_In order to successfully use the upwind scheme, we use ghostigj point
ult vt ukt v to apply the boundary condition:

ki K;i ;i ki
- ug' + uy - uyt Uy
u'(t;0) = >——; @Qu'(t,;0) = +—2;
2 X
K+1 i k+1 i K+1 ;i K+1 i
ifr . Up "+ Uy ™7 U ™" U
@u' (tx; 0) = ;
2t
k:i k;i K;i K;i
i 3 341 i uyi o uy
u'(tg;L) = ————; @Qu'(tx;L) = ——;
2 X
k+1;i k+1 ;i k+1;i k+1 ;i
+ U Ujya™ Uy

@Ui(tk; L) - uJ+l

2t
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All simulations are done in MATLAB. The space discretization x = 200
and the CFL-condition Op9ﬁre used. For our cases, Theorem.1 shows that
while K; =0;" = ;c = 101 , as stated in Section 5, the system is exponen-
tially stable with Lj = L (i =1;2;3;4).

The time evolution of the network is shown in Fig. 10, generaéd by MAT-
LAB with the initial value (1V2),

8

2ul(0;x) =  4sin 5x ;

>u'(O;x):2$in zX ; 1212,34g; (IV2)
" uk(0;x)=0; k2f1,234g

Figure 10: The time evolution of tlbe network with the initial value (IV2)
"= ; c= 101; L =1
Green line: Numerical simulation result Red line: Exact soldion
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From the gure we can observe that the simulation result of the scheme is
quite good. We then present the time evolution of the networkconcerning the
L2-norm for both stability and instability cases in the follow ing gure. Stability
is measured in theL?-norm

4 I+l
._ XX Kiiy2 ki y712.
Lo(tk) = [(u)=+ (v )=
i=1 j=0
Example 1
We normalize the initial L? energy as 1. We take" = ;c = pTC)l ,

Theorem 1.1 gives us thel i, = 1:5625 Lnmax =5. The time evolution of the
log of L2-energy of the networks with di erent length of the arcs can be shown
in Figure 6.2 for K; = 0;1;20. We take the initial value:

8 .

Eul(o;x) =sin & + X
u?(0;x) = u3(0;x) = sin X ;

Zut0;x) = Ex

T uk(0;x)=0; k2f1;234g

(6.2)

The numerical results indicate that if there exists a critical length L. that

5 -
10 —K=0 —K=0 10 —K=0
—K =1 —K =1 —K =1
0 K =20 K =20 p K =20
| T 8
g -~ g g
£-10 E z 6
o 70 Ra
S0 3 \ 4
2
-30
0 /
-40 5 -
0 100 200 300 0 100 200 300 400 500 0 100 200 300 400 500
time time time
(@ Li1=1<Lmpn (o) L2=3 2 (Lmin ;L max ) (©) L3 =6 >L max

Figure 11 The time evolution of the log of L 2-energy with di erent
lengths of the arcs

determines the stabilizability of the system, it is likely that it is equal L yin -

Example 2

We take " =4;c=5. Fig. 4 in Remark 4.1 shows that ifL = % we cannot
prove the existence of an eigenvalue with positive real part if K3 2 (0:8;5:0).
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We have tried to make the simulation for K1 2 f 0:9;1; 2; 3; 4; 4:5g with the
initial data (6.2).

However, since the ve lines, representing the time evolutio of the L ?-energy
on the network are too close and all increasing, we only presg the logarithm
of the energy forK; =3 in Fig. 12.

200

150

100

50

0 20 40 60 80 100

Figure 12: c=5; "=4; L

1
NI
A

=
1
w

The numerical results show that the system is not exponentifly stable even if
we cannot theoretically prove there exists an eigenvalue irthe right part of the
plane.

7. Conclusion

We have discussed the limits of stabilization of a networkedchyperbolic sys-
tem with a circle that is governed by a wave equation with nondssipative source
terms depending on the position and the velocity. If the lendhs of the arcs are
small enough, the system is exponentially stable with the cotrol parameter jK 4j
su ciently small if the arcs in cycle have the same length. Similar to the exam-
ple presented by Bastin and Coron (2016), the system cannot & exponentially
stable for any feedback parameters if the length of arcs is sciently large. For
stability, we have proven that the lengths of arcs could be dbhtly di erent from
each other. If we have no restriction on the length of arcs, te complexity of
the characteristic equation leads to additional di cultie s in spectral analysis.

For our future research we are interested in the existence ofhe critical
length to precisely separate the domains of stability and irstability. Moreover,
it is interesting to consider more general graphs, for examie a cycle made from
three edges and three attached single links. This topic is fiked to the analysis
in Leugering and Sokolowski (2008), where the elliptic caséas been consid-
ered, see also Gugat, Qian and Sokolowski (2023) for the topagical derivative
method for control of wave equation on networks. A disadvanage of the spectral
approach is that for more complex graphs also the spectral agtions become
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more complicated. Therefore, it would be useful to have a sipler method for
the general case, even if it would provide only less preciseesults. We clearly
expect that also for more general graphs there exists a limibf stabilizability.

Another approach to extend the analysis is to allow for additional feedback
control applied to the Kirchho conditions to improve the st ability, similarly as
in Avdonin, Edward and Leugering (2023). Since additional edback control
action would improve the stability of the system, we expect tat in this case
also systems with graphs with several intertwined cycles aald be stabilized with
suitable feedback parameters at all interior nodes.

Also an analysis of the exponential stability with respect to the H2-norm
would be of interest (see, e.g., Hayat, 2019; Hayat and Shang021): Does this
change the critical length where stabilization is impossille compared with the
L2-case?
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