
Control and Cybernetics

vol. 46 (2017) No. 1

Fuzzy similarity measure based on fuzzy sets∗

by

Gholamreza Hesamian

Department of Statistics, Payame Noor University,
Tehran 19395-3697, Iran
gh.hesamian@pnu.ac.ir

Abstract: This paper extends the notion of fuzzy similarity
measure between fuzzy sets. A definite class of fuzzy similarity mea-
sures between fuzzy sets is also introduced. Using some theorems
and examples, it is shown that the introduced extended similarity
measures satisfy many common and desired properties, based on
the common axiomatic definitions, introduced for fuzzy similarity
measures. Some illustrative and practical examples from the areas
of pattern recognition and approximate reasoning systems are pro-
vided in order to present the possible applications of the proposed
fuzzy similarity measures.
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1. Introduction

Since Zadeh (1965) introduced the notion of fuzzy sets, which can be used to rep-
resent the uncertainty through imprecise numbers, the fuzzy set theory has been
successfully applied in various fields of scientific endeavour as a suitable tool for
handling vague information, such as decision making, approximate reasoning,
logic programming, fuzzy risk analysis, pattern recognition, and cluster analysis
(see, for instance, Hejazi et al., 2011; Mondal et al., 2006; Turksen and Zhong,
1988; Yang and Shih, 2001). An important class of these methods measures the
degree of similarity between fuzzy sets. Many researchers have proposed various
similarity measures between fuzzy sets during the last decades. For instance,
several similarity measures between fuzzy sets were reviewed and compared by
Zwick et al. (1987) based on both geometric and set-theoretic premises. Pap-
pis and Karacapilidis also (1993) introduced some similarity measures between
fuzzy sets. After that, many researchers proposed more similarity measures
between fuzzy sets (Balopoulos et al., 2007; Beg and Ashraf, 2009; Bouchon-
Meunier et al., 2010; Bosteels and Kerre, 2007; Fan and Xie, 1999; Kehagis and
Konstantinidou, 2003; Wang et al., 1995; Xuechang, 1992; Yang et al., 2005;
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Zeng et al., 2006). However, the literature, concerning this kind of measure can
be divided into two main streams: 1) some papers introducing axiomatic defi-
nitions (see, for instance, Chachi and Taheri, 2013; Jenhani et al., 2010; Santini
and Jain, 1999) 2) a great number of works introducing or reviewing some para-
metric families of measures (see, for instance, Chen et al., 1995; DeBaets et al.,
2009, 2005, 2001; Guha and Chakraborty, 2010; Hejazi et al., 2011).

As it can be seen, the above methods present crisp similarity measures for
fuzzy sets. However, since the sets themselves are not known exactly, it is
logical that the similarity measure between them should also be treated as a
non-exact value. Therefore, a similarity measure for fuzzy sets, supposed to
represent the similarity between two uncertain sets, may also constitute an
uncertain set. Based on this reasoning, using axiomatic definitions, some new
classes of fuzzy similarity measures between fuzzy sets are introduced. Then,
the main properties of the proposed fuzzy similarity measures are investigated.
It is shown that these fuzzy similarity measures satisfy the main axiomatic
conditions expected from a similarity measure in the fuzzy environment. For
practical reasons, the proposed ranking method and similarity measures are
illustrated using some application examples.

This paper is organized as follows. The next section reviews some concepts
concerning fuzzy sets. In Section 3, some new definitions and relevant properties
with respect to (crisp) similarity measures between fuzzy sets are proposed
and discussed. Then, some fuzzy similarity measures between fuzzy sets are
introduced and some basic properties of the proposed fuzzy similarity measures
are also subject to investigation. Several illustrative and practical examples from
the areas of decision making and approximate reasoning systems are presented
and analyzed in Section 4. Finally, concluding remarks are forwarded in Section
5.

2. Preliminaries

A fuzzy set (Zadeh, 1965) of X is a mapping Ã : X → [0, 1], which assigns to

each x ∈ X a degree of membership 0 ≤ Ã(x) ≤ 1. The class of all fuzzy sets

is denoted by H(X). Ã is called a normal fuzzy set if there exists a unique

real number x∗ such that Ã(x∗) = 1. For each α ∈ (0, 1], the subset {x ∈ X |

Ã(x) ≥ α} is called the level set or α-cut of Ã and is denoted by Ã[α]. The lower

and upper bounds of Ã[α] are denoted by ÃL
α = inf{x ∈ X | Ã(x) ≥ α} and

ÃU
α = sup{x ∈ X | Ã(x) ≥ α}, respectively. The set Ã[0] = {x ∈ X|Ã(x) 6= 0}

is called the support of Ã. The following operators on fuzzy sets Ã and B̃ are
used in this paper (Dubois and Prade, 1978, 1980).

1. Ã = B̃ if and only if Ã(x) = B̃(x), for all x ∈ R, which is equivalent to

Ã[α] = B̃[α] for every α ∈ [0, 1].

2. Ã 6= B̃ if and only if Ã(x) 6= B̃(x), for some x ∈ R, which is equivalent to

Ã[α0] = B̃[α0] for some α0 ∈ [0, 1].
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3. Ã ⊆ B̃ if and only if Ã(x) ≤ B̃(x), for all x ∈ R, which is equivalent to

Ã[α] ⊆ B̃[α] for every α ∈ [0, 1].

4. Ãc is the complement of fuzzy number Ã with the membership function
Ãc(x) = 1− Ã(x), for all x ∈ R.

5. Ã∪B̃ is the union of fuzzy numbers Ã and B̃ with the membership function
(Ã ∪ B̃)(x) = max{Ã(x), B̃(x)}, for all x ∈ R.

6. Ã∩ B̃ is the intersection of fuzzy numbers Ã and B̃ with the membership
function (Ã ∩ B̃)(x) = min{Ã(x), B̃(x)}, for all x ∈ R.

In this paper, a fuzzy set Ã of X = R is called a fuzzy number when it satisfies
the two following conditions:

1) Ã is normal.

2) For each α ∈ [0, 1], the set Ã[α] is a compact interval.

We denote by F(R) the set of all fuzzy real numbers. A fuzzy number Ã ∈ F(R)

is called positive, symbolized by Ã > 0, if Ã[0] ⊆ (0,∞). A fuzzy number

Ã ∈ F(R) is also called negative, symbolized by Ã < 0, if Ã[0] ⊆ (−∞, 0).
However, in this paper, we focus on a special case of fuzzy numbers, which is
called the triangular fuzzy number, TFN, denoted by Ã = (al, a, ar)T , with the
following membership function:

Ã(x) =

{
x−al

a−al al ≤ x < a,
ar−x
ar−a

a ≤ x < ar.

Here, we recall the Secant Approximation for the multiplication of two TFNs
(for more details, see Hanss, 2005, p. 60).

• If Ã = (al, a, ar)T > 0 and B̃ = (bl, b, br)T > 0 then:

Ã⊗ B̃ ≃ (albl, ab, arbr)T ,

• If Ã = (al, a, ar)T > 0 and B̃ = (bl, b, br)T < 0 then:

Ã⊗ B̃ ≃ (cl, c, cr)T ,

where

cl = ab− (a(b− bl)− b(ar − a) + (a− al)(b − bl)),
c = ab,

cr = ab+ (a(br − b)− b(a− al)− (br − b)(a− al)).

In this paper, we are going to extend the concept of similarity measure be-
tween two fuzzy sets as a TFN. To generalize the properties of a fuzzy similarity
measure, therefore, we need to apply a proper ranking method of TFNs. Dur-
ing the last decades, researchers interested in ranking of fuzzy sets proposed
different ranking methods, derived on the basis of various principles (for in-
stance, see Akyar et al., 2012; Allahviranlo and Saneifard, 2012; Boulmakoul
et al., 2013; Nasseri et al., 2012; Wang et al., 2009; Wu, 2005). However, a
common preference criterion for comparing fuzzy numbers was introduced by
Nakamura (1986).
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Definition 1 For two fuzzy numbers Ã and B̃ ∈ F(R), let:

∆
ÃB̃

=

∫

{α:ÃL
α
≥B̃L

α
}

(ÃL
α − B̃L

α )dα+

∫

{α:ÃU
α
≥B̃U

α
}

(ÃU
α − B̃U

α )dα. (1)

Then the degree of “Ã is greater or equal to B̃”, is defined by:

D(Ã � B̃) =

{
0.5 Ã = B̃,

∆
ÃB̃

∆
ÃB̃

+∆
B̃Ã

Ã 6= B̃.
(2)

Conform to this definition, for given fuzzy numbers Ã and B̃, the preference
criterion D measures the degree to which “Ã is greater than or equal to B̃”.

Definition 2 For two fuzzy numbers Ã and B̃, we say that Ã is greater than
or equal to B̃, denoting by Ã �D B̃, if D(Ã � B̃) ≥ 0.5.

The preference criterion D has the following properties (for more details, see
Yang et al., 2005).

Proposition 1 Let Ã, B̃ and C̃ be three fuzzy numbers. Then
1) D is reciprocal, i.e., D(Ã � B̃) = 1−D(B̃ � Ã).

2) D is reflexive, i.e., Ã �D Ã.

3) D is transitive, i.e., Ã �D B̃ and B̃ �D C̃ imply Ã �D C̃.

4) D(Ã � B̃) = 1 if and only if B̃L
α ≤ ÃL

α and B̃U
α ≤ ÃU

α for all α ∈ [0, 1]

and B̃L
α0

< ÃL
α0

or B̃U
α0

< ÃU
α0

for some α0 ∈ [0, 1].

We will useD in the following sections, to indicate the maximum fuzzy similarity
measure between fuzzy numbers due to its reasonable properties.

Remark 1 Let Ã = (al, a, ar)T and B̃ = (bl, b, br)T be two TFNs. If al ≥ bl,

a ≥ b and ar ≥ br, then it is easy to verify that Ã �D B̃.

Remark 2 Using the preference degree D, we can sort n fuzzy numbers Ãi, by
using the following natural procedure: sort {Ã1, Ã2, . . . , Ãn} by calculating

(
n
2

)

preference degrees to obtain the set in the form {Ãk1 , Ãk2 , . . . , Ãkn
}, so that for

any i < j, D(Ãj � Ãi) ≥ 0.5. The feasibility of the sorting is guaranteed by

Proposition 1. Based on the sorting, therefore, Ãkn
is the most preferred choice

(which is denoted by m̃ax
n
i=1{Ãi}), Ãk(n−1)

is the second, etc.

3. Fuzzy similarity measure

In this section, we are going to extend a similarity measure between two fuzzy
sets as a TFN. For this purpose, some new constructions for (crisp) similarity
measures for fuzzy sets are proposed and it is shown that the proposed similarity
measures satisfy the properties of the axiomatic definition provided by Couso et
al. (2013). Then, based on the proposed (crisp) similarity measures, some class
of fuzzy similarity measures for fuzzy sets is introduced and the properties of
these measures are discussed by means of several theorems in fuzzy environment.
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Definition 3 For two normal fuzzy sets Ã and B̃, a mapping S : H(X) ⊗
H(X) → R is called a similarity measure if it satisfies the following properties:

1. S(Ã, B̃) ∈ [0, 1].

2. S(Ã, B̃) = S(B̃, Ã).

3. S(Ã, B̃) = 1 if and only if Ã = B̃.

4. If Ã ⊆ B̃ ⊆ C̃, then S(Ã, C̃) ≤ min{S(Ã, B̃), S(B̃, C̃)}.

Example 1 Let Sa,b
1 : F(R)× F(R) → [0, 1] be defined by:

S
a,b
1 (Ã, B̃) =

∫ 1

0

b|Ã[α] ∩ B̃[α]|

a|Ã[α]∆B̃[α]|+ b|Ã[α] ∩ B̃[α]|
dα, a, b > 0, (3)

for all Ã, B̃ ∈ F(R) where A∆B denotes the symmetric difference of two ordi-
nary sets A and B and |A| denotes the length of A. Then, Sab

1 is a similarity

measure. Moreover, Sa,b
1 satisfies the following properties for any a, b > 0:

(I) If Ã ∩ B̃ = ∅ then Sab
1 (Ã, B̃) = 0, otherwise Sab

1 (Ã, B̃) > 0,

(II) Sab
1 (Ã ∩ B̃, Ã ∪ B̃) = Sab

1 (Ã, B̃),

(III) Sab
1 (Ã ∪ C̃, B̃ ∪ C̃) ≥ Sab

1 (Ã, B̃).

To check the above assertions, first assume that Ã = B̃. Then it is readily seen
that

b|Ã[α] ∩ B̃[α]|

a|Ã[α]∆B̃[α]|+ b|Ã[α] ∩ B̃[α]|
= 1

for all α ∈ [0, 1] and therefore S
a,b
1 (Ã, B̃) =

∫ 1

0
1dα = 1. In reverse, assume

that Sa,b
1 (Ã, B̃) = 1 or

∫ 0

1

(1−
b|Ã[α] ∩ B̃[α]|

a|Ã[α]∆B̃[α]|+ b|Ã[α] ∩ B̃[α]|
)dα = 0.

Since
b|Ã[α] ∩ B̃[α]|

a|Ã[α]∆B̃[α]|+ b|Ã[α] ∩ B̃[α]|
≤ 1

for any α ∈ [0, 1], it follows that:

1−
b|Ã[α] ∩ B̃[α]|

a|Ã[α]∆B̃[α]|+ b|Ã[α] ∩ B̃[α]|
= 0,

which leads to the conclusion that |Ã[α]∆B̃[α]| = 0, that is Ã = B̃. Now,

assume that Ã ⊆ B̃ ⊆ C̃. It follows that

Sa
2 (Ã, C̃) =

∫ 1

0

b|Ã[α]|

a|C̃[α]| + (b− a)|Ã[α]|
dα.

Since f(x) = bx
ac+(b−a)x , c ≥ 0 is an increasing function of x > 0 and |Ã[α]| ≤

|B̃[α]| for every α ∈ [0, 1], we have Sa
2 (Ã, C̃) ≤ Sa

2 (Ã, B̃) and similarly Sa
2 (Ã, C̃)
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≤ Sa
2 (B̃, C̃). Therefore, S

a,b
1 is a similarity measure from Definition 3. If

Ã ∩ B̃ = ∅ then it follows that |Ã[α] ∩ B̃[α]| = 0 for all α ∈ [0, 1] and therefore

S
a,b
1 (Ã, B̃) = 0. In addition, if Ã ∩ B̃ 6= ∅ then it can be observed that

b|Ã[α] ∩ B̃[α]|

a|Ã[α]∆B̃[α]|+ b|Ã[α] ∩ B̃[α]|
> 0,

for all α ∈ [0, 1] and any a, b > 0. Hence, Sab
1 (Ã, B̃) > 0, which leads to the

conclusion (I). The assertion (II) immediately follows, since (Ã[α] ∪ B̃[α]) ∩

(Ã[α] ∩ B̃[α]) = Ã[α] ∩ B̃[α] and (Ã[α] ∪ B̃[α])△ (Ã[α] ∩ B̃[α]) = Ã[α]△ B̃[α].
To prove the assertion (III), let

ga,b(Ã[α], B̃[α]) =
a|Ã[α]∆B̃[α]|+ b|Ã[α] ∩ B̃[α]|

b|Ã[α] ∩ B̃[α]|
=

a

b

|Ã[α]∆B̃[α]|

|Ã[α] ∩ B̃[α]|
+ 1.

Consequently, we get

ga,b(Ã[α] ∪ C̃[α], B̃[α] ∪ C̃[α]) =
a

b

|(Ã[α] ∪ C̃[α])∆(B̃[α] ∪ C̃[α])|

|(Ã[α] ∪ C̃[α]) ∩ (B̃[α] ∪ C̃[α])|
+ 1.

Using the relations (Ã[α] ∪ C̃[α])∆(B̃[α] ∪ C̃[α]) ⊆ Ã[α] △ B̃[α] and Ã[α] ∩

B̃[α] ⊆ (Ã[α] ∩ B̃[α]) ∪ C̃[α], it follows that ga,b(Ã[α] ∪ C̃[α], B̃[α] ∪ C̃[α]) ≤

ga,b(Ã[α], B̃[α]) and therefore

Sab
1 (Ã ∪ C̃, B̃ ∪ C̃) =

∫ 1

0

1

ga,b(Ã[α] ∪ C̃[α], B̃[α] ∪ C̃[α])
dα ≥

∫ 1

0

1

ga,b(Ã[α], B̃[α])
dα = Sab

1 (Ã, B̃).

Consider some special cases of Sa,b
1 . Assuming a = b = 1, we get:

S
1,1
1 (Ã, B̃) =

∫ 1

0

|Ã[α] ∩ B̃[α]|

|Ã[α] ∪ B̃[α]|
dα. (4)

In addition, let a = 1, b = 2, then we get:

S
1,2
1 (Ã, B̃) =

∫ 1

0

2|Ã[α] ∩ B̃[α]|

|Ã[α]|+ |B̃[α]|
dα. (5)

Example 2 For two Ã, B̃ ∈ H(X), define Sa
2 : H(X)×H(X) → [0, 1] as follows:

Sa
2 (Ã, B̃) = inf

α∈(0,1]

|(Ã[α]∆B̃[α])c|

a|Ã[α]∆B̃[α]|+ |(Ã[α]△ B̃[α])c|
, a > 0. (6)

Then, Sa
2 is a similarity measure. It also satisfies the following properties:
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(I) Sa
2 (Ã ∩ B̃, Ã ∪ B̃) = Sa

2 (Ã, B̃),

(II) Sa
2 (Ã

c, B̃c) = Sa
2 (Ã, B̃),

(III) Sa
2 (Ã ∩ C̃, B̃ ∩ C̃) ≥ Sa

2 (Ã, B̃),

(IV) Sa
2 (Ã ∪ C̃, B̃ ∪ C̃) ≥ Sa

2 (Ã, B̃).

To verify that Sa
2 is a similarity measure, assume that

|Ã[α]△ B̃[α]| = |B̃[α]△ Ã[α]|,

for any α ∈ [0, 1]. Therefore, it follows that Sa
2 (Ã, B̃) = Sa

2 (B̃, Ã). If Ã = B̃

then it is easily seen that Sa
2 (Ã, B̃) = 1. Now assume that Sa

2 (Ã, B̃) = 1 which

leads to the conclusion that |Ã[α] △ B̃[α]| = 0 for every α ∈ [0, 1], that is,

Ã[α] = B̃[α] for all α ∈ [0, 1] or Ã = B̃. Assume that Ã ⊆ B̃ ⊆ C̃. So, we have

Sa
2 (Ã, C̃) = inf

α∈(0,1]

n− |C̃[α]− Ã[α]|

n+ (a− 1)|C̃[α]− Ã[α]|
.

Since f(x) = n−x
n+(a−1)x is a decreasing function of x > 0 and |B̃[α] − Ã[α]| ≤

|C̃[α]−Ã[α]| for every α ∈ [0, 1], it follows that Sa
2 (Ã, C̃) ≥ Sa

2 (Ã, B̃). Similarly,

we have Sa
2 (Ã, C̃) ≥ Sa

2 (B̃, C̃) and therefore Sa
2 is a similarity measure. To prove

(I)-(IV), for all α ∈ [0, 1] note that

|(Ã[α] ∩ B̃[α])△ (Ã[α] ∪ B̃[α])| = |Ã[α]△ B̃[α]|.

Therefore, Sa
2 (Ã∩ B̃, Ã∪ B̃) = Sa

2 (Ã, B̃) and so (I) follows. (II) is immediately

derived since (Ã[α])c △ (B̃[α])c = Ã[α]△ B̃[α]. The proofs of (III) and (IV) are
easily verified by the following relations:

(Ã[α] ∩ C̃[α])△(B̃[α] ∩ C̃[α]) ⊆ Ã[α]△ B̃[α],

(Ã[α] ∪ C̃[α])△(B̃[α] ∪ C̃[α]) ⊆ Ã[α]△ B̃[α] for all α ∈ [0, 1],

and Sa
2 (Ã[α], B̃[α]) is a decreasing function of |Ã[α] △ B̃[α]|. Especially, in

Eq.(6), let a = 1. Therefore, we get:

S1
2(Ã, B̃) = 1−

1

n
sup

α∈(0,1]

|Ã[α]∆B̃[α]|. (7)

Now, let a = 2, then we obtain:

S2
2(Ã, B̃) = inf

α∈(0,1]

n− |Ã[α]∆B̃[α]|

n+ |Ã[α]∆B̃[α]|
. (8)

In addition, let a = 3, then we have:

S3
2(Ã, B̃) = inf

α∈(0,1]

n− |Ã[α]∆B̃[α]|

n+ 2|Ã[α]∆B̃[α]|
. (9)
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Remark 3 It is worth to note that S
a,b
1 is increasing with respect to b and

decreasing with respect to a. In addition, Sa
2 is decreasing with respect to a.

In the sequel, a concept of fuzzy similarity measure between two fuzzy sets is
introduced.

Definition 4 Let X be a universal set. Any mapping S̃ : H(X)⊗H(X) → F(R)

is said to be a fuzzy similarity measure (FSM) if for all normal fuzzy sets Ã, B̃

and C̃ in H(X), it fulfills the following axioms:

1. S̃(Ã, B̃)[0] ⊆ [0, 1].

2. S̃(Ã, B̃) = S̃(B̃, Ã).

3. S̃(Ã, B̃)(x) = I(x = 1) if and only if Ã = B̃.

4. If Ã ⊆ B̃ ⊆ C̃ then S̃(Ã, C̃) �D S̃(Ã, B̃) and S̃(Ã, C̃) �D S̃(B̃, C̃).

Theorem 1 Let S1, S2 and S3: H(X)⊗H(X) → [0, 1] be three similarity mea-
sures satisfying the following condition:

S1(Ã, B̃) ≤ S2(Ã, B̃) ≤ S3(Ã, B̃) for all Ã, B̃ ∈ H(X).

Then S̃ = (S1, S2, S3)T is an FSM.

Proof. Since S1, S2 and S3 are similarity measures, the assertions (1)-(3) are

trivially satisfied. To prove (4), assume that Ã ⊆ B̃ ⊆ C̃. Since S1, S2 and S3

are similarity measures, it follows that:

Si(Ã, C̃) ≤ min{Si(Ã, B̃), Si(B̃, C̃)}, for i = 1, 2, 3, (10)

which completes the proof by Remark 1. �

Now, by applying the similarity measure Sab
1 (Ã, B̃) defined in Eq. (3), we can

construct an FSM as follows.

Theorem 2 For any Ã, B̃, and C̃ in F(R), let

S̃1(Ã, B̃) = (Sa3b1
1 (Ã, B̃), Sa2b2

1 (Ã, B̃), Sa1b3
1 (Ã, B̃))T , (11)

where 0 < a1 < a2 < a3, 0 < b1 < b2 < b3, and Sab
1 (Ã, B̃) is defined in Eq. (3).

Then, S̃1(Ã, B̃) is an FSM. Moreover, S̃1 satisfies the following properties:

I S̃1(Ã ∩ B̃, Ã ∪ B̃) = S̃1(Ã, B̃).

II If Ã∩ B̃ = ∅ then S̃1(Ã, B̃)(x) = I(x = 0), otherwise S̃1(Ã, B̃)[0] ⊆ (0, 1].

III S̃1(Ã ∪ C̃, B̃ ∪ C̃) �D S̃1(Ã, B̃).

Proof. It is easy to verify that the similarity measure Sab
1 is an increasing

function of b > 0 and a decreasing function of a > 0. Therefore, if 0 < a1 <

a2 < a3 and 0 < b1 < b2 < b3, then we have the following inequalities:

Sa3b1
1 (Ã, B̃) ≤ Sa2b2

1 (Ã, B̃) ≤ Sa1b3
1 (Ã, B̃), for all Ã, B̃, C̃ ∈ F(R). (12)
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From Theorem 1, S̃1 is then an FSM. The assertions (I)-(III) immediately
follow from Theorem 1 and Remark 1. �

From Theorem 2, therefore, one can produce a large class of FSMs on a
given universal set X = {x1, x2, . . . , xk}.

Example 3 Consider a universal set X = {x1, x2, . . . , xk}. For all Ã, B̃, and

C̃ in H(X), let

S̃2(Ã, B̃) = (Sa3
2 (Ã, B̃), Sa2

2 (Ã, B̃), Sa1
2 (Ã, B̃))T , (13)

where 0 < a1 < a2 < a3 and Sa
2 (Ã, B̃) is defined in Eq. (6). Since Sa

1 is
a decreasing function of a > 0, for given positive constants a1 < a2 < a3, it
follows that:

Sa3
2 (Ã, B̃) ≤ Sa2

2 (Ã, B̃) ≤ Sa1
2 (Ã, B̃), for all Ã, B̃ ∈ H(X). (14)

Therefore, S̃2 is an FSM on the basis of Theorem 1. Moreover, it is easy to
verify that S̃2 satisfies the following properties:
(I) S̃2(Ã ∩ B̃, Ã ∪ B̃) = S̃2(Ã, B̃),

(II) S̃2(Ã
c, B̃c) = S̃2(Ã, B̃),

(III) S̃2(Ã ∩ C̃, B̃ ∩ C̃) �D S̃2(Ã, B̃),

(IV) S̃2(Ã ∪ C̃, B̃ ∪ C̃) �D S̃2(Ã, B̃).

Remark 4 There are several defuzzification techniques available to defuzzify a
fuzzy similarity measure meant to obtain a (crisp) similarity measure, such as
the centroid, center of maxima and mean of maxima methods, etc. (for instance,
see Leekwijck and Kerre, 1999). However, one can apply the most common and
appealing of all the defuzzification methods, introduced by Sugeno (1985), the

so-called “center of gravity” method. For an Ã ∈ F(R), the center of gravity of

Ã is defined by C
Ã
=

∫
xÃ(x)dx∫
Ã(x)dx

.

Remark 5 It should be mentioned that the proposed families of (crisp) similar-
ity measures introduced in this paper, are simply exemplary and so the results of
the present work will not be lost by changing this choice to the ones which fit the
demands of the decision makers. For instance, one can apply the family of sim-
ilarity measures introduced by Li et al. (2014) to construct a class of FSMs for
fuzzy sets. However, the proposed similarity measures can also provide a flexible
tool for both fuzzy sets and fuzzy numbers which allows the decision maker to
construct a similarity measure with desired properties according to an axiomatic
structure as it is done in this paper.

4. Application examples

In this section, we present some practical examples to demonstrate the FSMs
between fuzzy sets. For practical reasons, we would explain FSMs between
fuzzy sets by some examples revelent to pattern recognition and approximate
reasoning systems.
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Table 1. The optimal choice based on FSM defined in Theorem 3 for Example
4

Ã1 Ã2 Ã3 Ã4

S̃(Õ, Ãi) (0.25, 0.33, 0.5)T (0.5, 0.6, 0.75)T (0.10, 0.14, 0.25)T I{0}

4.1. Decision making example

Example 4 The problem considered concerns four applicants for a position
(Ã1, Ã2, Ã3, Ã4), each of them being evaluated over four attributes, namely:

1. Experience in the specific job function, denoted as x1,
2. Educational background, denoted as x2,
3. Adaptability, denoted as x3, and
4. Aptitude for teamwork, denoted as x4.

Suppose that we obtain the fuzzy decision matrix D̃ as follows:

D̃ =




x1 x2 x3 x4

Ã1 0.4 1.0 0.9 0.7
Ã2 0.4 0.6 1.0 0.8
Ã3 0.5 1.0 0.8 0.6
Ã4 1.0 0.9 0.8 0.7


,

where [D̃]ij = Ãi(xj), i = 1, 2, 3, 4 and j = 1, . . . , 4. The following fuzzy refer-

ence sequence Õ is composed of the optimal membership values of the indicator
over all the attributes

Õ =
( x1 x2 x3 x4

optimal 0.4 0.6 1.0 0.9
)
.

We need to choose the best candidate for the position by calculating the FSMs be-
tween the reference sequence Õ and the alternative sequences Ãi, i.e. S̃2(Õ, Ãi) =
(S3

2 , S
2
2 , S

1
2)T , i = 1, 2, 3, 4, defined in Eq. (13). The results are then summa-

rized in Table 1. Based on the ranking method given in Remark 2, the following
order is established among S̃2(Ã1, Õ) through S̃2(Ã4, Õ):

S̃2(Ã4, Õ) �D S̃2(Ã3, Õ) �D S̃2(Ã1, Õ) �D S̃2(Ã2, Õ).

Therefore, the optimal alternative is Ã2 = arg m̃ax4i=1S̃(Ãi, Õ) = (0.5, 0.6, 0.75)T
according to an extension of the “principle of maximum degree”. Now, based
on the center of gravity criterion, the defuzzified values of FSMs S̃2(Ãi, Õ),
i = 1, 2, 3, 4 are given in Table 2. Therefore, the optimal alternative remains
Ã2 = arg m̃ax

4
i=1CS̃(Ãi,Õ) = 0.62 whenever the FSMs are defuzzified according

to the center of gravity criterion.
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Table 2. Defuzzified values of FSMs in Example 4

Ã1 Ã2 Ã3 Ã4

C
S̃(Õ,Ãi)

0.35 0.62 0.16 0

4.2. Approximate reasoning examples

In the following example, the application of the proposed FSMs in a forward
approximate reasoning system is examined. The structure of a typical fuzzy
if-then rule that uses the “and” fuzzy operator is demonstrated in the example
statement below (see, for instance, Ross, 2005; Zimmermann, 2001):

Ri : if X̃1 is Ã1i, and X̃2 is Ã2i, . . . , and X̃p is Ãpi, then Ỹ is B̃i.

In this scheme, Ri (i = 1, . . . , n) is the ith production rule, n is the number of

rules, X̃j (j = 1, . . . , p) are the fuzzy input (antecedent) variables, Ỹ are the

fuzzy output (consequent) variable, Ãji’s areTFNs for the antecedent variables,

and B̃i’s are TFNs for the consequent variable. Suppose that the antecedent
statement is expressed as follows:

Antecedent : X̃1 is Ã∗
1, and X̃2 is Ã∗

2, . . . , and X̃p is Ã∗
p,

where Ã∗
j ’s (j = 1, . . . , p) are TFNs for the antecedent variables. Finally, the

consequence of the approximate reasoning scheme is determined as:

Consequence : Ỹ is B̃∗,

where B̃∗ is a TFN for the consequent variable. Here, applying a method
similar to that described by Chen et al. (1997) (see also Zhang and Yiu, 2013),
we apply the following algorithm for the ith rule:

1. Compute s̃ji = S̃(Ãji, Ã
∗
j ), the FSMs for TFNs Ãji, and Ã∗

j ,

2. Let s̃i = m̃ax1≤j≤ps̃ji, and B̃∗
i = s̃i ⊗ B̃i,

3. The deduced consequence of rule Ri is “Ỹ is B̃∗
i ”.

Thus, the deduced consequence of the approximate reasoning scheme is “Ỹ is
B̃∗” in which:

B̃∗ = B̃∗
1 ∪ B̃∗

2 ∪ . . . ∪ B̃∗
n.

Example 5 Let us consider the following forward approximate reasoning scheme
based on TFNs

R1 : if X̃1 is Ã11, and X̃2 is Ã21, and X̃3 is Ã31, then Ỹ is B̃1,

R2 : if X̃1 is Ã12, and X̃2 is Ã22, and X̃3 is Ã32, then Ỹ is B̃2,

R3 : if X̃1 is Ã13, and X̃2 is Ã23, and X̃3 is Ã33, then Ỹ is B̃3,
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The TFNs used in this scheme are given in Table 3. Now, suppose that the
antecedent statement is expressed as follows

Antecedent : X̃1 is Ã∗
1, and X̃2 is Ã∗

2, and X̃3 is Ã∗
3,

where

Ã∗
1 = (0.31, 0.35, 0.38)T , Ã∗

2 = (5.1, 5.4, 5.6)T , Ã∗
3 = (15, 17, 20)T .

We need to determine the consequence of the approximate reasoning scheme,
which is

Consequence : Ỹ is B̃∗.

In this example, we apply S̃1, introduced in Eq. (11), with a1 = 1, a2 = 2,
a3 = 3, and b1 = 1, b2 = 2, b3 = 3, that is:

S̃1 = (S3,1
1 , S

2,2
1 , S

1,3
1 )T ,

where

S
3,1
1 (Ã, B̃) =

∫ 1

0

|Ã[α] ∩ B̃[α]|

3|Ã[α]∆B̃[α]|+ |Ã[α] ∩ B̃[α]|
dα,

S
2,2
1 (Ã, B̃) =

∫ 1

0

|Ã[α] ∩ B̃[α]|

|Ã[α] ∪ B̃[α]|
dα,

S
1,3
1 (Ã, B̃) =

∫ 1

0

3|Ã[α] ∩ B̃[α]|

|Ã[α]∆B̃[α]|+ 3|Ã[α] ∩ B̃[α]|
dα.

The FSMs are then evaluated as shown in Table 4. Thus, B̃∗ = ∪3
i=1B̃

∗
i whose

Table 3. The TFNs in the forward approximate reasoning of Example 5

i Ã1i Ã2i Ã3i B̃i

1 (0.30, 0.35, 0.39)T (4.5, 5.1, 5.5)T (16, 19, 23)T (39, 42, 45)T

2 (0.32, 0.36, 0.40)T (5.0, 5.4, 5.7)T (18, 21, 24)T (41, 45, 48)T

3 (0.28, 0.34, 0.38)T (4.0, 4.8, 5.3)T (14, 18, 19)T (43, 47, 52)T
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Table 4. FSMs s̃ji = S̃1(Ãji, Ã
∗
i ) (i = 1, 2, 3, j = 1, 2, 3) between TFNs in the

forward approximate reasoning of Example 5
i 1 2 3

s̃1i (0.54, 0.78, 0.91)T I{0} I{0}

s̃2i I{0} (0.45, 0.71, 0.88)T I{0}

s̃3i I{0} I{0} (0.44, 0.76, 0.87)T

s̃i = m̃axj s̃ji (0.54, 0.78, 0.91)T (0.45, 0.71, 0.88)T (0.44, 0.76, 0.87)T

B̃∗

i = s̃i ⊗ B̃i (21.06, 32.76, 40.95)T (18.64, 32.13, 42.36)T (19.13, 33.18, 45.24)T

membership function is given by:

µ
B̃∗

(x) =





0 x < 18.64,

x−18.64
13.49 18.64 ≤ x < 32.13,

42.36−x
10.23 32.13 ≤ x < 32.42,

x−21.06
11.70 32.42 ≤ x < 32.76,

40.95−x
8.19 32.76 ≤ x < 32.91,

x−19.13
14.05 32.91 ≤ x < 33.18,

45.24−x
12.06 33.18 ≤ x < 45.24,

0 x ≥ 45.24.

5. Conclusion

This paper proposes a notion of fuzzy similarity measure for measuring the
degree of similarity between fuzzy sets. For this purpose, some novel crisp sim-
ilarity measures are first introduced and the main properties of the axiomatic
definition for these crisp similarity measures are also verified. Subsequently, the
main properties of the axiomatic definition for the proposed fuzzy similarity
measures are investigated in the fuzzy environment. Applicability and effective-
ness of the proposed fuzzy similarity measures are demonstrated with the results
of examples relevant to pattern recognition and approximate reasoning systems.
The main concerns of the examples provided in this paper are to indicate that
these fuzzy similarity measures can provide a useful way for measuring the de-
gree of similarity between fuzzy sets. The proposed fuzzy similarity measures
can be also applied in many other fields, such as image processing, fuzzy neural
networks, fuzzy reasoning, fuzzy risk analysis and fuzzy control.

On the other hand, over the past years, many studies have introduced the
relevant notions for other kinds of constructs, such as, for instance, inclusion
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measures or entropy in the space of fuzzy sets (Farhadinia, 2013; Mao et al.,
2013; Xuechang, 1992; Zeng et al., 2006; Zhang et al., 2009). In this regard,
extending the concepts of fuzzy inclusion measures, or of fuzzy entropy, may
well constitute some of the potential subjects for future studies.

Acknowledgements. I would like to thank the referees and the editor for their
remarks and criticisms that have led to the improvement of presentation of this
work.
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