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Abstract: This paper presents a new mixed integer linear pro­
gramming mathematical model of the dial-a-ride problem (DAP) 
which facilitates incorporation of multiple criteria and accommo­
dates various forms of the basic DAP model. This new mathemati­
cal model encapsulates into a single model various instances of the 
DAP previously available only in separate models.

A simulated annealing based solution heuristic is developed for 
the model. Extensive analysis of the effects of the annealing param­
eters on the efficiency and accuracy of results is performed. The 
robustness of the algorithm is explored through solution of various 
instances of the problem. The intent is to explore the applicability of 
simulated annealing as a solution methodology for the DAP, and to 
examine the design issues associated with implementation of same.

The results obtained in this paper are encouraging for small to 
medium sized instances of the DAP with efficiences (with respect to 
objective value) exceeding 95%.

1. Introduction
Although the requirements of the dial-a-ride problem (DAP) model are readily 
described, efficient solutions to existing models are evasive due to its NP-hard 
computational complexity. Sęveral mathematical models and solution method­
ologies exist for different classes of the DAP; however, there is no single math­
ematical model which can encompass them all. Development of such a robust 
model will allow researchers and practitioners to rely on a single model and its 
corresponding solution methodology rather than searching for or developing a 
dedicated model for their specific application. Moreover, since most real-world 
problems typically involve more than one, usually conflicting objective or crite­
ria, the versatility of the DAP model will be enhanced through incorporation of 
multiple criteria; however, very little research has been conducted in this area. 
Finally, since the DAP is NP-hard, little emphasis has been placed on devel­
opment of exact algorithms, and although several heuristic algorithms exist in 
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the literature, none have explored the application of simulated annealing to the 
problem. Moreover, the existing heuristics have concentrated on solving a spe­
cific instance of the DAP rather than developing a robust solution methodology 
applicable to multiple instances of the problem.

The objective of this research was to develop a robust mathematical model of 
the DAP which can encompass various instances of the problem and facilitate 
the inclusion of multiple criteria. Additionally, since the complexity of the 
mathematical model would render its exact solution intractable, the utility of a 
simulated annealing-based heuristic solution methodology was explored.

This paper is divided into five sections. Section 2 provides background into 
the DAP and its associated vehicle routing problem. Additionally, an overview 
of simulated annealing is provided. In Section 3, the mathematical model of 
the DAP problem is formulated, and in Section 4, the simulated annealing­
solution algorithm is presented. This section includes an extensive analysis of 
the performance of the algorithm for various control parameters. The paper is 
concluded in Section 5.

2. Background
2.1. Dial-a-Ride problem

The dial-a-ride problem (DAP) is a subset of the general vehicle routing problem 
(VRP), Christofides et al. (1979). In general, the VRP involves the routing (i.e., 
the order in which customers are serviced) of one or more vehicles to and from 
a central depot to multiple customer demand centers, and the scheduling (i.e., 
the times at which customers are picked up and/or delivered) of the arrival and 
departure times of vehicles to/from the customer demand centers and depot.

The dial-a-ride problem encompasses a class of problems in which customers 
located at various points in the service area call a central dispatcher who col­
lects information on the customer’s location, his desired destination, and desired 
pickup and delivery times. The dispatcher then determines which vehicle will 
service the demand, determines the route the vehicle will travel, and deter­
mines the vehicle’s departure and arrival times (i.e., the vehicle’s schedule). As 
with the general VRP, dial-a-ride problems can be subdivided according to the 
assumptions of the model:

1. Number of pickup and delivery points. In this case, customers request 
pickup from several distinct points with delivery to a single, common 
point (many-to-one) or delivery to many distinct points (many-to-many).

2. Request type or time of reservation. Customer reservations for transporta­
tion can be made in advance (static) or as the service is needed (dynamic 
or immediate request).

3. Number of vehicles. The fleet can consist of a single or multiple vehicles.
4. Timing constraints. Customers may specify a fixed time for pickup and/or 

delivery or may specify an interval of time during which pickup and/or
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delivery may occur (timing windows).
5. Vehicle capacities. Constraints on the maximum number of customers per 

vehicle may be imposed.
The objectives of the models are also problem dependent and include:

1. Minimization of the number of vehicles or fleet size.
2. Minimization of customer wait times, travel times, or the summation of 

both (i.e., the system time).
3. Minimization of vehicle travel distances.

The literature on the VRP and its extensions is extensive as is evident in the 
review articles by Bodin et al. (1983) and Solomon and Desrosier (1988). Some 
specific examples follow.

Psaraftis (1980) studied the single vehicle, many-to-many, immediate request 
problem. The single vehicle, many-to-many, advanced reservation problem with 
delivery time windows was studied by Sexton and Bodin (1985a, 1985b). Kikuchi 
and Rhee (1989) consider a multiple vehicle, many-to-many, advance reservation 
problem with pickup and delivery time windows employing an insertion heuristic 
similar to that developed by Jaw et al. (1986). Foster and Ryan (1976) devel­
oped a 0-1 integer programming formulation of a vehicle scheduling problem 
(VSP) in which the primary objective was to minimize the maximum number 
of vehicles deployed on any given day of a multi-day planning horizon. Their 
model facilitates inclusion of timing windows, vehicle capacity constraints, and 
limitations on the durations of routes. Laporte et al. (1985) developed an inte­
ger programming formulation for the VRP, and Achuthan and Caccetta (1991) 
and Hart (1992) developed MILP models.

2.2. Simulated Annealing

Simulated annealing is a computational process which attempts to solve difficult 
optimization problems through controlled randomization. The procedure was 
popularized by Kirkpatrick et al. (1983), and is based on work by Metropolis 
et al. (1953) (the so-called Metropolis algorithm) in statistical mechanics. Sim­
ulated annealing emulates the physical process of annealing (hence the name of 
the heuristic) which attempts to force a system to its lowest energy state through 
controlled cooling. In general, the annealing process involves the following steps:

1. The temperature of the system is raised to a sufficient level.
2. The temperature of the system is maintained at this level for a prescribed 

amount of time.
3. The system is allowed to cool under controlled conditions until the desired 

energy state is attained.
The initial temperature (Step 1), the time the system remains at this tempera­
ture (Step 2), and the rate at which the system is cooled (Step 3) are referred 
to as the annealing schedule. If the system is allowed to cool too fast, it may 
“freeze” at an undesirable, high energy state. With respect to optimization 
problems, the state of the system corresponds to the value of the objective 
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function. Similarly, the freezing of a system at an undesirable energy state 
corresponds to an optimization problem which is “frozen” at a local optima.

In simulated annealing the- problem starts at some suboptimal solution or 
state, and a series of moves or transitions (changes of values of decision vari­
ables) are made according to a user-defined annealing schedule until either the 
optimal solution is attained or the problem becomes frozen at a local optima 
from which it cannot improve. Transitions between states occur randomly ac­
cording to a problem-specific mechanism which defines how the algorithm selects 
a neighborhood of its current state. To avoid freezing at a local optima, the al­
gorithm moves slowly (with respect to the objective value) through the solution 
space. This controlled improvement of the objective value is accomplished by 
accepting non-improving moves with a certain probability (based on the result­
ing change in the objective value and the current temperature) which decreases 
as the algorithm progresses.

The general procedure for implementing a simulated annealing algorithm 
follows:
Step 1. Select an initial temperature, to, and an initial solution, Xq, Let f0 = 

f(Xo) denote the corresponding objective value. Set i = 0, k = 0, n = 0, 
and go to Step 2.

Step 2. Set i = i + 1, and n = n + 1. Randomly generate a neighborhood 
solution, Xi and evaluate fi = f(Xf).

Step 3. If fi < fi-i) then go to Step 5. Otherwise, accept fi as the new 
solution with probability and go to Step 4.

Step 4. If fi was rejected as the new solution in Step 3, set fi = fi_i- Go to 
Step 5.

Step 5. If n = Lk (i.e., the number of trials per temperature level), set k = 
k + 1, set n = 0, and set the temperature, £&, according to the annealing­
schedule. If th > Lnim then go to Step 2. Else, stop.

Although some theoretical guidelines exist for selection of SA parameters (see 
van Laarhoven and Aarts (1989) for selected references), most applied research 
employs experimental design to determine the most appropriate parameters for 
a given application. The parameter design method presented by Johnson et 
al. (1989) has been successfully applied and extended by Hart and Chen (1994) 
and Chen, Hart, and Tham (1995). Consequently, this method will be employed 
herein.

Many researchers have reported encouraging results from the application 
of simulated annealing to the solution of computationally complex problems. 
These applications include the mapping problem (Hart and Chen, 1994), gen­
eral integer linear programming (Chen, Hart, and Tham, 1995), the graph parti­
tioning problem (Johnson et al., 1989a), the traveling salesman problem (Cerny, 
1985; and Kirkpatrick, 1984), global wiring (Vecchi and Kirkpatrick, 1983), and 
nonlinear optimization (Vanderbilt and Louie, 1984; Bohachevsky et al., 1986). 
A review of some of these applications can be found, for example, in Eglese
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(1990).

3. Development of the model
3.1. Model formulation

This section describes the development of the multiple criteria mixed integer 
linear programming (MCMILP) model of the DAP. Formulation of the model’s 
constraint set is described based upon a network representation of the DAP.

Let n denote the number of customers requiring transport. To each of 
these customers assign a unique node, Vi (hereafter, pick up node). Further, 
associate with each pick up node in the network a unique node, corre­
sponding to the ith customer’s destination (hereafter, destination node). Define 
a network, N = (V,^), where V = {u0,ui,.. . ,un,un+i,... ,u2n,^2n+i} and 
E — [ei7'](2n+2)x(2n+2)- The vertices v0 and V2n+1 denote the start node and 
terminal node of the network, respectively. Finally, let c^- denote the minimum 
time required to travel from node i to node j (i.e., the edge'cost).

The start node corresponds to the central depot. By this convention, a 
directed arc; e^j, j = 1,2,... , n; exists corresponding to the travel time from 
the central depot to each of the customer pickup points. The terminal node 
corresponds to the post-service positiomfor each vehicle. That is, after a vehicle 
completes service, it is routed to the terminal node. Similar to the start node, 
this convention requires that a directed arc; e^n+i, = n+1, n + 2,.2n; exist 
corresponding to the travel time from each of the customer destination nodes 
to the terminal node. Note that customer pick up.nodes are not adjacent to the 
terminal node, and that customer destination nodes are not adjacent to the start 
node. Otherwise, extraneous arcs and, hence, extraneous decision variables and 
constraints would be introduced into the MCMILP model.

The parameters and decision variables associated with the MCMILP model 
are defined below.

Model parameters and decision variables
n An integer constant denoting the number of customers in the system. 
k An integer constant denoting the number of available vehicles.

An integer constant denoting the maximum capacity of each vehicle. 
M A very large (i.e., M >> 1) integer constant.
Xij A Boolean decision variable which is 1 if a vehicle is routed from node i to 

node J, and 0 otherwise.
Ti A real decision variable which denotes the time at which any vehicle reaches ’ 

node i.
Tij K real decision variable which denotes the cumulative time to travel from 

node i to node j.
Cij A real constant denoting the travel time from node i to node j.
Bi An integer decision variable denoting the number of customers on the vehicle 

when it reaches node i.
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BCij An integer decision variable which denotes the remaining capacity of a 
vehicle as it traverses arc

Ui An integer decision variable denoting the number of the vehicle which visited 
node i.

uij An integer decision variable denoting the number of the vehicle which tra­
versed edge

Since each customer is assigned a unique node, if more than one, say k, customer 
is waiting at the same pickup node, then the cost of all edges between the k 
nodes would be zero (In practice, the actual edge cost will be a sufficiently small 
number, 6<1). Similar logic is applied to the destination nodes.

Based upon the various classes of DAPs outlined in Section 2, development 
of a robust mathematical model capable of facilitating various combinations of 
said classes requires that the model accommodate, via decision variables and 
constraints, the following:

1. Conservation of Flow. Given that the model accommodates a central 
depot and postservice point, no vehicle should terminate service at a cus­
tomer pick up/destination point. This restriction is easily incorporated 
into the model with conservation of flow constraints. These constraints 
will utilize the xij routing variables. The x$j (1 < J < n) also serve 
to establish the number of vehicles which were dispatched from the cen­
tral depot, and to restrict the number dispatched to no more than the 
maximum number, k.

2. Timing. Timing (i.e., the time a vehicle arrives at a pick up or destination 
node) is crucial in establishment of customer wait times, customer travel 
times, and ensuring that a customer delivery occurs after said customer 
has been picked up. In the model, the Ti variables will reflect the time at 
which a vehicle arrived at a customer pick up/destination node. Because 
the network model assigns a unique node to every customer’s pick up and 
destination point, Ti and Ti±n (1 < i < n), will reflect the time customer 
i was picked up and delivered, respectively. Clearly, Ti < Ti+n will ensure 
that the time at which a customer is picked up precedes the time at which 
said customer was delivered.

3. Vehicle Capacity. Since limited vehicle capacities are accommodated, the 
model must ensure that no more than the maximum number of customers 
are loaded at any time. This restriction is incorporated into the model 
via the Bi variables. By construction, Bi (1 < i < n) will reflect the 
number of customers loaded on the vehicle which visits the ith pick up 
node. Similarly, Bi (n + 1 <i < 2n) will reflect the number of customers 
loaded on the vehicle which visits the ith destination node.

4. Vehicle Number. Given that there are some number, &, of vehicles in the 
system, a method of distinguishing between vehicles must be provided. 
Similar to the timing constraints, the model must ensure that the number 
of the vehicle which picked up a given customer corresponds to the number 
of the vehicle which delivered said customer. In the model, Ui will denote 
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the number of the vehicle which visited the ith node. The model ensures 
that the vehicle number which picks up a customer matches the vehicle 
number which delivers said customer by requiring m = Ui+n.

The preceding discussion of the decision variables has assumed that each node 
in the network (except the start and terminal nodes) will be visited exactly 
once by one and only one vehicle. That is, a feasible solution to the MCMILP 
model of the network must correspond to an open-ended m-tour through the 
DAP network. Lemma 1 justifies this assumption.

Lemma 3.1 A path through the DAP network is feasible only if it constitutes 
an open-ended m-tour.

Proof.
(a) Open-ended tour. All vehicles originate at the start node, node 0. By 

construction, the terminal node, node 2n +.1, and the start node are 
disconnected. Hence, any TSP tour solution must be open-ended.

(b) TSP tour. To prove, assume contrary. That is, suppose there exists a 
feasible path which is not an open-ended tour. This implies one of the 
following:

(i) A node in the network is not visited.
(ii) A single vehicle visits a given pick up or destination node more than 

once.
(iii) More than one vehicle visits a given pick up or destination node.

Part (i). If a pick up or destination node is not visited, then a customer is 
either not picked up or is not delivered, respectively. Clearly, such a solution is 
infeasible.
Parts (ii) and (iii). By construction, a customer is assumed picked up or 
delivered when any vehicle visits a given pick up or destination node, respec­
tively. (Recall that a unique pick up and destination node is assigned to each 
customer.) Therefore, since the edge cost denotes the minimum travel time 
between its incident nodes, parts (ii) and (iii) follow directly from the triangle 
inequality. That is, inclusion of a previously visited node in any vehicle’s path 
will result in an increase in one or more customer’s travel time, wait time, or 
both. ■

The restrictions and limitations of the MCMILP model and the criteria to 
be addressed in this research are detailed below:

Criteria
1. Minimize number of vehicles (see (18)).
2. Minimize average customer travel time (see (19)).
3. Minimize average customer wait time (see (20)).
4. Minimize maximum customer wait time (see (21)).
5. Minimize maximum customer travel time (see (22)).
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Restrictions/Limitations
1. Although the model will facilitate restrictions on maximum vehicle capac­

ity, the maximum capacity of all vehicles must be identical.
2. The model is deterministic.
3. All vehicles initially depart from the same location.

In lieu of Lemma 1, the MCMILP constraint set must be formulated such that 
every feasible solution corresponds to an open-ended m-tour. To this end, the 
constraint set for the MCMILP model is depicted in (1) through (14).

MCMILP Model Constraint Set
n

EV-V (1)
.7=1

.7 = 1

2n

E
i=p

= 1 j = l,2,.. ., 2n; p = ' 0 if 
if

3 < ™
3 > n

(2)

2n+p

E = 13 = 1,2,...., 2n; p = <^r o if 
if

3 < n
3 > n (3)

Tij = CijXij = 2n-, j =
1,2, ...,n
1,2, ...,2n

if i = 0
if i > 0 (4)

Ti > Ttj- < (1 - Xij) j i = 0,1,..., 2n;

. _ ( 0,1,..., 2n if i < n
~ 1 1,2,..., 2n if i > n

T < Ti+n f = 1,2,..., n

BCij = SiXij + Bi i = 0,1,..., 2n; j = 1,2,..., 2n; 

_ ( 1 if i <n
bi L -i if i > n

Bi < BCma,x i=l,2,..., 2n

(5)

(6)

(7)

(8)

Bi > BC'ji - Af (1 - X^) i j; i = 1,2,..., 2n (9)

Ui > ix0i i = 1,2,... ,n (10)

Uij = Uii^ j\ i = 1,2,..., 2n (U)

Uij-M(l-Xij) <Ui<M(l-Xij)+Uiji^j-, i = l,2,...,2n (12)
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Ui < M(1 - Xij) + ixQi i = 1,2,... ,n (13)

'U'i-j-n = i = 1, 2, . . . , 7Z (14)

Xij e {0,1} for all z, j

Following are the short descriptions of the function of each of the constraints of 
the MCMILP model:
(1) This constraint ensures that the number of vehicles dispatched from the

central depot (node 0) does not exceed the maximum number available.
(2) -(3) These constraints together ensure that exactly one vehicle arrives at

and departs from all pick up and delivery nodes.
(4)-(6) These constraints establish customer pick up and delivery times (equiv­

alently, vehicle arrival and departure times). Assuming that all vehicles 
depart the central depot at relative time zero (i.e., To = 0), then Toj 
(1 < j < n) will reflect the time it takes a vehicle to travel from the 
central depot to the jth pickup node. If a vehicle actually travels this 
path (i.e., xOj = 1), then constraint (5) will establish the vehicle arrival 
time at the jth node. Note that constraints (4) and (5) are working in 
conjunction with constraints (2) and (3) ensuring there is no conflict in 
the establishment of arrival times by constraints (5).
Once a given vehicle’s arrival time has been established at the first node 
it visits (i.e., j < n), the arrival time at the next node in its path can be 
established in the same manner as previously described.
As previously mentioned, constraints (6) will ensure that a customer’s 
delivery time never precedes his pick up time.

U)-(9) These constraints collectively track the number of customers on each 
vehicle throughout their respective tours. Assuming that all vehicles de­
part the central depot with zero customers (i.e., Bo = 0), then BCo^ 
(1 < J < n) will reflect the addition of one customer to the vehicle which 
travels to the jth node. If a vehicle actually travels this path (i.e., Toy = 1), 
then constraint (9) will account for the addition of one customer to the 
vehicle. The constant, (0 < i < 2n), in (7) controls whether a customer 
will be loaded or unloaded at the jth node. Therefore, similar to the tim­
ing constraints, constraints (2) and (3) are working in conjunction with 
(7) and (9) to track the number of customers on each vehicle throughout 
their respective tours while (8) ensures no vehicle exceeds its maximum 
capacity.

(10)-(13) These constraints track the number of the vehicle which visits each 
node in the network. Constraints (10) and (13) work together to ensure 
that a unique number is assigned to every vehicle which departs the cen­
tral depot. By convention, each vehicle departing the central depot is 
assigned a number corresponding to the first pick up node it visits. This 
scheme ensures a unique number for each vehicle. Constraints (11) and 
(12) establish the number(s) of the vehicle(s) arriving at all destination 
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nodes and at all pick up nodes from a node other than the central de­
pot. Finally, constraints (14) ensure that the number of the vehicle which 
picks up a given customer corresponds to the number of the vehicle which 
delivers said customer.

Other It should be noted that timing windows are easily incorporated into the 
constraint set through addition of constraints of the form

T • <T <T
where Tmjn denotes the earliest relative pick up or delivery time and Tmax 
denotes the latest relative pick up or delivery time.
Finally, note that satisfaction of the Boolean restriction on the xij vari­
ables necessarily ensures the integrality of the Bi and uij variables; hence, 
the integral restriction on these decision variables can be relaxed.

Lemma 1-established that a feasible solution to the DAP must constitute an 
open-ended m-tour. It remains to be shown that every solution which satisfies 
the MCMILP constraint set of (1) through (14) corresponds to an open-ended 
m-tour.

Lemma 3.2 Every solution which satisfies the MCMILP constraint set corre­
sponds to an open-ended m-tour.

Proof. To prove, assume contrary. That is, suppose there exists a solution 
satisfying (1) through (14) which is not an open-ended m-tour. This implies 
one or more of the following:

(i) One or more nodes are not visited.
(ii) One or more nodes (excluding the terminal node) are visited more than 

once.
(iii) One or more subtours exist in the solution.
(iv) One or more paths exists in the solution which do not contain either the 

start node (node 0) or the terminal node (node 2n +1) or both.
Parts (i) and (ii). The constraints of (2) ensure that every pick up and 

destination node is visited once and only once.
Part (iii). Since all arcs incident with the start node and terminal node 

are unidirectional, any subtours must occur within the pick up and destination 
nodes. Hence, a subtour could consist of a cycle containing only pickup nodes, 
a cycle containing only destination nodes, or a cycle containing both pick up 
and destination nodes. Without loss of generality, let the cycle (i.e., subtour) 
be denoted by the set of arcs S = {(1,2), (2,3),..., (n - l,n), (n, 1)}. Given 
that constraints (2) and (3) are satisfied, such a cycle* would require:

Ti2 = ci2 + Ti (by (4))

Tr > Tnl = cnl + Tn_! (by (5)) (15)

T<2 > Ti2 = ci2 +7i (by (5)) (16)
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Substituting (15) into (16) we have:

T2 > C12 4- Tn-i + cni or Tn_i < T2 — cni — C12 (17)

But, since c^- > 0 for every edge (ż,J) 6 5, we have Ti > Tm for all I > m, 
hence, (17) is contradicted, and a subtour of any length is infeasible.

Part (iv). The constraints of (3) ensure that a path away from every pick 
up and delivery node exists. Given that no solutions satisfying (1) through (14) 
contain subtours, it follows that every feasible path must contain both the start 
and terminal nodes. ■

It is clear that both the number of constraints and the number of variables 
in the MCMILP model are a polynomial function of the number of customers 
in the system. While this is a desirable feature, it is clear that the model would 
become intractable when solved by typical integer programming techniques as 
the number of customers in the system increased, (e.g., When n = 100, there 
are 201,100 constraints and 160,200 decision variables.)

At this point, formulation of the five objective functions corresponding to 
the aforementioned criteria are presented.

n

min Xoj (Number of vehicles)
.7=1

mm — (Average customer travel time)

Ti (Average customer wait time)min —
n

min max {Ti} (Maximum customer wait time)
l<i<n

min max {(Ti_^n — Ti)} (Maximum customer travel time) 
l<4<n

(18)

(19)

(20)

(21)

(22)

Objective function (21) is facilitated in the MCMILP model through the intro­
duction of n additional constraints of the form:

> Ti i = 1, 2,..., n 

and (21) expressed as:

min

Similarly, objective function (22) is facilitated through the introduction of n 
constraints of the form:

Z2 > Ti+n -Tii = l,2,...,n 
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and (22) expressed as:

min ^2

Finally, it should be noted that minimization of the total vehicle travel time (or 
distance) can be accommodated through introduction of an objective function 
of the following form:

2n

min (^,2n+l)Fi
i=n+l

This nonlinear objective function can be facilitated in the model through the 
introduction of n additional constraints of the form:

Zi_n + (1 - X^2n+1)M > Ti i = n + 1, n + 2,..., 2n; M » 1

and corresponding objective function:
n

min Zi
i=l

The complete goal program is depicted in (23) through (31).
4 n

mill y y + / ? Xoi
i=l i=l

(23)

subject to
n

J2(^+n ~ Ti) — d+ + = .91
i=l

(24)

n
Ti — d2 + d2 = g2

i=l
(25)

z1-d,^ -\-d^ = g3 (26)

zz~ d% + CI4 = .94 (27)

^1 > Ti i = 1,2,... ,n (28)

zz > Ti+n -Tii = l,2,...,n (29)

Tm[n. < Ti < Tmax. for all i = 1, 2,..., 2n (30)

such that T{ has timing windows

Constraints (1) through (14) (31)
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In the goal programming formulation, the p+ variables are user-specified con­
stants corresponding to the weight associated with each deviational or goal 
variable. The gj constants are the user-specified goals for each of the decision 
criteria. For reference, the correspondence between the preceding goal con­
straints (i.e., (24) through (29)) and the objective criteria (i.e., (18) through 
(22)) is as follows:

• (18) appears in the objective function
• (24) corresponds to (19)
• (25) corresponds to (20)
• (26) and (28) correspond to (21)
• (27) and (29) correspond to (22)

3.2. Implementation issues

In the MILP formulation, the number of vehicles in the system is established 
via the constraints of (1). However, the solution algorithm developed in Sec­
tion 4 employs a route construction technique based upon the model’s network 
formulation (i.e., the MILP model is not solved directly.) Therefore, to facili­
tate multiple vehicles in the solution, it will be convenient to add N (where N 
denotes the number of customers in the system) additional nodes to the net­
work presented in Section 3. These nodes will designate the introduction of an 
additional vehicle into the solution.

For example, consider a DAP with N = 2. Then there are 3IV + 2 = 8 nodes 
in the network formulation (see Figure 1).

Nodes 1 and 2 denote customer pick up nodes, nodes 3 and 4 denote cus­
tomer delivery nodes, and nodes 5 and 6 denote vehicle transition nodes. (As 
previously discussed, nodes 0 and 3N + 1 denote the home depot and vehicle 
termination point, respectively.) Consequently, the route given by solution 0- 
1-3-2-4-7 denotes a single-vehicle solution; whereas, the route given by solution 
0-1-3-5-2-4-7 denotes a two-vehicle solution.

Since any path which includes a vehicle transition node which is adjacent 
to a customer pick up node denotes the introduction of an additional vehicle 
into the solution, the arc costs from the transition nodes to the customer pick 
up nodes correspond to the arc costs from the central depot (node 0) to the 
customer pick up nodes. This convention is illustrated in Figure 1. That is, 
no cost is incurred in the solution through introduction of a given transition 
node until said node is connected to a customer pick up node. Consequently, 
as shown in Figure 1, the arc costs from the customer delivery nodes to the 
transition nodes as well as the arc costs between transition nodes is zero. (It 
should be noted that inclusion of a transitional node in any given route increases 
the cost of said route exactly by that amount associated with the introduction 
of the corresponding vehicle into the solution; therefore, introduction of the 
transistional nodes represents an equivalent network formulation and does not 
affect the results of Lemma 1.) Given the aforementioned network structure, it
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Figure 1. SADAPA network formulation example

follows that the two-vehicle solutions corresponding to the paths listed below:
• 0-1-3-5-2-4-6-7
• 0-1-3-6-2-4-5-7
• 0-1-3-5-6-2-4-7
• 0-1-3-6-5-2-4-7

are equivalent with respect to optimal solution and corresponding optimal ob­
jective value. Specifically, all four solutions denote the following vehicle routes:

Vehicle 1: 0-1-3-7 (Depart home depot. Pick up customer 1. Deliver cus­
tomer 1. Terminate route.)

Vehicle 2: 0-2-4-7 (Depart home depot. Pick up customer 2. Deliver cus­
tomer 2. Terminate route.)

4. The simulated annealing algorithm
The SA algorithm employed in this research followed the general outline pre­
sented in Section 2. The algorithm is initiated with a temperature of t = TINIT. 
The temperature is lowered at each phase of the algorithm through multiplica­
tion with TFAC after every ITER iterations of the algorithm. The algorithm is 
terminated when one of the following occurs:

1. The temperature falls below the user-specified threshold, TSTOP.
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2. The percentage of accepted moves at any temperature level is below the 
user-specified threshold, MINACCEPT, for a user-specified number, 
FREEZEMAX, of consecutive temperature levels.

A description of the algorithm’s parameters is provided below.

Input Parameters
TINIT A real value denoting the initial or starting temperature.
TFAC A real value (0 < TFAC < 1) denoting the temperature multiplication 

factor.
TSTOP A real value denoting the terminating temperature level.
MINACCEPT A real value denoting the threshold or minimum number of al­

lowable accepted moves at a given temperature level.
SIZEFACT A real value used to establish the number of trials per temperature 

level.

Program Parameters
NSIZE The number of neighborhood solutions to a given trial solution.
ITER The number of trial solutions per temperature level.
REJECTED The number of rejected trial solutions at a given temperature level. 
ACCEPTED The number of accepted trial solutions at a given temperature 

level.
FAILCOUNT The number of consecutive temperature levels for which the min­

imum number of accepted moves was less than MINACCEPT.
t The current temperature level.
n The number of remaining trial solutions for a given temperature level.
The design of the SA algorithm is based upon a separation of the feasibility 
requirements expressed in the MCMILP model into two components: (1) TSP 
Feasible: Every feasible solution to the MCMILP model constitutes an open- 
ended m-tour. (2) Scheduling, Routing, and Timing (SRT) Feasible: Every 
feasible solution satisfies the timing and routing constraints in (4) through (14).

Determination of a TSP/SRT feasible solution is based on a series of rejection 
rules. That is, if for a given incumbent node any of the following rules are 
satisfied, then the corresponding trial solution is infeasible.

Rejection Rules
Rule 1. The incumbent node would result in termination of the algorithm be­

fore all pick up and delivery nodes had been visited. (Associated with 
constraints (2)-(3))

Rule 2. The incumbent node would result in a subtour. (Associated with con­
straints (2)-(3) and (4)-(6))

Rule 3. The incumbent node would result in a violation of the maximum ve­
hicle capacity. (Associated with constraints (7)-(9))

Rule 4. The incumbent node would result in a vehicle visiting a delivery node 
prior to vistiting the associated pick up node. (Associated with constraints



146 S.M. HART

Rule 5. The incumbent node would result in the incorrect vehicle number vis­
iting a destination node. (Associated with constraints (10)-(14))

Rule 6. The incumbent node results in a nonempty vehicle visiting a transition 
node.

The first TSP feasible trial solution is generated by building an open-ended TSP 
tour consisting of the following ordered set of edges: (Throughout the discussion 
in this section, unless otherwise stated, N will denote the number of customers 
in the system.)

{(0,1), (1, N + 1), (A + 1,2),..., (2A - 1, A), (A, 2A), 
(2A,2A + 1), (2A + 1,2A + 2),..., (3A,3A + 1)}.

Note that this trial solution satisfies all SRT feasibility constraints in (1)-(14) 
and is therefore a feasible solution to the MCMILP model. Subsequent trial 
solutions are generated through pairwise interchange of two nodes in the net­
work. This interchange is a general pairwise interchange procedure. That is, 
the interchange of two nodes in the network, (i,J), is performed as: (z,J) = 
(1,2), (1,3),..., (1,3A), (2,1), (2,3),..., (2,3A),..., (3A - 1,3A). This proce- 
dure was selected based upon experimentation with various neighborhood selec­
tion schemes including pairwise interchange of randomly selected nodes and ad­
jacent pairwise interchange. It should be noted that Potts and van Wassenhove 
(1991) reached the same conclusion with respect to selection of neighborhood 
solutions in their study of simulated annealing solutions for the single machine 
tardiness sequencing problem.

The simulated annealing solution algorithm for the MCMILP is as presented 
below.

Simulated Annealing DAP Algorithm (SADAPA)
Step 1. Set t = TINIT. Generate the initial trial solution and compute the 

corresponding objective value, fQ. Set BESTOBJ = A- Set ITER = 
(NSIZE) (SIZEFACT) then set n = ITER.

Step 2. Set i — i + 1. Generate a new trial solution using the general pairwise 
interchange procedure and, if feasible, calculate corresponding objective 
value, fi. Else set A = 1.5BESTOBJ.

Step 3. If fi < fi-i) then set FAILGOUNT = 0, BESTOBJ = and go to
— A

Step 5. Otherwise, accept A as the new solution with probability e~~ 
and go to Step 4.

Step 4. If A was rejected in Step 3, set A — A-i and set REJECTED = 
REJECTED+1. If A was accepted in Step 3, set ACCEPTED = ACCEP­
TED + 1. Go to Step 5.

Step 5. Set n = n — 1. If n > 0, then go to Step 2. Else set t = (t)(TFAC If 
t < TSTOP, then stop. Else if ( aqceiTeD+RHIECTED ) ~ MAN_ 

ACCEPT, then set FAILCOUNT = FAILCOUNT+1. If FAILCOUNT = 
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FREEZEMAX, then stop; otherwise, set n = ITER, set REJECTED = 0, 
reinstall best solution, reset interchange variables and go to Step 2.

The algorithm was implemented in the C programming language using the Bor­
land Turbo C version 2.0 compiler, and all experiments were conducted on an 
IBM-compatible 486DX2 50 MHz system.

In Step 2 of the algorithm, infeasible trial solutions are assigned a penalty 
cost of 1.5BESTOBJ, where BESTOBJ is the best feasible objective value so 
far obtained. The selection of the multiplication factor of 1.5 was based on 
experimentation with values ranging from 1.1 to 2.0. Experiments were also 
conducted in which all infeasible trial solutions were rejected. However, this 
procedure performed poorly. The poor performance of unconditional rejection 
of infeasible solutions follows since the general pairwise interchange procedure 
is implemented as a pair of nested loops. That is, in many cases movement from 
one feasible trial solution to another via the implemented interchange procedure 
requires “passing through” an infeasible trial solution. This can be easily verified 
through manual solution of a small test problem.

After completion of each temperature level, the best solution so far ob­
tained is reinstalled. Additionally, after the completion of each temperature 
level, the node interchange variables are reset to their initial value. That is, 
the interchange of two nodes in the network, (z,J), is performed as =
(1, 2), (1, 3),... (1, 31V), (2,1), (2, 3),... from the initiation of each new temper­
ature level.

The experiments conducted to determine the “ideal” parameter settings for 
the annealing algorithm are described. The test case employed in analysis of 
the effects of the annealing algorithm’s parameter set was designed so that the 
optimal solution was known. The parameters were analyzed using a 20 customer 
test problem, and the robustness of the chosen parameters was studied through 
solution of 30 and 40 customer problems.

The experimental procedures followed were adapted from the work of John­
son et al. (1989) and Hart and Chen (1994). It should be noted that the number 
of parameters, the range of values each can assume, and their inherent interac­
tions prohibit a complete enumeration of all possible combinations. However, 
the experiments conducted herein provide a systematic approach which can be 
duplicated by other researchers. Moreover, the approach has been shown by 
other researchers, as reported in the literature, to adequately explore the rela­
tionships between the various parameters.

The parameters of interest are: TINIT, TFAC, MINACCEPT, SIZEFACT, 
and NSIZE. An additional parameter of interest is INITPROB. This is a depen­
dent variable representing the probability of accepting a trial solution during the 
first temperature level. In SADAPA, INITPROB is expressed as the proportion 
of nonimproving moves accepted by the algorithm during a given temperature 
level (see Step 5 of the algorithm). Clearly, this parameter is dependent upon 
TINIT, NSIZE, and SIZEFACT.
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The variable, NSIZE, corresponds to the number of neighborhood solutions 
associated with a given trial solution. Ideally, NSIZE is set to the actual neigh­
borhood size and is used in conjunction with SIZEFACT to control the number 
of trials per temperature level. Since SADAPA employs a general pairwise in­
terchange procedure, NSIZE is defined as follows:

NSIZE = 37V(37V - 1)

The first experiment required determination of the relationship between TINIT 
and the acceptance probability, INITPROB. In the spirit of Johnson et al. 
(1989) and Hart and Chen (1994), multiple runs of 20 replications each were 
conducted for various values of TINIT. The test case consisted of a DAP with 
20 customers, a fleet size of 20 vehicles, and a vehicle capacity of 10 customers. 
The criteria selected was the minimization of the total vehicle travel distance, 
L.

The test case was designed so that the optimal solution, A*, was known. 
Specifically, the travel distance from the home depot, node 0, to each of the 
customer pickup nodes, 1,2,... ,7V, was set to 1. Since a solution including a 
node number larger than 27V denotes introduction of an additional vehicle into 
the solution, the travel distances from each of the nodes 27V + 1, 27V + 2,... 37V 
to the customer pickup nodes was also set to 1, and the distance between any 
pair of nodes 27V + 1, 27V + 2,..., 37V was set to zero.

For every pair of pickup nodes (z,J) such that 2 < (7,J) < TV and i j, the 
distance from node i to node J, and hence from j to 7, was set to \i — j\. For 
example, the distance from node 4 to node 10 would be 6. The distance from 
node 1 to node TV was set to 1. The same scheme was employed for the delivery 
nodes, N + 1, N + 2,..., 27V.

The travel distance from a given pickup node to its corresponding delivery 
node was set to 607V (the choice of 60 was arbitrary), and the distance between 
all other pairs of pickup/delivery nodes was set at their Euclidean distance. 
Finally, all infeasible arcs (e.g., self-loops) were set to -1.

Given the aforementioned network structure, the optimal solution is given 
by

L*
TV

BMAX
(ftBMAX) - l + 607V)+

rr_jL_
\ BMAX

—A— j [ 2 ( N - ■- -Ę— BMAX] - 1 + 607V j BMAX J J \ \ L-SMAAj / J

where BMAX denotes the maximum vehicle capacity. (These values are: 2438, 
5457, and 9676 for. 20, 30, and 40 customer problems with BMAX = 10, re­
spectively.) A formal proof of the validity of L* is omitted; however, it should 
be clear that the magnitude of the travel distance from any pick up node i < N 
to any delivery node 7V + 1 < j < 27V forces an optimal solution to minimize the 
number of vehicles dispatched. That is, in the optimal solution, every vehicle
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Table 1. Relationship between initial temperature (TINIT) and the acceptance 
probability (INITPROB)

TINIT — 1 10 170 210 350 525 800 1300
INITPROB .1 .2 .3 .4 .5 .6 .7 .8 .9

Table 2. Effects of starting temperature (TINIT) and the acceptance probability 
(INITPROB)

TINIT/INITPROB
1/.2 10/.3 170/.4 210/.5 350/.6 525/.7 800/.8 1300/.9

Average Objective Value 3599 2827 2467 2530 2461 2458 2529 5579
Standard Deviation 471 556 23.3 284 9.5 7.6 284 5995
Average CPU Time (secs) 8.3 124.2 408.5 387.5 452.4 477.9 554.2 612.6
Best Objective Value 2462 2458 2452 2452 2445 2446 2443 2443

dispatched will pick up and deliver the maximum feasible number of customers. 
(To prove, assume contrary: Assume the optimal solution consists of fewer ve­
hicles than that given by L* which yields either an infeasible solution due to the 
capacity limit BMAX or a solution with a higher objective value due to the 
requirement that one or more vehicles make multiple pick up and deliver runs. 
Alternatively, assume the optimal solution consists of more vehicles than that 
given by L*. Again, a contradiction is reached due to vehicle travel distances 
between pick up and delivery nodes.)

For each replication, the algorithm was terminated after one full iteration 
(equivalently, one temperature level) which was fixed at NSIZE iterations (i.e., 
SIZEFACT = 1.0). The percentage of accepted moves was calculated and aver­
aged over the 20 replications, and a correlation between TINIT and the accep­
tance probability, INITPROB, was established (see Table 1).

To determine the effect of INITPROB on the algorithm’s efficiency, 20 repli­
cations were performed on the DAP with a vehicle capacity of 10 customers for 
each of the TINIT values in Table 2.

For these experiments, SIZEFACT, MINACCEPT, TFAC, FREEZEMAX, 
and TSTOP were fixed at 1.0, .2, .95, 1, and .001, respectively. (Hereafter the 
aforementioned set of parameters will be referred to as the standard parameters.) 
The results of this experiment are depicted in Table 2.

In the table, the average final objective value and average execution time 
obtained over the 20 replications is depicted. From the table, the best per­
formance with respect to average objective value and variability of solutions 
obtained occurs when INITPROB = .7.
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Table 3. Results for 30 and 40 customer problems

Customers TINIT Best Objective Value CPU Time (secs) Efficiency
30 1200 5457 3563 100%
40 1950 9696 6252 99.8%

Although the best overall solution was obtained when INITPROB = .8 and 
INITPROB = .9, the significant difference in CPU times, average objective val­
ues, and variability of solutions obtained supported selection of INITPROB = .7 
into the standard parameter set. Further support for this selection was provided 
by experiments with 30 and 40 customer problems. The results of these exper­
iments are depicted in Table 3.

(NOTE: The TINIT values listed in the table are those required to yield an 
average INITPROB = .7 across 20 replications of the algorithm.)

From the table, it is clear that the performance, with respect to efficiency of 
solution, is robust across various problem sizes.

The effects of TFAC and SIZEFACT were explored by performing 10 replica­
tions of the algorithm using the standard parameters and the TFAC, SIZEFACT 
combinations depicted in Table 4.

TFAC has been chosen such that each increase corresponds to taking the 
square root of the previous value - a choice that will double the number of 
temperature levels at which the function is evaluated for a specified range. Sim­
ilarly, each increase in SIZEFACT doubles the previous value; therefore, since 
the number of trials per temperature level is the product of SIZEFACT and 
NSIZE, this procedure will also result in a doubling of the number of trials over 
a specified range. As noted by Johnson et al. (1989), fixing either parameter 
and increasing the other to its next value should yield an approximate doubling 
of the algorithm’s execution time.

From Table 4, for a fixed value of SIZEFACT, an approximate doubling of 
the algorithm’s execution time is observed between adjacent values of TFAC in 
most cases. However, for a fixed value of TFAC, doubling SIZEFACT results 
in an approximate doubling of the algorithm’s execution time only when the 
increase is from SIZEFACT = .25 to SIZEFACT = .5. In all other cases, the 
data indicates an approximate three to four fold increase in the algorithm’s 
execution time.

Based on these observations, it can be concluded that doubling the num­
ber of temperature levels has no significant effect on the algorithm’s accep­
tance probability at each temperature level; hence, the temperature at which 
the algorithm is declared frozen remains constant. This result is illustrated in 
Figure 2 which compares the acceptance probability and best objective value 
obtained at each temperature level for the SIZEFACT = 1.0, TFAC = .8145
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Table 4. Effects of TFAC and SIZEFACT

Average Objective Value 
Standard Deviation 

Average CPU Time (secs) 
Best Objective Value

TFAC
SIZEFACT .6634 .8145 .9025 .9500 .9747

3714 3351 2882 3243 2758

0.25 8.9 552 545 1167 491
3.5 22.6 32.7 71.3 115.1

3696 2535 2525 2491 2488
2745 2876 2529 2642 3117

0.50 495 550 16.6 361 1886
23.4 42.9 63.9 131.2 283.9
2491 2506 2505 2514 2491
2827 2575 2457 2457 2452

1.00 570 375 8.4 7.25 7.07
72.5 140.2 253.1 486.7 949.9
2455 2450 2448 2450 2443
2442 2442 2440 2442 2438

2.00 5.14 6.4 2.78 7.99 .713
250.5 393.9 968.3 1604 2950
2438 2438 2438 2438 2438
2446 2440 2443 2440 2438

4.00 8.23 5.0 8.74 693 .02
538.1 1009 1887 3710 7343
2438 2438 2438 2438 2438
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Thousands

Temperature Level

Figure 2. Effects of doubling the number of temperature levels

and SIZEFACT = 1.0, TFAC = .6634 pairs.
On the other hand, doubling the number of trials per temperature level 

seems to significantly alter the associated acceptance probability and therefore 
increase the run length or convergence time of the algorithm. To illustrate 
this, a single replication of the algorithm was performed using the TFAC = 
.8145, SIZEFACT = 1.0 and TFAC = .8145, SIZEFACT = 2.0 pair. For this 
experiment, the acceptance probability and best objective value were recorded 
for each temperature level as was described for the results of Figure 2. (The 
acceptance probabilities in both Figure 2 and Figure 3 have been scaled by a 
factor of 1000.) These results are illustrated in Figure 3.

From the figure, it is clear that increasing the number of trials per tem­
perature level has yielded an increase in the acceptance probability at each 
temperature level and has therefore resulted in an increase in the algorithm’s 
execution time which exceeds the predicted doubling.

Both Figure 2 and Figure 3 serve to illustrate that the majority of progress 
(with respect to objective value) attained by the algorithm occurs within the first 
eight temperature levels. Equivalently, the majority of progress is attained when 
the acceptance probability is greater than approximately .4. This observation is 
significant in that it indicates that “good” solutions (i.e., those with an efficiency 
of 95% or greater) can be achieved early in the annealing schedule; therefore, 
if an efficiency of 95% is acceptable, the annealing schedule can be truncated
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Figure 3. Effects of doubling the trials/temperature level

resulting in a significant decrease in the algorithm’s execution time.
Returning to Table 4, the selection of the TFAC, SIZEFACT pair for entry 

into the standard parameter set should be based on the requirements for a given 
application. That is, short convergence time with average and best efficiencies 
exceeding 95% can be obtained using the TFAC = .9025, SIZEFACT = .5 
pair. This pair was selected over other pairs yielding comparable efficiencies do 
to the low variability of solutions obtained. If, on the other hand, optimality 
is desired, then SIZEFACT should be selected from either SIZEFACT = 2.0 
or SIZEFACT = 4.0 since at least one optimal solution was obtained over 10 
replications for every associated TFAC value.

Analysis of the effects of the standard parameter set on the efficiency and 
accuracy of solutions was based on a single criteria: minimization of total vehicle 
travel distance. Since it is possible that the quality of solutions obtained in these 
experiments was associated with the structure of the network model employed , 
additional experiments were conducted on the same network model previously 
presented using different criteria. The intent was to design experiments for 
which optimality was attained in different regions of the solution space. (The 
standard parameters employed in these experiments are listed in Table 5.)

The criteria employed in these experiments were (i) Minimization of total 
travel distance, L. (Since the standard parameters employed differed from those 
used in the previous experiments, it was decided, for completeness, to repeat the
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Table 5. Standard parameters for robustness experiments

INITPROB TFAC SIZEFACT FREEZEMAX MINACCEPT TSTOP
.7 .9025 2.0 1 .2 .001

Table 6. Experimental results for various criteria

Criteria Customers Best Solution Optimal Solution
20 2438 2438

min£ 30 5457 5457
40 9676 9676
20 1 1

min AW 30 1 1
40 1 1
20 2 2

min k s.t.AW < 1.5 30 3 3
40 5 4

same experiments.) (ii) Minimization of average wait time, AW. (iii) Minimiza­
tion of the number of vehicles dispatched, k, subject to a maximum allowable 
customer wait time which was set at 1.5 times the number of customers in the 
system. The experiments were conducted on 20, 30, and 40 customer problems, 
and as mentioned, used the same network structure previously described. For 
each problem instance, three replications of the experiment were performed. 
The results of these experiments appear in Table 6.

In the table, the “Best Solution” column corresponds to the best solution 
obtained by the algorithm across the three replications; whereas, the “Optimal 
Solution” column corresponds to the global optimal solution for the given prob­
lem. The results reported in Table 6 support the claim of robustness for the 
simulated annealing based solution heuristic.

5. Summary and conclusions
This research has examined the feasibility of encapsulating into a single mathe­
matical model and corresponding solution methodology the dial-a-ride problem 
in its various forms. To this end, a mixed integer linear programming model of 
the DAP was developed which incorporates various constraints and objectives 
commonly occurring in DAP models. A rigorous presentation and mathemati­
cal justification of the model was provided.

The relationship between the mathematical model and its corresponding net­
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work formulation was utilized to develop a simulated annealing based solution 
heuristic. Design and implementation issues associated with the SA algorithm 
were discussed, and the performance of the algorithm was analyzed for various 
instances of the DAP. This analysis indicates that solutions with efficiencies 
exceeding 95% can be obtained within reasonable computation time for small 
to medium-sized problems.

In summation, the major contributions of this research are two-fold as out­
lined below:

1. A mathematical model of the dial-a-ride problem has been developed and 
justified which encompasses multiple instances of the problem, and which 
can facilitate various single objectives or multiple objectives expressed 
as a goal program. Although the model’s size is prohibitively large for 
solution by standard optimization packages, the existence of the model 
should assist other researchers in the development of efficient solution 
algorithms.

2. An efficient simulated annealing based solution heuristic was developed 
based on the mathematical model and its corresponding network rep­
resentation. The algorithm was shown to provide efficient solutions in 
reasonable computation time on small to medium-sized instances of the 
problem. The ability to efficiently solve the problem using the algorithm 
presented herein is not only significant in and of itself, but the ability 
to represent and efficiently solve the complex mathematical model of the 
problem using an equivalent network formulation suggests that other ex­
isting heuristic techniques such as tabu search or genetic algorithms may 
provide a desirable alternative methodology over simulated annealing.
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