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A b s t r a c t :  We investigate the application of Prox-Regularization 
to ill-posed control problems for systems governed by elliptic equa-
tions. Stable variants of Penalty Methods are obtained by means of 
One- and Multi-Step Regularization of the penalized problems. Con-
vergence of the resulting methods is proved in the case of distributed 
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1. The case of unbounded set of controls

The main contents of this paper, i.e. description of the probleins, method and 
statements, is autonomous. However, in the proofs we often make use of the 
results described in Part I, the preceding paper in this issue. References to 
formulas, sections and statements from Part I are denoteded with "prime" ('). 

In this section we deal again with Problem 2 (see Part I of the paper) but 
the set of admissible controls may now be unbounded. 
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1.1. P r o b l e m  2 wi thout  s t a t e  constraints 

Let D E I R n be an open domain with boundary r of the class C 2 , Ua d be a
closed, convex subset of L 2 (D) and 

a ( ay) 
Ay = - L . ,  - aij - +aoy

. . 0,'Ei OXj 
i,.1=l 

be a strongly elliptic operator with coefficients aij E C 2 (D), a0 E C 2 (D) and 
ao 2 0 on D. 

We introduce the Hilbert space 

y = {YIY E HJ(D), Ay E L 2 (D)}

with the norm 11 · IIY endowed with IIYIIY = IIAvll (II· II is the norm in L 2 (D)).
Denoting by y( u) the unique solution of the Dirichlet problem 

Ay = f + u in D, y = 0 on r, 
with f E L 2 (D) a given function and v, E Ua d , we recall P r o b l e m  2: 

minimize J(v,) = k (Cy(v,) - K,d )2 dD subject to v, E Ua d , y(u) E G. 

Here G C Y is a closed, convex set, C E l(HJ(D),L2 (D)) and K,d E L 2 (D). 
In the sequel we suppose that the set U* of optimal controls is non-empty. 
In Part I two numerical methods have been considered for solving this prob-

lem in case Uad is bounded. Now, convergence of Method 2 will be investigated 
for an unbounded set Ua d • 

To this end we recall the description of Method 2. Let X = Y x L 2 (D) be a 
Hilbert space with the norm ll(Y, v,)llx = (IIAvll 2 + llull 2

) 
2.

As previously, the abbreviations z = (y,u), z* = (y*,u*), ;2i ,s = (yi ,s , v_i ,s ) 
etc. will be used for elements in X .  

M e t h o d  2 Let u1 •0 E Uad and positive sequences {ri} ,  {Ei} and {8i} be given 
with 

s11,p i r i < 1, sv,p i Ei < 1 and _lim r i = hm Ei = 0. 

S t e p  i: Given ui - I E Uad • 
( a) Set v,i ,O = v,i - I, s = 1. 

(b) Given v,i, s - l , let 

wi ,s (z)

1 , - - + 0 0  1 , - - + 0 0  

(1) 
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and 

z i ,s = argmin{-w i ,s (z) : z E G X Ua d } -

The point zi ,s E G X Ua d is generated such that 

IIV"i1! i ,s (i •8) - V"iITi,s(i• 8) llx 1   Ei -

( c) I f  llui ,s - u i ,s- l 11 > 8i , set s := s + l and repeat {b ).
Otherwise, set u i = u i ,s , s( i) = s, and continue with Step {i + l ) .
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(2) 

In this subsection the case without state constraints G = Y is considered. 
We start with the proof of an auxiliary estimate which is essential for the 

analysis of convergence of the method in case of unbounded Ua d • Let z* be an 
optimal process of Problem 2. 

Choose co 2 IICy* - A;dll and put 

P. > lz* - z i ,s l i,s ,

with I· I a new norm in X introduced by lzl 2 = IIAy- ull 2 + llull 2
• 

(3) 

Of course, inequality (3) makes sense for certain (i, s) only if s(k) < oo for 
k < i (up to now we are not sure whether this is true). 

Note that y1 •0 does not occur in the method, and formally one can suppose 
that y 1 •0 = y* i.e., p1 ,o may be defined by 

P1 ,o > llu1•0 
- u* II-

Denote J i (z) = f0 (Cy - A;d) 2 dD + ,t J0 (Ay - f - u) 2 dD.

Proposition 1 There exists a constant d3 such that f o r  the points z i ,s defined 
in {2), with G = Y ,  the estimate

J i (z* ) - J i (z i ,s ) < d3(co + Pi ,s - 1 )2 (1 + , /r i(co + Pi ,s- 1)) 2 r i (4) 

is true. 

Proof: Due to (41')-(44'), we have for s 2 1 and K i ,s defined by (43')

  { (Agi ,s - f - u i ,s )2 dD + K i ,s (z i ,s ) < c5 + p;, s- 1,r i Jn 
from which it follows that 

IIAg i ,s - f - v/• s 11 < (co+ Pi ,s- 1) , / r i,

llu i ,s - ui ,s - 1 11 <Co+ Pi, s- 1,

IICg i ,s - A;dll < Co+ Pi ,s- 1·

But (3) and (6) together with 

llv, i ,s - u* II   llv, i ,s - i - u* 11 + llui ,s - u i ,s- 1 II 

(5) 

(6) 

(7) 
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lead to 

llv,i ,s -v,*11 < C o +  2pi ,s - l •

Let ff, 8 be a solution of the problem 

Ay = f + ui ,s in D, y = 0 on r. 
Then, with regard to (5), we obtain 

IIAyi ,s - A ; i / '811 < ( c o +  Pi ,s- 1),/r;.,

which means that 

11wi ,s , v,i ,s ) - (7/' 8, ui ,s ) llx < ( c o +  Pi ,s- 1),/ r ; ..

For J;i ,s defined by (52'), due to (7), the estimate 

11Pi ,s 11H2 (!1) < c7(co + Pi ,s - 1)

is true. 

(8) 

(9) 

(10) 

(11) 

Denote if, s = ,;;(Ayi ,s - f - ui ,s ). Using the relations (55'), (5) and (11),
we infer 

Thus, 

and 

llqi ,s 11 < IIPi ,s 11 + v'TillPi ,s llll-/r;.if' •s ll
< c7(co + Pi ,s - 1)(1 + ,/r;.(co + Pi ,s- 1)).

Therefore, a feasible process :zi ,s , which is the nearest to z i ,s in the norm II · llx,
satisfies the inequality 

llzi ,s - :zi ,s llx < R i ,s - 1(r i )(co + Pi ,s - 1)r; ,

with R i ,s - 1h ) = c7(l + y'Ti(co + Pi ,s- 1)). In view of (59') we have

IIYi ,s - :i
t
'
s 

II < C5c7(co + Pi ,s - 1)(1 + ,/r;.(co + Pi, s - 1))r; 
= cs(co + Pi ,s - 1)(1 + y'ri(co + Pi ,s- 1))r; ,

with cs = c5c7. Due to (7) and (13), it follows that

IICyi ,s + cr/'s - 2K;dll   2IICyi ,s - K;dll + IICyi ,s - c : t ,
s

11
< ( c o +  Pi ,s - 1) (2 + IICllcs(l + y'Ti(co + Pi ,s -;-1)h ) •

(12) 

(13) 

(14) 
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Now, using 

Ji(z*) - J i(zi ,s ) = Ji(z*) - J i (zi ,s ) + J i(zi ,s ) - J i (zi ,s )

= r (Cy* - K,d) 2dD - r (Cf/' 8 
- K,d) 2 dD + r (Cf/' s - K,d) 2dD 

lo lo lo 
_ { ( C f f s _ K,d) 2dD, _ 2_ { (Agi ,s _ f _ v.,i ,s )2 dD,lo ri lo 

and 

together with the inequalities (13), (14) and ri < 1, we conclude that 

Ji(z*) - J i ( i •3 ) ::; IICIIIIY i ,s - g i ,s 1111c gi ,s + C yi ,s - 2K,dll 
< ( c o +  Pi ,s - 1)2 IIC IJca (2 + JJCllca (1 + f o ( c o  + Pi ,s- 1)) ri )

x ( l  + f o ( c o  + Pi ,s - 1))ri 

< ( c o +  Pi ,s - 1)2 IIC llca(2 + IICIJca)(l + f o ( c o  + Pi ,s - 1))2ri 

= d3(co + Pi ,s - 1)2(1 + y'r';(co + Pi ,s - 1))2 ri 

with d3 = 11Cllca(2 + IICIJcs). 

Theorem 1 Let Pi be de.fined recursively by 

with P1 = P1,o-

33 

■ 

(15) 

Moreover, assume that the sequences {ri} and { Ei } in Method 2 are chosen 
such that 

0 0  0 0  

supi Ei < 1, supi ri < 1, I: f o  < oo, I: Ei < oo 

and for each i the relations 

and 

i=l i=l 
(16) 

(17) 

· (18) 

hold with an arbitrary constant d4. Then, in Method 2 relation s(i) < oo is true 
for each i; { ui ,s } converges weakly to i1, in L 2 (D) and {yi ,s } converges weakly to 
y in Y ,  with (y, v.,) an optimal process for Problem 2. 
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Proof: At first we establish the following fact: If Pi > lz* - z i ,OI for an optimal 
process z* and for some i, then s(i) < oo and 

Pi > lz* - z i ,s l for s = l ,  . . .  , s ( i ) - 1

is true, i.e., relation (3) is valid for s = 0, . . .  , s(i) - l and Pi ,s = Pi · Applying
Proposition 1 and Lemma 2' (inequality (68')) with the data 
Z = X, <I>= Ji, Z1 = {z = (y, u) E X :  y = 0}, P :  Z---+ Z1 defined by Pz = 
(0, u), a(z, z') = fn CyCy'dD + ;f;b(z, z'), b(z, z') = f0(Ay - v.)(Ay' - u')dD, 
l(z) = - J ; ( z )  + a(z, z), K = X (with the norm I ·  I), a.0 = zi ,o ,
then the case s( i) > 1 leads to 

lzi ,1 - z* I < !z i ,o - z* I 

+2 
i 

[d3(co + Pi )2 (l + y'ri(co + Pi ))2 r; - ( 6; - ¾Ei r ]

and, in view of (37'), (39'), 

1i, 1 - z*I - lzi ,O - z*I 

1 
[ 

· .
( 

3 
) 
2] 3 < 2Pi d3(co + Pi )2 (1 + y'ri(co + Pi)) 2r i - Di - 2Ei . + 2v 3Ei -

Thus, due to (17), 

lz i ,l - z*I < Pi · 

In the same way one can successively establish that for s = 2, 3, . .  , (s < s(i))
the inequalities 

and 

lzi ,s - z* I - lzi ,s - 1 - z* I 

< 2 i 
[ d3 ( Co + Pi )2 (1 + y'ri( Co + Pi ) )2 ri - ( D; - ¾Ei r l 

3 
+ 2 v 3Ei < 0

lzi ,s - z * I  < Pi 

are satisfied and, moreover, (19) yields s(i) < oo. 
For s = s( i) we conclude from Proposition 1 and Lemma 2' that

(19) 

lzi ,s (i ) _z* 1-lzi ,s (i )- l _z* I < v'ds(co + Pi )(l +y'ri( co + Pi ))y'ri+ ¾v 3Ei (20)

hence, 

lzi ,s (i ) - z*I < P i + v'ds(co + Pi )(l + y'ri(co + Pi ))y'ri + ¾v3Ei -
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Now, (15) implies that lzi + l ,D - z*I < Pi+l· 
Continuing in a similar manner, we obtain s(i) < oo for all i and 

lz i ,s - z * I  < Pi for each i and 0:::; s < s(i). 
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However, due to Lemma 2.2.2 in Polyak (1987), the conditions (16), (18) to-
gether with (15) ensure that Pi ----+ p < oo monotonously. Thus, 

lz i ,s - z*I < p for all (i, s). 

Replacing in (20) Pi by p, we obtain 

lzi ,s (i ) - z *  l - l z i ,s (i )- 1 - z *  I < yds(co+p)(l +-Jr:'(co+p) )-Jr:'+  v'3E i .(21)

Taking into account (19), (16) and (21), convergence of the sequence {lzi ,s -
z*I} can be stated from Lemma 2.2.2 mentioned above. 

Now, in order to complete this analysis, nothing else has to be done than to 
use the arguments made for bounded Ua d (see the proof of Theorem 1 in Part I). 

II 
The conditions (15)-(18), reflecting the choice of the controlling parameters, 

are compatible. In particular, they can be chosen as follows: 
(i) take { r a  and { E;}, satisfying (16);
(ii) choose r1 :::; r;_ such that P1\fTl:::; d4; 
(iii) knowing E1, p1 and r1, calculate <'51 according to (17) and p2 via (15)-; 
(iv) define r2 :::; r ;  such that p2/ri,:::; d4 etc.

To state convergence for Method 1 ( described in Part I) condition (17) in 
the theorem above is superfluous. 

In Hettich, Kaplan, Tichatschke (1994) there is a different result concerning 
the choice of ri in Method 2 for unbounded Uad , in particular, instead of the 
conditions 

0 0L f o ,  < oo and Pi v'r;:' :::; d4 forall  i, 
i=l 

the assumption 

. L v  ( 1] 
r /  < oo with an arbitrary chosen v E 0, 4 

i=l ., 

was made. 

1.2. Problem 2 with state constraints 

Now, we consider Problem 2 with state constraints, i.e., G-/= Y, and the control 
set Uad may be unbounded. Let us assume that the condition 

T u  E int G(in Y) for some ii, E Ua d (22) 
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is fulfilled. As before, let c0 and Pi,s be constants such that 

co 2 [[Cy* - K,d[[ 

and 

Pi,s > [z* - zi,s [, s = 0,. , . , s( i) - 1. 

Now, observe that zi,s = (yi,s, ui,s) E G X Uad•
Obviously, in this case the relations (5)-(8) remain true. For Jf,s, defined 

by (52'), estimate (11) is valid too, and in the same manner as for the case of 
bounded U a d  (see Sect. 4,2' in Part I) we verify the estimate 

ll11i ,s II 10 1 [lli5i ,s II (llv, - v,i ,s II + 10) +  r::;'lli5i ,s 11 l lvGi ' s II 
+llv. - v.i ,s lllfv.i ,s - v.i ,s- 1111.

This relation together with (5), (6), (8), (11) and r; < 1 leads to 

[[qi ,s II 10 1 [ffpi ,s II ([Iii. - u* II + flu* - ui ,s II + 10) +  r::;'lli '8 II ll r::;"t ,s II 
+(If ii, - v.* II + II v,* - v,i ,s II) ff ui ,s - ui ,s - 1 11]
< 10 1 

h ( c o  + Pi ,s- 1)([[u - u* II+ Co+ 2pi ,s - l + 10) + c7(co + Pi ,s - 1)2 

+(co+ Pi ,s - 1)([[u - v,*11 +Co+ 2pi, s- 1)] .

Setting 

Cg = max{l, Co1 ([[ii, - u* II + 10)}, C10 = 10 1 [2c7C9 + C7 + 2cg], 

we get 

Therefore, 

[[A;i/' 8 - f - Ui '8 [[ < c10(co + Pi ,s- 1)2r ; ,

and we infer that 

(23) 

However, as mentioned before, in case G # Y the point ( i ,s = (ifs, ui ,s )
defined by (9) may be not feasible. In this situation, due t o r ;  < l, (5) and (8), 
we obtain 

[[Agi ,s -Ay*[l - l[u* - ui ,s 11   [[Agi ,s - f - ui ,s 11 <Co+ Pi ,s - 1,

[[Agi ,s - Ay*[[ < 2co + 3pi ,s - 1,

hence, 

[[zi ,s - z* [[x < 4( Co + Pi ,s- 1) · (24) 
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Using the inequality 

ll( i ,s - z(u)llx:::; ll(i ,s - i , s llx + llzi ,s - z*llx + llz* - z(v,)llx, 

together with (10) and (24), we conclude that 

ll( i ,s - z(v,)llx < llz* - z(v,)llx + 5(co + Pi ,s- 1)-
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(25) 

Now, by virtue of the choice of wi ,s and h,i ,s (Sect, 4,2'), from (76'), (23) and 
(25) it follows (see the figure in Sect. 4.2') that

ll( i ,s - hi ,s llx < -1-[llz* - z(u)llx + 5(co + Pi ,s - 1)]c10(co + Pi ,s- 1)2ri .
Tmin 

Let zi ,s be the feasible point closest to zi ,s according to the norm II · llx, Pro-
ceeding as in (77'), we obtain 

l l i ,s - i , s llx 

< -1-[llz* - z(u)llx + (5 + Tmin)(co + Pi ,s- 1)]c10(co + Pi ,s- 1)2ri . (26) Tmin 

For arbitrary v E (0, 1) let 

Ri, s- 1h ) = ClQ [llz* - z(v,)llx + (5 +Tmin)(co + Pi ,s- 1)](co + Pi ,s- 1)r'( ,
Tmin 

then equality (26) may be rewritten in the form 

11-i ,s =i ,s 11 < R- ( )( + ) 1 - v  z - z X i ,s- 1 Ti Co Pi ,s- 1 r i • (27) 

To finish the analysis of that case, we use inequality (27) in the same way as 
(12) and follow the proofs of Proposition 1 and Theorem 1. 

Nevertheless, to obtain weak convergence of {zi ,s } , instead of the former 
condition I::1 ,/r;, < oo, we have now to require that I::1 rf (l-v) < oo. 
Moreover, the recurrent formula for Pi proves to be more complicated than 
(15). 

2. Further applications of Method 2

In order to reduce the description, here we only consider the case that Uad is 
bounded and there are no state constraints, A modification of the corresponding 
results to the case of unbounded sets Uad and state constraints can be done 
analogously as in Section 1 for Problem 2. 

For the problems studied here it is obvious that the optimal set U* is non-
empty. 
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2.1. Dis t r ibuted  control problems w i t h  N e u m a n n  conditions 

Now, we deal with 

P r o b l e m  3 

minimize J(u) = L (Cy(v,)-K,d) 2d0, subject to v, E Uad,

where y(v,) is the '11,nique solv,tion of the Neumann problem 

Ay = f + V, in 0 ,  ; ; v  = 0 on r .
UVA 

(28) 

(29) 

Here we suppose that C E Z(H1 (0 ), L2(0)), Uad is a closed, convex and 
bounded subset of L 2 (0 ) and make the same assumptions as in Section 1 con-
cerning A, K,d and f (additionally, ao(x) > 0 on D). B y   :  the normal deriva-
tive associated with A is denoted. 

In this case it is convenient to choose 

llvllY = (11Avl1 2 + / /  : v //2 
) ½

VA L 2 (r ) 

and X = Y x L2(0) with the norm ll(Y, v,)Jlx = (llvll} + llv,11 2 )½.
On X we introduce also the equivalent norm I· I: 

lzl = ( I I A y - v,112 + llv,11 2 + I I  : y  //
2 

)
2 

for z = (y, u). 
VA L 2 (r ) 

It is easy to show, analogously to (37'), that 

 llzlli:::; lzl 2
:::; 3Jlzlli-

Setting 

ifli, s (Y, u) = L ( C y - K , d )2d0 

+ 2 - ( { ( A y - J - u ) 2d0 + f (/;Y)2 dr) + f ( v , - v , i ,s - 1) 2 dO,
Ti .In .lr UVA .In 

(30) 

(31) 

the description of Method 2 for Problem 3 is formally the same as in Section 3' 
or 1. 
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Again, existence and uniqueness of a solution :zi ,s = (ff, s , ii,i ,s ) of the auxil-
iary problem in Step (b) of Method 2 follows from the strong convexity of \JI i ,s 
at X ,  

Here we also obtain that 
. . 3 11:zi

,
s _ zi,s II < - E - .

X - 2 ,, 
Similarly to ( 45') one can conclude for each i and s = 1, . . .  , s( i) that 

with K i ,s defined by (43') and z* an optimal process of Problem 3. 
Due to the boundedness of Ua d and {ri},  this leads to 

(It should be noted that we here start with a new count of the constants). 
For the pair (f), ui ,s ) with 

oy i ,s 
Ai)i ,s = f + v,i, s in n, --;::,-- = 0 on r, 

UVA 

we obtain from (33) 

II (yi ,s , ili ,s ) - (f) i ,s
' 
ii, i ,s ) llx < c2../r;,-

(32) 

(33) 

Hence, the feasible point :zi, s = ( } t ,s , v, i ,s ) , closest to :zi ,s in the norm II · llx, 
observes 

llzi,s - :zi ,s llx < c2../r;, for each i and s = 1, . . .  , s(i). 

Now we show that there exists a constant c3 such that for each y E Y 

It is well-known that the problem 

Aµ = 'T/ in D, oµ = cp on r, 
OVA 

(34) 

with 'T/ E L 2 (D), cp E L 2 (f ) has a unique solution µ E H 1 (D). Moreover, the 
estimate 

(35) 
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is true with a constant c4 independent of 'T/ and cp. Indeed, using the equality 

l ( 8 µ  8µ  2) l 1. 8 µ  L . ,  aij-0 . -0 . + aoµ dD = 7/µdD + µ-0 d f
n . . :ri X1 n r V A  

1,,.1 

together with the estimate for the traces of the functions in H 1 (D) 

ll'Yw!IL2(r ) ::; c5ilw!IH1(n) for all w E H 1 (D) 

(see, for instance, Necas, 1967), we obtain 

and finally 

llµIIH1(n) ::; c5(ll'TIII + c5llc/JIIL2(r J),

Therefore, estimate (35) is fulfilled if c4 = c5max{l,c5} is chosen. Inequality 
(34) follows from (35) with c3 = c4 if we put

8y 
'T/ = Ay and cp = - . 

O V A  

Thus, (32) and (34) yield 

11:if s ll < C7,  IIYi ,s 11 < C7. 

Finally, due to (33) and (34), 

11:i'
s - j f s

ll < csv'r;,.

Now, similarly to (57'), one can conclude that for each i and s = 1, . . .  , s( i) 
1 (.l ( A;gi,s - f - ii'8)2 dD + l ( :: ) 2 

d f )  
2 

< cgri,

In this case we use pi ,s defined by

. . {) , s 

A*p2' 8 = C*(Cy2' 8 
- K,d), -

8 
= 0 on r, 

VA* 

and the approximate Lagrange multipliers are 

cf,s =  (A ;gi,s _ f _ Ui,s), >,i ,s =   8yi ,s
. 

ri r; O V A

Thus, following the proofs of Proposition 5' and Theorem l ' ,  we can state 
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T h e o r e m  2 Assume that U a d  is a bov,nded set in L 2(f2) . Let the positive se-
quences { ri } , { Ei} and { oi} be chosen such that 

and 

0 0  

svpi Ei < 1, sv,pir i < l ,  L -/r;. < oo, L Ei < oo 
i=l i=l 

- 1 - [d1r· - (o· -  E-) 
2] 

+  V3E· < 0 0· >  E-
2d2 

'· " 2 '· 2 " ' " 2 " '

(36) 

with positive constants d1, d2 defined analogously to those in Theorem 1' (i. e., 
they ensv,re the validity of  the relat?:ons (30') and {31 ') with 

,h(y, u) = / (Cy - K,d) 2 df2 + 2_ ( / (Ay - f - v,) 2dD + / (.!!.:::_) 2 

dr) 
J o  r i J o  lr EJvA 

and with corresponding sequences { zi ,s } , { zi ,s } ) . 
Then, starting with an arbitrary element v,1•0 E U a d ,  Method 2 is well-de.fined 

for Problem 3, i. e., s( i) < oo for  each i ;  the sequence { v,i ,s } converges weakly 
in L 2 (D) to il and { yi ,s } converges weakly in Y (given by {30)) t o y ,  (y, u) an 
optimal process for  Problem 3. 

Concerning Method 1 described in Part I, already (36) is sufficient for weak 
convergence of { u i ,s } to il and { yi ,s } to y. 

2.2. Comments  on t h e  solution o f  b o u n d a r y  control problems 

At first we consider 

P r o b l e m  4 

m,1,n1,m1,ze / (Cy(v,) - K,d) 2 df2 subject to v, E U a d ,
J o

where y( v,) is the v,nique solution of the Dirichlet problem 

A y  = f i n n ,  y = V, on r ,

(37) 

(38) 

with C E l(L2(D), L 2 (D)), U a d  a convex, closed and bonnded snbset of  L 2 (f ), 
f E L 2 (f2)1 K,d E L 2(D) and A de.fined as in Section 1. 

In this case, Method 2 is applicable with the following regularized penalty 
function 
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To this encl we choose the space Y = { y E L2(D) : Ay E L2(D), ryy E L 2 ( f ) }  
with the norm 11 · IIY defined by 

IIYIIY = (IIAYll 2 + llvllL(rJ) ½ 

and put X = Y x L2(f) .  For z = (y, v,) in X two norms 11 · llx and I · I are
introduced by 

llzllx = (llvll} + llv,IIL(ri) ½
'

lzl = (IIAvll 2 + llv.llL(ri + llv - v,IIL(ri) ½ ,

and again we derive that 

½11z111   lzl 2 
  3llzll3c• 

Finally, let us consider 
P r o b l e m  5 

minimize L, ( C y ( v,) - t,,d) 2 dD sub.feet to v. E Ua d, 

with y( v.) the unique sofotion of  the Neumann problem 

(39) 

. [)y Ay = f in D,   = v, on r, (40) 
UVA 

C E l ( H1 (D), L 2 (D)) and the same assumptions w.r.t. A, Ua d, f and t,,d as for 
Problem 4, but ao(x) > 0 on D. 

Here we construct the regularized penalty function 

wi,s(y , v.) = L ( C y - t,,d)2 dD

+  ( / (Ay - f ) 2 dD + / (.!!.!!._ -v.)
2 

d r )  + / (v. - v,i, s - 1)2 df
r,. Jn .fr OVA l r  

and define Y by means of (30), (31) and X = Y x L 2 (f ). 
The norms 

lzl = (IIAYll 2 + llv,IIL(r) + II : y - v,11
2 

) 

2 

V A  L 2 (r ) 

and 

llzllx = (IIYII} + llv.llL(ri) ½
'

considered in X, are equivalent. 
After this preparation similar statements on convergence of Method 2 can 

be established for these problems, using the technique developed in Sections 
4' and 1.1. They differ from the Theorems 1' and 2 only in the choice of the 
constants d1 and d2 . In case of Method 1 convergence can be stated only under 
assumption (33'). 
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