Control and Cybernetics

Regularized penalty methods for ill-posed optimal control problems with elliptic equations

Part II: Distributed and boundary control with unbounded control set and state constraints

by

R. Hettich*, A. Kaplan**, R. Tichatschke*
* Universitiit Trier, F B IV (Math.), D-54286 Trier, Germany
** TH Darmstadt, F B Mathematik, Schlol3gartenstral3e 7, D-64289 Darmstadt, Germany

Abstract

We investigate the application of Prox-Regularization to ill-posed control problems for systems governed by elliptic equations. Stable variants of Penalty Methods are obtained by means of One- and Multi-Step Regularization of the penalized problems. Convergence of the resulting methods is proved in the case of distributed control as well as boundary control with Dirichlet and Neumann conditions. In the first part of this paper the case of distributed control under Dirichlet boundary conditions and a bounded set of admissible controls has been considered.

Keywords: distributed and boundary control, elliptic equations, prox-regularization, penalty methods.

1. The case of unbounded set of controls

The main contents of this paper, i.e. description of the probleins, method and statements, is autonomous. However, in the proofs we often make use of the results described in Part I, the preceding paper in this issue. References to formulas, sections and statements from Part I are denoteded with "prime" (').

In this section we deal again with Problem 2 (see Part I of the paper) but the set of admissible controls may now be unbounded.

1.1. Problem 2 without state constraints

Let DE IR ${ }^{n}$ be an open domain with boundary \mathbf{r} of the class $C^{2}, U_{a d}$ be a closed, convex subset of $L_{2}(D)$ and
be a strongly elliptic operator with coefficients $a_{i} j E C^{2}(\mathrm{D}), a_{0} E \mathrm{C}^{2}(\mathrm{D})$ and ab 20 on D .

We introduce the Hilbert space

$$
y=\left\{Y I Y E H J(D), A y E L_{2}(D)\right\}
$$

with the norm Il. II endowed with IIIIIY $=$ IIAvll (II• \mathbb{I} is the norm in $L_{2}(D)$).
Denoting by $y(u)$ the unique solution of the Dirichlet problem
$A y=f+u$ in $\mathrm{D}, y=0$ on \mathbf{r},
with $f \mathrm{E} L_{2}(D)$ a given function and $\mathrm{v}, \mathrm{E} \mathrm{U}_{\mathrm{ad}}$, we recall Problem 2:

Here G C Y is a closed, convex set, $C \mathrm{E} l\left(H J(D), L_{2}(D)\right)$ and $K_{, d} \mathrm{E} L_{2}(D)$.
In the sequel we suppose that the set U^{*} of optimal controls is non-empty.
In Part I two numerical methods have been considered for solving this problem in case Ua_{d} is bounded. Now, convergence of Method 2 will be investigated for an unbounded set $U_{a d}$.

To this end we recall the description of Method 2. Let $X=Y \times L_{2}(D)$ be a Hilbert space with the norm $\mathbb{l l}(\mathrm{Y}, \mathrm{v}) 1 \mathrm{~lx}=,\left(\mathrm{IIAvll}^{2}+\mathrm{llull}^{2}\right)^{2}$.

As previously, the abbreviations $z=(y, u), z^{*}=\left(y^{*}, u^{*}\right), 2^{i,}{ }^{s}=\left(y^{i},{ }^{s}, v_{-}^{i s}\right)$ etc. will be used for elements in X .

Method 2 Let $\mathrm{u}^{1} \circ \mathrm{E} \mathrm{Ua}_{\mathrm{d}}$ and positive sequences $\{\mathrm{ri}\},\{\mathrm{Ei}\}$ and $\{8 \mathrm{i}\}$ be given with

$$
\operatorname{sll}_{1} i_{i} r_{i}<1, \operatorname{sv}, p_{i} E<1 \text { and } \lim _{i, \cdots+00} r_{i}=\operatorname{hm}_{1, \cdots+00} \mathrm{E}=0 .
$$

Step i: Given $u^{i}-I E U_{d}$ •
(a) Set $v^{i},{ }^{O}=v^{i}-I, s=1$.
(b) Given $\mathrm{v}, \mathrm{i},{ }^{\text {s }}-1$, let

$$
\begin{align*}
& w_{i}, s \\
&=\int_{\Omega}\left(C y-\kappa_{d}\right)^{2} d \Omega+\frac{1}{r_{i}} \int_{\Omega}(A y-f-u)^{2} d \Omega \tag{1}\\
&+\int_{\Omega}\left(u-u^{i, s-1}\right)^{2} d \Omega
\end{align*}
$$

and

$$
\begin{equation*}
z^{i}, s=\operatorname{argmin}\left\{-\mathrm{w}_{\mathrm{i}}, \mathrm{~s}(\mathrm{z}): z \mathrm{E} G \times \mathrm{U}_{\mathrm{ad}}\right\}- \tag{2}
\end{equation*}
$$

The point $z^{i},{ }^{s} \mathrm{E} G X \mathrm{U}_{\mathrm{ad}}$ is generated such that

Otherwise, set $u^{i}=u^{i}, s, s(i)=s$, and continue with Step $\{i+1)$.
In this subsection the case without state constraints $G=Y$ is considered.
We start with the proof of an auxiliary estimate which is essential for the analysis of convergence of the method in case of unbounded $U_{a d} \bullet$ Let z^{*} be an optimal process of Problem 2

Choose oo $2 \mathrm{IICy}^{*}$ - Ad and put

$$
\begin{equation*}
P_{\mathrm{i}, \mathrm{~s}}>\mathrm{lz}^{*}-z^{i}, s l \tag{3}
\end{equation*}
$$

with I. I a new norm in X introduced by $\mathrm{kzl}^{2}=$ IIAy- $\mathrm{ull}^{2}+$ llull 2.
Of course, inequality (3) makes sense for certain (i, s) only if $s(k)<\infty$ for $k<\mathrm{i}$ (up to now we are not sure whether this is true).

Note that $y^{1} \bullet$ - does not occur in the method, and formally one can suppose that $y^{1} \cdot 0=y^{*}$ i.e., p_{1}, o may be defined by

$$
\mathrm{P}_{1}, \mathrm{o}>\mathrm{llu}^{1} \stackrel{0}{\bullet}-u^{*} \mathbb{I}
$$

Denote $J_{i}(z)=f_{0}(C y-A d)^{2} d D+, t J_{0}(A y-f-u)^{2} d D$.
Proposition 1 There exists a constant αB such that for the points z^{i},s defined in \{2), with $G=Y$, the estimate

$$
\begin{equation*}
J_{i}\left(z^{*}\right)-J_{i}\left(z^{i, s}\right)<d 3\left(c o+P_{i, s}-1\right)^{2}\left(1+, / r i\left(c o+P_{i}, s-1\right)\right)^{2} r_{i} \tag{4}
\end{equation*}
$$

is true.
Proof: Due to (41')-(44'), we have for $s 21$ and $K_{i, s}$ defined by (43')

$$
r_{i} f_{n}\left(A g^{i, s}-f-u^{i},{ }^{s}\right)^{2} d D+K_{i, s}\left(z^{i, s}\right)<c 5+p_{;, s-1}
$$

from which it follows that

$$
\begin{align*}
& \mathrm{IAg}^{\mathrm{i}, \mathrm{~s}}-f-\mathrm{v} / \bullet^{s} \mathbb{1}<\left(\operatorname{co}+P_{i}, s-1\right), / r i \tag{5}\\
& \mathbb{l u}^{\mathrm{i}, s}-\mathrm{u}^{\mathrm{i}, s}-{ }^{1} \mathbb{1}<\mathrm{Co}+P_{i, s-1}, \tag{6}\\
& \mathrm{ICg}^{\mathrm{i}, s}-\mathrm{Adl}<\mathrm{Co}+P_{i}, s^{-}-1 . \tag{7}
\end{align*}
$$

But (3) and (6) together with

$$
\mathbb{l v},{ }^{i},{ }^{s}-u^{*} \mathbb{I} \quad \mathbb{l},{ }^{i}{ }^{\mathrm{i}}, \mathrm{~s}-\mathrm{i}-u^{*} 11+\mathbb{l} u^{\mathrm{i}, s}-u^{i},{ }^{s-1} \mathbb{I}
$$

lead to

$$
\begin{equation*}
l l v,_{-i}^{-i}{ }^{s}-v^{*}{ }^{\star} 11<\mathrm{Co}+2 \mathrm{p}_{\mathrm{i}, \mathrm{~s}}-1 \bullet \tag{8}
\end{equation*}
$$

Let $\mathrm{ff},{ }^{8}$ be a solution of the problem

$$
\begin{equation*}
A y=f+\mathrm{u}^{\mathrm{i}}, \mathrm{~s} \text { in } \mathrm{D}, y=0 \text { on } \mathbf{r} . \tag{9}
\end{equation*}
$$

Then, with regard to (5), we obtain

$$
\text { IIAy }{ }^{\mathrm{i}, \mathrm{~s}}-\mathrm{A} ; \mathrm{i} /{ }^{\prime 8} \mathbb{1}<\left(\operatorname{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right), / \mathrm{r} ;
$$

which means that

$$
\begin{equation*}
\left.1 l w^{i}, s, \nabla^{i},,^{s}\right)-\left(7 / /^{8}, u^{i}, s\right) \| x<\left(c o+P_{i}, s-1\right) / \mathrm{r} ; . . \tag{10}
\end{equation*}
$$

For J; ${ }^{\mathrm{i}}$, ${ }^{\text {s }}$ defined by (52'), due to (7), the estimate

$$
\begin{equation*}
1 \mathrm{P}^{\mathrm{j}},^{s} \mathbb{H}^{2}\left(\cdot(1)<\mathrm{c} 7\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}}, \mathrm{~s}-1\right)\right. \tag{11}
\end{equation*}
$$

is true.
Denote if, ${ }^{s}=, ; ;\left(\mathrm{Ay}^{\mathrm{i},{ }^{s}}-f-\mathrm{u}^{\mathrm{i}, \mathrm{s}}\right)$. Using the relations (55'), (5) and (11), we infer

$$
\begin{aligned}
& <\quad \mathrm{c} 7\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right)\left(1+, / \mathrm{r} .\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right)\right) .
\end{aligned}
$$

Thus,

$$
\left\|A \bar{y}^{i, s}-f-\bar{u}^{i, s}\right\|<c_{7}\left(c_{0}+\rho_{i, s-1}\right)\left(1+\sqrt{r_{i}}\left(c_{0}+\rho_{i, s-1}\right)\right) r_{i}
$$

and

$$
\left\|\left(\bar{y}^{i, s}, \bar{u}^{i, s}\right)-\left(\hat{y}^{i, s}, \bar{u}^{i, s}\right)\right\|_{X}<c_{7}\left(c_{0}+\rho_{i, s-1}\right)\left(1+\sqrt{r_{i}}\left(c_{0}+\rho_{i, s-1}\right)\right) r_{i} .
$$

Therefore, a feasible process $z^{i},{ }^{s}$, which is the nearest to $z^{i},{ }^{s}$ in the norm $\mathbb{I} \cdot l l x$, satisfies the inequality

$$
\begin{equation*}
l l z^{i}{ }^{\mathrm{s}}, \mathrm{z}^{\mathrm{i}, \mathrm{~s}} \mathrm{llx}<\mathrm{R}_{\mathrm{i}, \mathrm{~s}}-1\left(\mathrm{r}_{\mathrm{i}}\right)\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right) \mathrm{r} ; \tag{12}
\end{equation*}
$$

with $\left.R_{i, s^{-}} 1 \mathrm{~h}\right)=\mathrm{c} 7\left(1+\mathrm{y}^{\prime} \mathrm{Ti}\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{s}^{-}} 1\right)\right)$. In view of (59') we have

$$
\begin{align*}
& \mathbb{1 Y}^{\mathrm{i}, s^{s}}-:^{\mathrm{t}, \mathrm{~s}} \mathbb{I}<\operatorname{C5c} 7\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right)(1+, / \mathrm{r} ; .(\mathrm{co}+\mathrm{Pi}, s-1)) \mathrm{r} \\
& =\mathrm{cs}\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right)\left(1+\mathrm{y}^{\prime} \mathrm{ri}\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right)\right) \mathrm{r} ; \tag{13}
\end{align*}
$$

with $\mathrm{cs}=\mathrm{c5c} 7$. Due to (7) and (13), it follows that

$$
\begin{align*}
& <\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}-1}\right)\left(2+\operatorname{IICllcs}\left(1+\mathrm{y}^{\prime} \mathrm{Ti}\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}} \div 1\right) \mathrm{h}\right)\right. \text {. } \tag{14}
\end{align*}
$$

Now, using

$$
\begin{aligned}
& J i\left(z^{*}\right)-J i\left(z^{i}, s\right)=J i\left(z^{*}\right)-J_{i}\left(z^{i},,^{s}\right)+J i\left(z^{i}, s\right)-J_{i}\left(z^{i}, s\right) \\
& =l_{O}^{1}\left(C y^{*}-K d\right)^{2} d D-l_{O}\left(C f /^{\prime s} \cdot K d\right)^{2} d D+l_{O}^{1}\left(C f /^{\prime s}-K d\right)^{2} d D \\
& -l_{O}^{\{ }\left(C f f^{s}-K d\right)^{2} d D-r_{i}^{-} l_{O}^{\{ }\left(A g^{i}, s, f-v^{i}, s\right)^{2} d D,
\end{aligned}
$$

and

$$
\left\|C y^{*}-\kappa_{d}\right\| \leq\left\|C \overline{\bar{y}}^{i, s}-\kappa_{d}\right\|
$$

together with the inequalities (13), (14) and $r_{i}<1$, we conclude that

$$
\begin{aligned}
& <\left(c o+P_{i, s}-1\right)^{2} \text { IIC IJca }\left(2+\text { JJCIIca }\left(1+f o\left(c o+P_{i}, s-1\right)\right) r_{i}\right) \\
& x\left(l+f o\left(c o+P_{i, s}-1\right)\right) r_{i} \\
& <\left(c o+P_{i}, s-1\right)^{2} \text { IIC IIca(2 + IICIJca) }\left(1+f o\left(c o+P_{i}, s-1\right)\right)^{2} r_{i} \\
& =d 3\left(c o+P_{i}, s^{-1}\right) 2\left(1+y^{\prime} r^{\prime} ;\left(c o+P_{i}, s^{-1}\right)\right)^{2} r_{i}
\end{aligned}
$$

with $d B=11$ Cllca($2+$ IICIJcs $)$.
Theorem 1 Let P_{i} be de.fined recursively by

$$
\begin{equation*}
\rho_{i+1}=\rho_{i}+\sqrt{d_{3}}\left(c_{0}+\rho_{i}\right)\left(1+\sqrt{r_{i}}\left(c_{0}+\rho_{i}\right)\right) \sqrt{r_{i}}+\frac{3}{2} \sqrt{3} \epsilon_{i} \tag{15}
\end{equation*}
$$

with $P 1=P 1,0-$
Moreover, assume that the sequences $\{r i\}$ and $\left\{E_{i}\right\}$ in Method 2 are chosen such that

$$
\begin{equation*}
\sup _{i} E_{i}<1, \sup _{i} r_{i}<1, \mathbf{T}^{0} \bullet f o<o o, \mathbf{I}^{0} \cdot E_{i}<o o \tag{16}
\end{equation*}
$$

and for each i the relations

$$
\begin{align*}
& \frac{1}{2 \rho_{i}}\left[d_{3}\left(c_{0}+\rho_{i}\right)^{2}\left(1+\sqrt{r_{i}}\left(c_{0}+\rho_{i}\right)\right)^{2} r_{i}-\left(\delta_{i}-\frac{3}{2} \epsilon_{i}\right)^{2}\right]+\frac{3}{2} \sqrt{3} \epsilon_{i}<0 \tag{17}\\
& \delta_{i}>\frac{3}{2} \epsilon_{i}
\end{align*}
$$

and

$$
\begin{equation*}
\rho_{i} \sqrt{r_{i}} \leq d_{4} \tag{18}
\end{equation*}
$$

hold with an arbitrary constant d4. Then, in Method 2 relation $s(i)<o o$ is true for each $\mathrm{i} ;\left\{u^{i},{ }^{s}\right\}$ converges weakly to il, in $L_{2}(D)$ and $\left\{y^{i},{ }^{s}\right\}$ converges weakly to y in Y, with $\left(y, v_{2}\right)$ an optimal process for Problem 2.

Proof: At first we establish the following fact: If $P_{i}>z^{*}-z^{i}$, ${ }^{O}$ I for an optimal process z^{*} and for some i, then $s(i)<\infty$ and

$$
P_{i}>\mathrm{lz}^{*}-\mathrm{z}^{\mathrm{i}}, \mathrm{~s} l \text { for } \mathrm{s}=1, \ldots, \mathrm{~s}(\mathrm{i})-1
$$

is true, i.e., relation (3) is valid for $s=0, \ldots, s(i)-1$ and $P_{i s}=P_{i}$. Applying Proposition 1 and Lemma 2' (inequality (68')) with the data $Z=X,<\mathrm{I}>\neq \mathrm{fi}, \mathrm{Z}_{1}=\{z=(\mathrm{y}, \mathrm{u}) \mathrm{EX}: \mathrm{y}=0\}, \mathrm{P}: Z-+\mathrm{Z}_{1}$ defined by $P z=$ $(0, u), \mathrm{a}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=f n C y C y^{\prime} d D+; \mathrm{f} ; \mathrm{b}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{b}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=f 0(A y-v).\left(A y^{\prime}-u^{\prime}\right) d D$, $\mathrm{l}(\mathrm{z})=-\mathrm{J} ;(\mathrm{z})+\mathrm{a}(\mathrm{z}, \mathrm{z}), \mathrm{K}=\mathrm{X}$ (with the norm I. I), $\mathrm{a}^{0}=\mathrm{z}^{\mathrm{i}}, \mathrm{o}$, then the case $s(i)>1$ leads to

$$
\begin{aligned}
& \mathrm{lz}^{\mathrm{i},{ }^{1}-\mathrm{z}^{*} \mathrm{I}<!\mathrm{z}^{\mathrm{i}}, \stackrel{0}{-}-\mathrm{z}^{*} \mathrm{I}} \\
& +\mathrm{z}_{\mathrm{i}}^{-}\left[\mathrm{d} 3\left(\mathrm{c}_{0}+\mathrm{P}_{\mathrm{i}}\right)^{2}\left(\mathrm{l}+\mathrm{y}^{\prime} \mathrm{ri}\left(\mathrm{c}_{0}+\mathrm{P}_{\mathrm{i}}\right)\right)^{2} \mathrm{r} ;-(6 ;-3 / 4 \mathrm{Er}]\right.
\end{aligned}
$$

and, in view of (37'), (39'),

$$
\begin{aligned}
& 1 i,{ }^{1}-z^{\star} I-z^{i},{ }^{\mathrm{O}}-\mathrm{z}^{\star} \mathrm{I} \\
& <\frac{1}{2 \mathrm{Pi}}\left[\mathrm{~d} 3\left(\mathrm{c}_{0}+\mathrm{P}_{\mathrm{i}}\right)^{2}\left(1+\mathrm{y}^{\prime} \mathrm{ri}\left(\mathrm{c}_{0}+\mathrm{Pi}\right)\right)^{2} r_{i}-\left(\mathrm{D}-{ }_{2}^{3} \mathrm{E}\right) \cdot+{ }_{2}^{3} \mathrm{v} 3 \mathrm{E}-\right.
\end{aligned}
$$

Thus, due to (17),

$$
\mathrm{z}^{\mathrm{i},{ }^{1}-\mathrm{z}^{*} \mathrm{I}}<\mathrm{P}_{\mathrm{i}} .
$$

In the same way one can successively establish that for $s=2,3, \ldots,(s<s(i))$ the inequalities

$$
\begin{align*}
& l^{i}{ }^{s}, z^{\star} I-z^{i},{ }^{s}-{ }^{1}-Z^{\star} I \\
& <\overline{2}_{i}^{-}\left[d B\left(C_{6}+P_{i}\right)^{2}\left(1+y^{\prime} r i\left(C_{6}+P_{i}\right)\right)^{2} r_{i}-(D-3 / 4 E r \quad 1\right. \\
& +2_{2} \mathrm{v} 3 \mathrm{E}<0 \tag{19}
\end{align*}
$$

and

$$
\mathrm{zz}^{\mathrm{i}, s}-\mathrm{z}^{\star} \mathrm{I}<\mathrm{P}_{\mathrm{i}}
$$

are satisfied and, moreover, (19) yields $s(i)<o o$.
For $s=s(i)$ we conclude from Proposition 1 and Lemma 2' that
hence,

$$
\left.\mathrm{lz}^{\mathrm{i}, s} \mathrm{~s}^{\mathrm{i}}\right)-\mathrm{z}^{*} \mathrm{I}<\mathrm{P}_{\mathrm{i}}+\mathrm{v}^{\prime} \mathrm{ds}\left(\mathrm{c}_{0}+\mathrm{P}_{\mathrm{i}}\right)\left(\mathrm{l}+\mathrm{y}^{\prime} \mathrm{ri}\left(\tilde{c}_{0}+\mathrm{P}_{\mathrm{i}}\right)\right) y^{\prime} \mathrm{ri}+3 / 4 \mathrm{v} 3 \mathrm{E}_{\mathrm{i}}-
$$

Now, (15) implies that $\mathrm{z}^{\mathrm{i}+1}$, ${ }^{\mathrm{D}}-\mathrm{z}^{\star} \mathrm{I}<\mathrm{Pi}+\mathrm{l}$.
Continuing in a similar manner, we obtain $s(i)<\infty$ for all i and

$$
\mathrm{lz}^{\mathrm{i}, s}-\mathrm{z}^{\star} \mathrm{I}<\mathrm{P}_{\mathrm{i}} \text { for each i and } 0::: ; s<s(i) .
$$

However, due to Lemma 2.2 .2 in Polyak (1987), the conditions (16), (18) together with (15) ensure that $\mathrm{P}_{\mathrm{i}}+\mathrm{p}<\mathrm{oo}$ monotonously. Thus,

$$
\mathrm{lz}^{\mathrm{i}}, \mathrm{~s}-\mathrm{z}^{\star} \mathrm{I}<\mathrm{p} \text { for all (i, s). }
$$

Replacing in (20) P_{i} by p, we obtain

$$
\begin{equation*}
\left.\left.\mathrm{lz}^{\mathrm{i}},{ }^{\mathrm{s}}{ }^{\mathrm{i}}\right)-\mathrm{z}^{\star} 1-1 \mathrm{z}^{\mathrm{i}},{ }^{,(\mathrm{i}}\right)-1_{-\mathrm{z}^{*}} \mathrm{I}<\mathrm{yds}(\mathrm{co}+\mathrm{p})\left(1+-J r:^{\prime}(c o+p) .\right)-\mathrm{Jr}:{ }^{\prime}+\mathrm{v}^{\prime} 3 \mathrm{E} \tag{21}
\end{equation*}
$$

Taking into account (19), (16) and (21), convergence of the sequence $\left\{1 z^{i}\right.$, , $\left.\mathrm{z}^{\star} \mathrm{I}\right\}$ can be stated from Lemma 2.2.2 mentioned above.

Now, in order to complete this analysis, nothing else has to be done than to use the arguments made for bounded $\bar{U}_{a d}$ (see the proof of Theorem 1 in Part I).

The conditions (15)-(18), reflecting the choice of the controlling parameters, are compatible. In particular, they can be chosen as follows:
(i) take $\{\mathrm{ra}$ and $\{\mathrm{E} ;\}$, satisfying (16);
(ii) choose $\mathrm{rl}=\mathrm{m} \mathrm{r}_{2}$ such that P1\fTl:::; d4;
(iii) knowing El, pl and r 1 , calculate $s 1$ according to (17) and p 2 via (15)-;
(iv) define $\mathrm{r} 2 \ldots \mathrm{r}$; such that $\mathrm{p} 2 / \mathrm{ri},::$:; d4 etc.

To state convergence for Method 1 (described in Part I) condition (17) in the theorem above is superfluous.

In Hettich, Kaplan, Tichatschke (1994) there is a different result concerning the choice of $r i$ in Method 2 for unbounded Ua_{d}, in particular, instead of the conditions

$$
L_{i=1} \text { fo },<\infty 0 \text { and } P_{i} v^{\prime} r ;::^{\prime}=:, \text { d4 forall } i,
$$

the assumption

$$
\mathrm{r}_{\mathrm{i}=1}^{L v}<\infty \text { with an arbitrary chosen vE } \quad(0,4]
$$

was made.

1.2. Problem 2 with state constraints

Now, we consider Problem 2 with state constraints, i.e., $G \neq Y$, and the control set Ua_{d} may be unbounded. Let us assume that the condition

$$
\begin{equation*}
T u E \text { int } G(\text { in } Y) \text { for some ii, } E U_{a d} \tag{22}
\end{equation*}
$$

is fulfilled. As before, let co and Pi,s be constants such that

$$
\infty 2 \text { [} \mathrm{Cy} y^{*}-\mathrm{K} d[
$$

and

$$
\mathrm{Pi}, \mathrm{~s}>\left[z^{*}-\mathrm{zi}, \mathrm{~s}[, \boldsymbol{s}=0, ., ., \boldsymbol{s}(\mathrm{i})-1 .\right.
$$

Now, observe that zi,s $=(y i, s, ~ u i, s) E G X_{U a d}$.
Obviously, in this case the relations (5)-(8) remain true. For Jf,s, defined by (52'), estimate (11) is valid too, and in the same manner as for the case of bounded Uad (see Sect. 4, 2^{\prime} in Part I) we verify the estimate

This relation together with (5), (6), (8), (11) and $\boldsymbol{r} ;<1$ leads to

$$
\begin{aligned}
& <10^{1} \mathrm{~h}\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}-1}\right)\left(\llbracket \mathrm{u}-u^{*} \mathrm{II}+\mathrm{Co}+2 \mathrm{p}_{\mathrm{i}, \mathrm{~s}}-1+10\right)+\mathrm{c} 7\left(\mathrm{co}+\mathrm{Pi}_{\mathrm{i}, \mathrm{~s}}-1\right)^{2} \\
& +\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right)\left(\left[\llbracket \mathrm{u}-\mathrm{v}^{*}, 11+\mathrm{Co}+2 \mathrm{pi}, \mathrm{~s}-1\right)\right] .
\end{aligned}
$$

Setting

$$
\mathrm{Cg}=\max \left\{1, \mathrm{Co}^{1}\left(\llbracket \mathrm{ii},-u^{*} \mathbb{I} I+10\right)\right\}, \mathrm{G} 0=10^{1}[2 \mathrm{c} 7 \mathrm{C} 9+\mathrm{C} 7+2 \mathrm{cg}],
$$

we get

$$
\left\|\bar{q}^{i, s}\right\|<c_{10}\left(c_{0}+\rho_{i, s-1}\right)^{2} .
$$

Therefore,

$$
\left[\left[\mathrm{A} ; \mathrm{i}^{8}-f-\mathrm{U}^{i, 8}\left[\mathrm{~L}<\mathrm{c} 10\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}}, \mathrm{~s}^{-} 1\right)^{2} \mathrm{r}\right.\right.\right.
$$

and we infer that

$$
\begin{equation*}
\left\|\bar{z}^{i, s}-\zeta^{i, s}\right\|_{X}<c_{10}\left(c_{0}+\rho_{i, s-1}\right)^{2} r_{i} . \tag{23}
\end{equation*}
$$

However, as mentioned before, in case $G \# Y$ the point ${ }^{\text {i }, ~}{ }^{\text {s }}=\left(\mathrm{ifs}, \mathrm{u}^{\mathrm{i}, \mathrm{s}}\right.$) defined by (9) may be not feasible. In this situation, due tor; <1, (5) and (8), we obtain

$$
\begin{aligned}
& {\left[\mathrm{Ag}^{\mathrm{i}, \mathrm{~s}}-\mathrm{Ay}^{*} \llbracket\left[200+3 \mathrm{p}_{\mathrm{i}}, \mathrm{~s}-1,\right.\right.}
\end{aligned}
$$

hence,

$$
\begin{equation*}
\llbracket \mathrm{z}^{\mathrm{i}}, \mathrm{~s}-\mathrm{z}^{*}\left[\llbracket \mathrm{x}<4\left(C_{0}+\mathrm{P}_{\mathrm{i}}, \mathrm{~s}-1\right) .\right. \tag{24}
\end{equation*}
$$

Using the inequality
together with (10) and (24), we conclude that

$$
\begin{equation*}
\mathrm{ll}\left({ }^{\mathrm{i}},{ }^{\mathrm{s}}-\mathrm{z}(\mathrm{v} ;) 1 \mathrm{ll}<\mathrm{ll}^{*}-\mathrm{z}(\mathrm{v},) 1 \mathrm{~lx}+5\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right)-\right. \tag{25}
\end{equation*}
$$

Now, by virtue of the choice of w^{i}, , and h^{i}, s (Sect, 4,2'), from (76'), (23) and (25) it follows (see the figure in Sect. 4.2') that

Let z^{i}, s be the feasible point closest to z^{i}, ${ }^{\text {s }}$ according to the norm $\mathbb{I} \cdot$ llx, Proceeding as in (77'), we obtain

$$
\begin{align*}
& 1 \mathrm{li},{ }^{s}-\mathrm{i},{ }^{s} \mathrm{llx} \\
& \left.<\underset{\operatorname{Tmin}}{-1-\left[l l z^{*}\right.}-\mathrm{z}(\mathrm{u}) l \mathrm{llx}+(5+\mathrm{Tmin})\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}-1\right)\right] \mathrm{c} 10\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}, \mathrm{~s}}{ }^{-1}\right)^{2} \mathrm{r}_{\mathrm{i}} . \tag{26}
\end{align*}
$$

For arbitrary v E $(0,1)$ let

$$
\mathrm{Ri}, \mathrm{~s}-\mathrm{lh})=\operatorname{cic}_{\mathrm{Tmin}}\left[\mathrm{ll}^{*}-\mathrm{z}(\mathrm{v},) 1 \mathrm{~lx}+(5+\mathrm{Tmin})\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}}, \mathrm{~s}-1\right)\right]\left(\mathrm{co}+\mathrm{P}_{\mathrm{i}}, \mathrm{~s}-1\right) \mathrm{r}^{\prime}(,
$$

then equality (26) may be rewritten in the form

$$
\begin{equation*}
\mathbb{1 L}^{\mathrm{i}}, \mathrm{~s}-{ }_{\mathrm{i}}^{\mathrm{E}}, \mathrm{~s} \mathbb{X}<\mathrm{R}_{\mathrm{i}}, \mathrm{~s}-1\left(\mathrm{~T}_{\mathrm{i}}\right)\left(\mathrm{Co}+\mathrm{P}_{\mathrm{i}}, \mathrm{~s}-1\right) \mathrm{r}_{\mathrm{i}}^{l-v} \tag{27}
\end{equation*}
$$

To finish the analysis of that case, we use inequality (27) in the same way as (12) and follow the proofs of Proposition 1 and Theorem 1.

Nevertheless, to obtain weak convergence of $\left\{z^{i}\right.$, , $\}$, instead of the former condition $\because 1, / \mathrm{r} ;$, oo, we have now to require that $\because 1 r f^{(l-v)}<$ oo. Moreover, the recurrent formula for P_{i} proves to be more complicated than (15).

2. Further applications of Method 2

In order to reduce the description, here we only consider the case that Uad is bounded and there are no state constraints, A modification of the corresponding results to the case of unbounded sets Uad and state constraints can be done analogously as in Section 1 for Problem 2.

For the problems studied here it is obvious that the optimal set U^{*} is nonempty.

2.1. Distributed control problems with Neumann conditions

Now, we deal with

Problem 3

$$
\begin{equation*}
\text { minimize } J(u)=L_{L}(C y(v,)-K, d)^{2} d 0 \text {, subject to } v, E U_{a} d, \tag{28}
\end{equation*}
$$

where $y(v$,$) is the 11nique solv,tion of the Neumann problem$

$$
\begin{equation*}
A y=f, \quad v, \text { in } 0, \underset{U V A}{; ; \forall}=0 \text { on } r . \tag{29}
\end{equation*}
$$

Here we suppose that $C \mathrm{E} \mathrm{Z}\left(\mathrm{H}^{1}(0), \mathrm{L} 2(0)\right)$, Uad is a closed, convex and bounded subset of $\mathrm{L}_{2}(0)$ and make the same assumptions as in Section 1 concerning $A, K d$ and f (additionally, $a o(x)>0$ on D). By : : the normal derivative associated with A is denoted.

In this case it is convenient to choose

$$
\begin{align*}
& Y=\left\{y \in H^{1}(\Omega): A y \in L_{2}\left(\Omega, \frac{\partial y}{\partial v_{A}} \in L_{2}(\Gamma)\right\},\right. \tag{30}\\
& \text { llvllY }=\left(11 A v 11 \quad:{\underset{V A}{V}}_{L_{2}(r)}\right)^{1 / 2} \tag{31}
\end{align*}
$$

and $X=Y \times \mathrm{L} 2(0)$ with the $\left.\operatorname{norm} \operatorname{ll}(\mathrm{Y}, \mathrm{v}) \mathrm{Jlx}=,(\operatorname{llvll}\} \cdot \quad \mathbf{k}, 11^{2}\right)_{1 / 2}$
On X we introduce also the equivalent norm I. I

It is easy to show, analogously to (37'), that

$$
\text { llzlli:::; } \quad \text { lzl }{ }^{2}: . ., \text { 3Jlzlli- }
$$

Setting

$$
\begin{aligned}
& i f l i_{s}(Y, u)=L(C y-K, d)^{2} d 0 \\
& +\sum_{T i}-\left(\left\{_{\ln }(A y-J-u)^{2} d 0+f_{U}\left(\int_{U A}\left(v,-v, i i^{s-1}\right)^{2} d O,\right.\right.\right.
\end{aligned}
$$

the description of Method 2 for Problem 3 is formally the same as in Section 3' or 1 .

Again, existence and uniqueness of a solution $\mathrm{z}^{\mathrm{i}, \mathrm{s}}=\left(\mathrm{ff},{ }^{\mathrm{s}}, \mathrm{i}_{1}, \mathrm{i}, \mathrm{s}\right)$ of the auxiliary problem in Step (b) of Method 2 follows from the strong convexity of $\mathbb{\Pi}_{i}$, at X ,

Here we also obtain that

$$
11^{i \cdot}-\quad \mathrm{Zi}, \mathrm{~s} \mathrm{II}_{\mathrm{X}}<\frac{3}{2^{\mp}}
$$

Similarly to (45') one can conclude for each i and $s=1, \ldots, s(i)$ that

$$
K_{i, s}\left(z^{*}\right) \geq \frac{2}{r_{i}}\left(\int_{\Omega}\left(A \bar{y}^{i, s}-f-\bar{u}^{i, s}\right)^{2} d \Omega+\int_{\Gamma}\left(\frac{\partial \bar{y}^{i, s}}{\partial v_{A}}\right)^{2} d \Gamma\right)
$$

with $K_{i, s}$ defined by (43') and z^{*} an optimal process of Problem 3.
Due to the boundedness of $U_{a} d$ and $\{r i\}$, this leads to

$$
\begin{align*}
& \left\|\bar{y}^{i, s}\right\|_{Y}<c_{1},\left\|y^{i, s}\right\|_{Y}<c_{1}, \tag{32}\\
& \left(\int_{\Omega}\left(A \bar{y}^{i, s}-f-\bar{u}^{i, s}\right)^{2} d \Omega+\int_{\Gamma}\left(\frac{\partial \bar{y}^{i, s}}{\partial v_{A}}\right)^{2} d \Gamma\right)^{\frac{1}{2}}<c_{2} \sqrt{r_{i}} . \tag{33}
\end{align*}
$$

(It should be noted that we here start with a new count of the constants).
For the pair (f), $\left.\mathrm{u}^{\mathrm{i}, \mathrm{s}}\right)$ with
we obtain from (33)

$$
\left.\boldsymbol{I l}\left(y^{\mathrm{i}, s}, \mathrm{il}^{\mathrm{i}, \mathrm{~s}}\right)^{-}(\mathrm{f})^{\mathrm{i}, \mathrm{~s}}, \mathrm{ii}^{i}{ }^{\text {, s }}\right) \mathrm{lX}<\mathrm{c} 2 . / / \mathrm{r} ; \text {;- }
$$

 observes

$$
\mathbb{l}^{\mathrm{i}},{ }_{-}-z^{\mathrm{i}, \mathrm{~s}} \|_{\mathrm{x}}<\mathrm{c} 2 \ldots / / \mathrm{r} \text {;, for each } \mathrm{i} \text { and } s=1, \ldots, s(i) .
$$

Now we show that there exists a constant c3 such that for each y E Y

$$
\begin{equation*}
\|y\| \leq c_{3}\|y\|_{Y} \tag{34}
\end{equation*}
$$

It is well-known that the problem

$$
\mathrm{A}_{\mu}=\mathrm{T} / \text { in } \mathrm{D}, \frac{\mathrm{O}_{\mu}}{\mathrm{OVA}}=\varphi \text { on } \mathrm{r},
$$

with T/ E L $2_{2}(\mathrm{D}), q E \mathrm{~L}_{2}(\mathrm{f})$ has a unique solution $\mu \mathrm{EH}^{1}(\mathrm{D})$. Moreover, the estimate

$$
\begin{equation*}
\|\mu\|_{H^{1}(\Omega)} \leq \dot{c_{4}}\left(\|\eta\|+\|\phi\|_{L_{2}(\Gamma)}\right) \tag{35}
\end{equation*}
$$

is true with a constant $c 4$ independent of $T /$ and q Indeed, using the equality
together with the estimate for the traces of the functions in H^{1} (D)
$\operatorname{ll}^{\prime} Y w!I L L_{2}(r): .:$ c5ilw!IH1(n) for all ${ }_{w}$ E H 1 (D)
(see, for instance, Necas, 1967), we obtain

$$
\begin{aligned}
& \|\mu\|_{H^{1}(\Omega)}^{2} \leq c_{6}\left(\|\eta\|\|\mu\|+\|\gamma \mu\|_{L_{2}(\Gamma)}\left\|\frac{\partial \mu}{\partial v_{A}}\right\|_{L_{2}(\Gamma)}\right) \\
& \leq c_{6}\left(\|\eta\|\|\mu\|_{H^{1}(\Omega)}+c_{5}\|\mu\|_{H^{1}(\Gamma)}\left\|\frac{\partial \mu}{\partial v_{A}}\right\|_{L_{2}(\Omega)}\right)
\end{aligned}
$$

and finally

Therefore, estimate (35) is fulfilled if $c 4=c 5 \max \{1, c 5\}$ is chosen. Inequality (34) follows from (35) with $c_{3}=c 4$ if we put

$$
\mathrm{T} /=A y \text { and } \varphi=\frac{8 y}{-\quad V A} .
$$

Thus, (32) and (34) yield

Finally, due to (33) and (34),

$$
\text { 11:1' }{ }^{\text {s }}-\text { jf }^{\mathrm{s}} \mathrm{ll}<\mathrm{csv} \mathrm{r} ;
$$

Now, similarly to (57'), one can conclude that for each i and $s=1, \ldots, s(i)$

$$
\left.\left(\cdot 4_{\mathrm{A}} \mathrm{gi}_{, \mathrm{s}}-\mathrm{f}-\ddot{\boldsymbol{i}}^{\prime 8}\right)^{2} \mathrm{dD}+\boldsymbol{\ell}(\bullet \cdot)^{2} \mathrm{df}\right)^{\frac{1}{2}}<\mathrm{cgri}
$$

In this case we use $\mathrm{p}^{\mathrm{i}}, \mathrm{s}$ defined by

$$
\mathrm{A}^{*} \mathrm{p}^{2, s}=\mathrm{C}^{*}\left(\mathrm{Cy}^{2, s} \cdot \mathrm{~K}, \mathrm{~d}\right),{\stackrel{-}{8}, A^{*}}^{s}=0 \text { on } \mathbf{r}
$$

and the approximate Lagrange multipliers are

$$
\left.\mathrm{cf}, \mathrm{~s}=\mathrm{ri}^{(\mathrm{A}}{ }^{\mathrm{g}, \mathrm{~s}}-\mathrm{f}-\mathrm{Ui}, \mathrm{~s}\right), \gg^{\mathrm{i}}, \mathrm{~s}=\frac{8 \mathrm{y}^{\mathrm{i}}{ }^{\mathrm{s}} \mathrm{~s}}{\mathrm{r} ;} \frac{{ }^{2} A}{} .
$$

Thus, following the proofs of Proposition 5' and Theorem 1', we can state

Theorem 2 Assume that Uad is a bov,nded set in $L_{2}(f 2)$. Let the positive sequences $\left\{r_{i}\right\},\{E i\}$ and $\{o i\}$ be chosen such that

$$
\begin{equation*}
\operatorname{svp}_{i} E_{i}<1, s v, p_{i} r_{i}<1, \mathcal{L}_{\mathrm{i}=1}^{-/ r ; .}<\mathrm{oo}, \mathcal{L}_{\mathrm{i}=1} E_{i}<{ }_{\mathrm{o}} \tag{36}
\end{equation*}
$$

and
with positive constants $\mathrm{d}_{1}, \mathrm{~d}_{2}$ defined analogously to those in Theorem 1' (i.e., . they ensv,re the validity of the relat?:ons (30') and \{31') with
and with corresponding sequences $\left.\left\{z^{i}, s\right\},\left\{z^{i}, s\right\}\right)$.
Then, starting with an arbitrary element $v^{1}{ }^{1} \circ \mathrm{E}$ Uad, Method 2 is well-de.fined for Problem 3, i e., $s(i)<00$ for each i ; the sequence $\left\{v_{,}{ }^{i},{ }^{s}\right\}$ converges weakly in $L_{2}(D)$ to il and $\left\{y^{i}, s\right\}$ converges weakly in Y (given by $\{30)$) to $y,(y, u)$ an optimal process for Problem 3.

Concerning Method 1 described in Part I, already (36) is sufficient for weak convergence of $\left\{\mathrm{u}^{\mathrm{i},}{ }^{\mathrm{s}}\right\}$ to $i l$ and $\left\{y^{i},{ }^{s}\right\}$ to y.

2.2. Comments on the solution of boundary control problems

At first we consider
Problem 4

$$
\begin{equation*}
\text { mıl,n1,mlze } \int_{J o}^{/}(C y(v,)-K, d)^{2} d f 2 \text { subject to } v, \mathrm{E} \text { Uad, } \tag{37}
\end{equation*}
$$

where $y(v$,$) is the v$, nique solution of the Dirichlet problem

$$
\begin{equation*}
A y=f \text { in } n, y=r \text { on } r \text {, } \tag{38}
\end{equation*}
$$

with $C E l\left(L_{2}(D), L_{2}(\mathrm{D})\right)$, Uad a convex, closed and bonnded snbset of $L_{2}(f)$, $f E L_{2}(f 2)_{1} K, d E L_{2}(D)$ and A de.fined as in Section 1.

In this case, Method 2 is applicable with the following regularized penalty function

$$
\begin{aligned}
& \Psi_{i, s}(y, u)=\int_{\Omega}\left(C y-\kappa_{d}\right)^{2} d \Omega+\frac{1}{r_{i}}\left(\int_{\Omega}(A y-f)^{2} d \Omega+\int_{\Gamma}(y-u)^{2} d \Gamma\right) \\
& +\int_{\Gamma}\left(u-u^{i, s-1}\right)^{2} d \Gamma
\end{aligned}
$$

 with the norm $11 \cdot \mathbb{I Y}$ defined by

$$
\text { IIIII }=\left(\text { IIAYll }^{2}+\operatorname{llvllL}(\mathrm{rJ})^{1 / 2}\right.
$$

and put $X=Y \mathrm{x}$ L2(f). For $\mathrm{z}=(0, \mathrm{v}$) in X two norms $11 \cdot 1 \mathrm{x}$ and $\mathrm{I} \cdot \mathrm{I}$ are introduced by

$$
\begin{aligned}
& \operatorname{llzllx}=(l l v l l\}+1 l v, I I L(r i))^{1 / 2} \\
& \mathrm{lzl}=\left(\operatorname{IIAvll}{ }^{2}+1 \mathrm{lv} .1 l L\left(\mathrm{ri}+\mathrm{llv}^{-} \dot{\mathrm{i}}, \operatorname{IIL}(\mathrm{ri})^{1 / 2}\right.\right.
\end{aligned}
$$

and again we derive that
$1 / 21 \mathrm{zl111} \mathrm{kzl}^{2} \quad 3 \mathrm{llzll} 3 \mathrm{c} \bullet$
Finally, let us consider
Problem 5

$$
\begin{equation*}
\text { minimize } \mathscr{L}_{,\left(C_{\mathrm{y}}(\mathrm{v},)-\mathrm{t}, \mathrm{~d}\right)^{2} d D \text { sub.feet to } \mathrm{v} . \mathrm{E} U_{\mathrm{a}} \mathrm{~d} \text {, }} \tag{39}
\end{equation*}
$$

with $y(\mathrm{v}$.$) the unique sofotion of the Neumann problem$

$$
\begin{equation*}
\mathrm{Ay}=\mathrm{f} \text { in } \mathrm{D}, \underset{U V A}{[) \mathrm{y}}=_{\mathrm{v}} \text { on } \mathbf{r} \tag{40}
\end{equation*}
$$

C E $l\left(H^{l}(D), \mathrm{L}_{2}(\mathrm{D})\right)$ and the same assumptions w.r.t. $\mathrm{A}, \mathrm{U}_{\mathrm{a}} \mathrm{d}, f$ and $\mathrm{t}_{n} \mathrm{~d}$ as for Problem 4, but ao $(x)>0$ on D .

Here we construct the regularized penalty function

$$
\begin{aligned}
& \text { wi,s }(\mathrm{y}, \mathrm{v} .)=\mathrm{L}\left(\mathrm{C}_{\mathrm{y}}-\mathrm{t}, \mathrm{~d}\right)^{2} d D
\end{aligned}
$$

and define Y by means of (30), (31) and $X=Y \times \mathrm{L}_{2}(\mathrm{f})$.
The norms

$$
\begin{aligned}
& \mathrm{zzl}=\left(\operatorname{IIAYll}{ }^{2}+\mathrm{llv}, \mathrm{IIL}(\mathrm{r})+\llbracket: \sum_{V A}-\mathrm{vll}_{L_{2}(r)}^{2}\right. \\
& \text { and }
\end{aligned}
$$

llzllx $=(I I Y I I\}+\operatorname{llv} \cdot l l L(r i)^{1 / 2}$,
considered in \boldsymbol{X} are equivalent.
After this preparation similar statements on convergence of Method 2 can be established for these problems, using the technique developed in Sections 4' and 1.1. They differ from the Theorems 1' and 2 only in the choice of the constants d_{1} and d_{2}. In case of Method 1 convergence can be stated only under assumption (33').

References

HETTICH, R., KAPLAN, A. and TICHATSCHKE, R. (1994) Regularized penalty methods for optimal control of ill-posed elliptic systems, in: Schwerpunktprogramm der Deutschen Forschungsgemeinschaft, "Anwendungsbezogene Optimierung und Steuerung", Report No., 522.
NECAS, J. (1967) Les Methodes Directes en Theorie des Equations Elliptiqv,es. Masson, Paris.
POLYAK, B.T. (1987) Introduction to Optimization. Optimization Software, Inc. Puhl. Division, New York.

