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A b s t r a c t :  We investigate the application of Prox-Regularization 
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Stable variants of Penalty Methods are obtained by means of One-
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1. Introduction
A large number of interesting physical and technical problems give rise to opti-
mal control models where the state of the system is governed by partial differen-
tial equations. The fundamental monograph of Lions (1968) gives an excellent 
introduction into the mathematics of these models for various types of differ-
ential equations, boundary conditions, and control. In this paper, we deal with 
problems whose states are described by second order elliptic equations. A ge-
neral class may be specified as follows. Let D C I R n be an open domain with
boundary r of the class C2 , D = D U r. Then, with coefficients

% E C 2 (D), i,j = 1, . . .  , n, a0 E C2 (D) (1) 
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such that for all x E n,   E Rn and a constant c > 0
n n 

i,j=l i=l 

consider the elliptic second order differential operator A defined by 

,
n 8 ( oy) 

Ay := - L - a i j - +aoy.
. . O X i  OX1· 
i,J=l 

Further let H denote a Hilbert space and 

Ua d C H a non-empty, closed, convex set, 

the set of admissible controls. 
In case of distributed control, the state of the system is governed by 

Ay = f + Dov, in !1 
By= 0 on r 

(2) 

(3) 

(4) 

(5) 

with u E Ua d C H =  L2(D), f E L2(!1), Do E Z(L2(!1), L2(!1)) a linear contin-
uous operator, and B a boundary operator ( of Dirichlet or Neumann type, for 
instance). 

In case of boundary control, the state is described by 

Ay = f i n n
By = g + D 1 u on r (6) 

with f E L2(!1), g E L2(f),  v, E Ua d C H =  L2(f),  D1 E Z(L2(r),L2(f)) and B 
as above. 

Let us assume now that, for v, E Uad , y( v,) is uniquely determined by (5) or 
(6) respectively and that y(v,) E V, V a  Hilbert space. For instance, in case of
(5) with B the trace operator, an appropriate choice could be V = HJ(D),

Given now Uad and a state equation as above, the problem is to minimize
the functional 

J(u) = IICy(v,) - K,dllt + ((Nv,, u))H (7) 
subject to v, E Uad , where C E l(V, Ji), 1i a Hilbert space, K,d E 1i a given 
element, and N E l(H, H) a positive semi-definite operator. Throughout the 
paper, II, 11s, ((·, ·))s denote norm and scalar product in space S, the subscript 
being omitted, i.e. II· II, ((·, ·)), in case of S = L2(!1), For later reference we
define 

P r o b l e m  1 With a control set Uad , a boundary problem, and an objective J 
given by (4), (5) or (6), and (7), respectively, 

minimize J(u) sub.feet to u E Ua d · (8) 
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In addition, a state constraint 

y( v,) E G C V, G closed, convex 

may be considered 

7 

(9) 

( cf. e,g. Bergounioux, 1989, Casas, 1986, and for problems governed by semi-
linear equations, Bonnans and Casas, 1995, Casas, 1993). 

We note that the assumption on the smoothness of the data and the type 
of the boundary conditions may differ essentially from the above ( for instance 
ai.i, a0 E L00 (D) instead of (1), or a non-homogeneous boundary condition in 
(5) etc.).

Particularly in numerical contributions it is common to assume the operator
N to be positive definite, implying Problem 1 to be well-posed. A frequent choice 
is N = >..I, >.. > 0. We believe that in many practical cases N =0 corresponds 
to a natural and relevant model, too. It concentrates on the primary aim of the 
process expressed by the first term in the objective (7) and leaves restrictions 
on the cost of control to the constraints defining Uad • 

For N = 0, however, the problem is likely to become ill-posed and more 
difficult to handle. For bounded sets Ua d , a solution still exists ( cf. Lions, 1968) 
but it may be non-unique unless rather unreasonable assumptions are imposed 
( e.g. that B and C be injective). In case of an unbounded Uad it may occur 
that the set of optimal controls is empty or unbounded. 

In this paper, in order to deal with the ill-posed case, we consider penalty 
methods stabilized by means of iterative prox-regularization. In this, we follow 
a general approach developed in Kaplan, Tichatschke (1994). To be applicable 
to our optimal control Problem 1 a number of substantial modifications and 
supplements are necessary due to the following circumstances: 

• There are serious difficulties in estimating the closeness between the solu-
tions of the original and discretized problems;

• The objective J depends in an implicit way on the control u;
• In general, it is impossible to uniformly estimate the Lagrange multipliers

of the discretized problems as there are no suitable regularity conditions
available.

For technical reasons, the paper is split in two parts. Part I extensively and 
exemplarily deals with the case of distributed control, Dirichlet boundary con-
ditions, and bounded Uad · In Section 2 this (Problem 2) is specified in detail 
together with some of its properties and some notation. In Section 3 the nu-
merical methods are given together with the main result (Theorem 1) of this 
paper guaranteeing weak convergence of the iterates to a solution under appro-
priate assumptions on the parameters controlling the methods. As mentioned 
above, a penalty technique ( c f  Bergounioux, 1992) is combined with iterative 
prox-regularization. Two variants are considered: In Method 1 the penalty and 
the regularization term are adapted synchronously whereas in Method 2 prox  
imal iterations with fixed penalty term continue as long as reasonable progress 
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is achieved ( cf. step ( c) in Method 2 below). A further significant peculiarity 
of our approach is that regularization is accomplished only with respect to the 
control variable but not the state variable. Such a partial regularization (in a 
subspace of the space of variables) for non-separable problems has been con-
sidered first in Kaplan, Tichatschke (1994). Section 4 is devoted to the rather 
laborious proof of Theorem 1. In Section 5 of Part I, we demonstrate the effect 
of regularization by means of a simple example. 

In Part II the results are extended to more general problems admitting un-
bounded Uad (Section 1), Neumann boundary conditions and/or boundary con-
trol (Section 2). 

2. Statement of Problem 2
In the whole of Part I we will deal with the following instance of Problem 1 
(cf. Bergounioux, 1992, 1993, Butkovski, 1969, Casas, 1986, Fortin, Glowinski, 
1982, Gruver, Sachs, 1984, Hoffmann, Krabs, 1983, Lions, 1983): With D C Rn

an open and bounded domain, r its boundary, and D = D U  r, let

(10) 

and A a second order, elliptic operator (3) with coefficients a0, aij satisfying 
(1) and (2). The inequality ao(x) > 0 may be relaxed to a0(x )   0 on D. For
v, E Ua d we consider the Dirichlet problem

S ( ) . Ay = f + v, in D, 
1 V, . Q f y =  on , (11) 

with given f E L2(D) and Uad a bounded, closed, and convex subset of L2(D). 
Assuming r belongs to the class C 2 , it is well-known ( cf. e.g. Aubin, 1972,

Theorem 7.1.1) that, given v, E L2(D), S1(v,) has a unique solution 

(12) 

such that the mapping 

(13) 

is well defined. B y  Y we denote the space of functions 

Y = {YIY E H5(D , Ay E L2(D)}. (14) 

Employing the Cauchy-Schwarz-Inequality and (1), it gets immediate that by 

((y,z))y := ((Ay,Az)), IIYIIY := IIAYII (15) 

a scalar product and a norm are given on Y (recall that(( , , ·))  and II· II denote 
the scalar product and the norm in L2(D)). Moreover, we have 
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Proposition 1 Y is a Hilbert space with scalar prodv,ct and norm given by (15), 
Algebraically, Y coincides with the set of functions H 2 (D) n HJ(D)

To establish the second part of Proposition 1, let y E Y ,  Thus, f := A y  E 
L 2 (D), and, of course, y solves 

Ay = f in D, y = 0 on r, 
implying y E H 2 (D) n HJ(D), The opposite implication is obvious,

Further, we define 

with norm 
1 1 

II (y, v,) llx = (IIYllir + llv,11
2
) 2 = (IIAYll

2 
+ llull

2
) 2 .

(16) 

(17) 

Using (L 2 (D))' = L 2 (D) one gets X '  = Y '  x L 2 (D) for the dual, We have (Lions, 
1968): 

Proposition 2 Under the assumptions on S1 ( v,), every u E Uad v,niquely de-
.fines a pair (y(u),v,) EX. 

Finally, to specify the objective functional, let (see (10)) 

C E l(HJ(D),L2 (D)) = l(V, 1i), ""d E L 2 (D).

Then the problem considered in Part I of the paper is 

Problem 2 Minimize 

s11,bject to v, E Uad and a state constraint 

y( v,) E G C Y, G closed and convex, 

(18) 

(19) 

where we assume that there exists a ii, E Uad such that y(u) E int G (in Y ). 
Recall that y(v,) is the v,nique solution of system (11). 

Proposition 3 (Lions, 1968) 
In case Uad is bounded, the set U* of optimal controls for  Problem 2 is a 

non-empty, closed, convex subset of  Uad· 
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3. Penalty methods with prox-regularization fo:r Problem 2
In this section, we formulate two methods for solving Problem 2 and state their
main properties. Proofs will be given in the next section. In the spirit of Lions 
(1968), a penalty method for solving Problem 2 could proceed as follows: 

Given a sequence {ri } , r i > 0, limi-+oo r i = 0, define the functionals

(20) 

and compute a sequence of minimal points z i = (yi , ui ) of J i w.r.t. G x Uad •
Then the question is whether z i converges to an optimal process for Problem 

2. 
In case of strictly convex functionals J of type (7) with H = H = L2(D), 

N = I and C : V ---+ 1-{ an embedding operator, a positive answer to this
question is given in Bergounioux (1992). For possible ill-posed problems sim-
ilar results cannot be expected. Therefore, to enforce strict convexity of the 
auxiliary problems, we use regularization by means of the proximal mapping 
(Kaplan, Tichatschke, 1994, Rockafellar, 1976) employing an additional "regu-
larization term" w.r.t. variable v, (note that in (20), y and u are considered to 
be independent variables). 

Method 1 ( One-step regularization) 
Let positive sequences {ri } , { Ei } , with limi-+oo Ti = limi-+oo Ei = 0, s1tpi r i <

1, supi Ei < l and v,0 E Uad be chosen. 
Step i. Given v,i- l E Uad , let, with J i defined by (20), 

and 
w i (y , u) = J ; (y , u) + f ( u - u i- l )2 dD (21) Jn 
(t;/,v,i) = argmin{wi (y, v,) : (y,v,) E G x Uad} , (22) 

Compute an approximation (yi , v.i ) E G x Uad of  ( ff , ii.i ) such that 
· IIVw i (y\ ui ) - V w i (:ii,v,i ) llx ,   E;. (23) 

Here, VW; E X '  denotes the Gateaux-derivative of W; which is easily seen 
to be given by 

V w i (Y, v.)('T/, v) = 

2 k [ (Cy - K,d)C'T/ + : / A y  - f - v,)(A'T/ - v) + (u + ui - l )v] dD (24) 

for ('T/,v) E X .  Note that for (t/,v.i ) bei g a minimum according to (22) it is 
necessary that 

(25) 

Method 2 (Multi-step regularization) 
Let {ri } , {Ei } , v,0 E Uad be as in Method 1, and {8;} a third positive sequence 

( not necessarily tending to O). 
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S t e p  i. Gi'l!en ui - l E Ua d , 

(a) set u i ,O = ui - l , s = 1;

(b) given ui ,s- 1 , let (with J i defined by (20)) 

Wi ,s (y ,u) = Ji (y , u) + lo ( u - ui ,s- 1)
2 dO 

and 

11 

(26) 

('ff, 8, u i ,s ) = argmin{w i ,s (y , u) l(y , u) E G x Uad} - (27) 

Compute an approximation (y i ,s , u i ,s ) E G X Ua d of ( ii '8, u i ,s ) such
that 

ll'VW· (y i ,s u i ,s ) _ 'VW· (y-i ,s u i ,s ) II < E·.i,s , i,s , X' - i 

(c) I f  llui ,s - ui ,s- l ll > 8i , s e t s : =  s + 1 and repeat (b).

(28) 

Otherwise, set u i = u i ,s , s(i) = s, and continue with Step (i + 1).

For 'ViJ! i ,s (24) holds with ui - l ,s instead of ui - l and the necessary conditi_on 
(25) applies accordingly.

To simplify the convergence analysis, we do not include a penalization of
the state constraints. Such kind of penalization was used, for instance, in Neit-
taanmiiki, Tiba (1995). 

Proposi t ion 4 The functional Wi ,s (also w i ) is quadratic, continuous on X, 
and strongly convex, i. e. f o r  some o: > 0 we have f o r  all z = (y, u), z = (y, u) E 
X 

w i ,s (z) - w i ,s (z)   ( V w i ,s (z) , z - z) + o:llz - zl l i-

Proposition 4 ensures that the optimization problems (22), (27) become well-
posed. Of course, the stopping rules (23) and (28) are not practicable. But, due 
to the strong convexity of Wi ,s and Wi , one can use (in order to satisfy (23) or 
(28)) in principle, any method which enables to define a point (y, u) E G x Ua d 
such that 

w i ,s (y , u) inf w i ,s (y ,u) + v, with given v > 0, 
(y,u)EGXUad 

(analogously, for wi)-
For instance, if Uad C L 00 (0 ) and Ua d , G are given by means of pointwise 

constraints, the usual discretization approach (for instance, FEM) can be com-
bined with (finite) conjugate direction methods or simple gradient projection 
methods which possess a suitable estimate of the convergence rate w.r.t. the 
values of the objective functional (see Kaplan, Tichatschke, 1994). 
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R e m a r k  1 Note that Method 1 can be considered as a special case of  Method 2 
by taking {ji "sufficiently large", for  instance 

{ji > do := sup{llu - vii : u, v E Uad} , (29) 
Method 2 allows for  a fixed J i a more acC'11,rate minimization. This gives rise to 
the hope that in general, to obtain a certain accv.racy, the value of  the penalty 
parameter f can be kept smaller than in Method 1. Therefore, the numerical
behavior of  Method 2 can be expected to be much better. 

As mentioned above, penalization of the state equation permits to handle y 
and u as independent variables. But, of course, this complicates the discretiza-
tion process: For instance, when applying finite element methods, elements with 
order higher than one have to be used. Concerning the application of high order 
finite element approximations to optimal control problems see Lasiecka (1995) 
and Hendrickson (1995). 

Following the approach developed in Kaplan, Tichatschke (1994) for some 
problems in elasticity theory, for the control problems considered here a direct 
application (without penalization) of the multi-step regularization coupled with 
finite element methods is possible. 

We start the convergence analysis with two auxiliary estimates which are in 
the essence consequences of the properties of the operator A and the bounded-
ness of Uad • 

Proposi t ion 5 Let (y*, u*) be an optimal process of  Problem 2. With an ar-
bitrarily chosen ui ,s - l E Uad let (yi ,s , ui ,s ) and (yi ,s , ui ,s ) be as in Substep (b) 
of  Method 2. Then there exist constants d1 and d2 , independent of  u i ,s - 1, {Ei}, 
{r i} ,  i and s 2: 1, sv,ch that 

and 

l(Yi ,s , ui ,s ) - (y*,u*)I :S d2 ,

where I· I is a norm on X = Y x L2(D) defined by 

l(Y, u)l 2 = IIAy - v,112 + llull 2
-

(30) 

(31) 

(32) 

T h e o r e m  1 Assume that the sequences {ri} ,  { Ei}, and { 6i} in Method 2 satisfy 
the conditions 

0 0  0 0  

suPi Ei < 1, supi r i < 1, L yr';,< oo, L Ei < oo 
i = l  i = l  

and, with d1, d2 from (30), (31), 

_ l  (d1r· - (8· -  E·) 

2 )

+  \/3E < 02d2 
i i 2 i 2 i ' 

3 
{ji > -Ei.2 

(33) 

(34) 
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Then, for every choice of v,0 E Uad , Method 2 is well-de.fined, especially s(i) < oo 
for every i, and { u i ,s } , { y i ,s } converge weakly in L 2 (D), Y ,  to u, fi respectively, 
(fi, u) being an optimal process for Problem 2. 

For Method 1 already (33) is sufficient for weak convergence of  { v,i } and 
{ yi } to iJ, and fi, respectively. 

In this paper, we do not focus on the explicit calculation of various constants, 
especially those which are connected with the estimation of solutions of bound-
ary value problems and the norm of certain operators. We note that penalty 
methods in combination with prox-regularization (w.r.t. the full space) have 
been applied to convex optimization problems, for instance, in Alart, 1,,emaire 
(1991), Auslender, Crouzeix, Fedit (1987), Kaplan, Tichatschke (1996), 1emaire 
(1989). In contrast with the above, in these contributions Slater's condition with 
regard to the penalized constraints appears to be substantial. 

4 .  P r o o f s

In this section we will give the proofs of the propositions and the theorem of 
the last section. 

4.1. T h e  case  o f  G = Y, i.e. no s t a t e  constraints 

P r o o f  o f  Proposi t ion 4 The fact that \[Fi, Wi,s are continuous, quadratic 
functionals on X is obvious. 

To show that w i ,s is strongly convex (the proof for \[Fi is analogous) it is 
sufficient to show that its quadratic part is a positive definite quadratic form. 

An elementary calculation gives 

Wi,s(Y, u) = Q1(Y, u) + Q2(Y, v,) + L(y, u) 

with an affine linear part L, 

a positive semi-definite quadratic form (recall that Ti < 1) and

Q2 (y , u) = j (Ay - u) 2 drt + L v,2 drt.

We are done if we can show that Q2 is positive definite. One can calculate (see 
(17)) 

> 

l (f ; , A y - { { u )

2 

dfl + ½ (11Ayll2 + M') + ¼M'
1. 2 
311(Y, u)llx• (35) 
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Thus, Proposition 4 is proved, 11111 
From the above proof it follows that Q2 defines another norm I · I on X :

From (35) and a simple estimation we have 

1 2 2 2 311(y,v.)llx :S l(y,v.)I :S 3ll(y,v.)llx• 

For shortness, in the sequel, the abbreviations 

z = (y , v.) , z* = (y *, v,*), z i ,s = ( tf '8, ui ,s ) etc. 

will be used for elements in X = Y x L 2 ( D). 
To prove Proposition 5 we need 

L e m m a  1 Let z i ,s , z i ,s be as in Method 2, i. e. (see (28)) 

Then, 

. . 3 
llz', s - z', s llx :S 2 E i ,

(36) 

(37) 

(38) 

(39) 

The proof is immediate from (35) and the fact that Wi ,s - Q2 is a convex,
quadratic functional. 

We emphasize that Lemma 1 is a consequence only of the properties of Wi ,s 
and (28) and otherwise independent of the method. 
P r o o f  o f  Proposi t ion 5: Recall that in Proposition 5 u i ,s - l may be any point 
in Uad and note that all the constants ci in this proof are independent from 
{Ei}, {ri},  i and s 2: 1. For z i ,s = (ii• S , iJ,i ,s ) , the unique minimal point of w i ,s 

on Y X Ua d, let 
. 1 ( . . ) lf'' s : =  - Ag i ,s - f - v.'·, s 

ri 
(40) 

Using (24) and the optimality condition (25) for Wi ,s instead of Wi we obtain
due to the independence of y, v. that 

/ ,  (Cff,s - K,d) (Cy - Cff, 8
) dD + ; ·  qi ,s (Ay - A;if s ) dD 2: 0 (41) 

.n . .a 

for all y E Y and 

/ ,  ( i], i ,s _ Ui ,s - 1) ( V, _ i], i ,s ) dD _ / if ' s ( V, _ i],i ,s ) dD 2: 0
. a  Jn 

for all v, E Uad• 

(42) 
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Furthermore, with 

Ki, s (z ) : =  / (Cy - K,d )2 dD + f' ( u - v , i ,s - 1)
2 dD,Jn Jn (43) 

in view of the gradient inequality for convex functions, we obtain for all y E Y, 
v, E L 2 (D) the inequality 

K i ,s (z ) - K i ,s (,:zi, s ) > 2 /   (Cy i ,s - K,d ) ( Cy - C y i ,s ) dD, 

+ 2 ;   (v,i ,s - u i ,s - 1) (u - u i ,s ) dD. (44) 

Taking y = y * , u = u* in ( 41 )-( 44) and observing that  Ay * - f - u* = 0, we
find 

(45) 

Thus, 

(46} 

Together with the boundedness of Ua d , supi r i < 1, sup i Ei < 1, and (39) this 
shows that  there exists a constant c1 such that  

Now, y i ,s and y i ,s solve the boundary value problems 

Ay = A y i ,s , Ylr = 0 and Ay = Ay
i ,s , Ylr = 0.

(47) 

Therefore, a standard result from the theory of elliptic operators (see, for in-
stance, Aubin, 1972) gives the estimate IIY

i ,s llH2 (n) s; const · IIAy i ,s 11, or, due
to ( 4 7), the existence of c2 such that 

(48) 

Let z i ,s = (:1f s ,  v, i ,s ) be  a feasible point (i,e. u i ,s E Ua d , 1/' s = T y i ,s ) with
minimal distance (with regard to 11, llx) to :zi ,s , i,e. 

i , s = argmin{ll:zi, s - z l l x  : z f e a s i b l e } ,  ( 49) 

Now we estimate II i , s - :zi ,s 
l lx. 

Inequality ( 45) shows that, due to the bound-
edness of Uad , there exists a constant c3 such that  

(50)
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Let f/ ' 8 be the solution of Ay = f + v,i, s , Ylr = 0. Then

IIAg
i ,s - A;if s II = IIAgi ,s - f - ui ,s 

II < c3,)r,;,

and hence, 

II ( f f5
, fj, i ,s ) - (:9i ,s , ui ,s ) llx < c3,)r,;.

B y  the definition ( 49) of i , s this yields 

(51) 

Next, with C* the adjoint operator to C and A* the formally adjoint to A (see 
Section 6.2.7 in Aubin, 1972), let t i ,s be a solution of the problem 

(52) 

Because A* is again an elliptic operator of second order with coefficients in 
C 2 (D), we have j?, s E H 2 (D,) n HJ(D,) and, due to (48),

From L (y - t i 's )A*j5i ,s dn

L (y - gi ,s )c * ( Cgi ,s - K,a)dD, 

/' (Cgi ,s - K,d)(Cy - Cjf , 8), dD, 
.Jn 

and (41), (42) we get for (y, u) E Y x Uad 

(53) 

(54) 

j  (f5i ,s + i f ,s )(Ay - Ag i ,s )dD, + L (v, - ui ,s )(ui ,s - v / , s - l - r/' s )dD,   0. 

Choosing v, = u i ,s , y = T ( ui ,s - 11g::: 11), T being the operator defined by (13) 

(thus Ay = ui ,s - 11g'.::11 + f), this gives

- L (f5i ,s + 1f s ) ( 
II :: II 

+ r i if , s ) dD,   0. (55) 

Together with (50), (53), and r;  < l ,  we obtain with the aid ofCauchy-Schwarz-
Inequality 

ll1f 5II < - L f5i ,s i f ,s 

( r i + lli/ s ll) 
dD, - r;llif

i ,s lf

< IIJ5i ,s II l l f ' 5 II ( r ;  + lli/,s II)
IIJ5i ,s II + ,Jr,;IIJ5i ,s 1111,Jr,;cf, s II 

(56) 
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Therefore, we get the improved bounds 

and, from this, according to the derivation of (51), 

With an argument analogous to that used to derive ( 48), one can find 

Therefore, (58) gives 

l l ' . ( f
8 

- p i ,s ll < C5C5T;. 

Furthermore, using (with J; according to (20)) 

we obtain with (47) and (60) 

J ; ( z * ) - J;(:zi,s) = J;(z*) - J ;  (zi,s) + J ;  ( i , s ) - J ;  (.i,s)

::; / (c f f ,5 - K,df d D - / (Cpi,s_K,d)2dD
J n  .In 

= L (cr/'s - Cff,8) ( Cyi,s + Cpi,s - 2K,d) dD 

::; IICII (11c11 ] ] v
i

,
s + p i

,
s

11 + 211K,d11) l l y
i

,
s 

- p
i

,
s

11 

< IICII (IICII (c1c5 + sup , , E UaJ Tv,11) + 2IIK,dll) · C5C5 · r;,

proving (30). 
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(57) 

(58) 

(59) 

(60) 

The existence of a constant d2 such that (31) holds, is an easy consequence 
of (37), ( 4 7) and the boundedness of Uad· Thus Proposition 5 is proved. ■ 

To prove Theorem 1, we need one more lemma. 
Let Z be a Hilbert space, Z1 a subspace and P : Z --+ Z1 the orthogonal pro-

jection operator. Let a(·,•) be a continuous, symmetric, positive semi-definite 
bilinear form on Z x Zand l a  linear, continuous functional on Z. With KC Z 
convex and closed, consider the problem 

minimize cp(z) : a(z, z) - l(z) subject to z E K .  

Let b( •, ·) be a second symmetric bilinear form on Z x Z such that 

0::; b(z, z) ::; a(z, z) for z E Z 

(61) 

(62) 
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and 

b(z, z) + IIPzll :::: ,Bllzll  for all z E Z

with some f3 > 0. By 

lzl2 = b(z, z) + IIPzll  

(63) 

(64) 

another norm is defined on Z equivalent to II · llz according to the obvious 
relation 

( M  + 1) llzll  :::: lzl
2 :::: /3llzllt 

'th M > b( z ,z ) w1 _ supz#Oli'ziir• 

L e m m a  2 For each a0 E Z and 

a 1 = argrnin { </;(z) + IIPz - P a 0II : z E K }  

the inequalites 

lal - zl2 - lao - zl2 :::; -IIPa1 - P a o li + cp(z) - </;(al) 

and 

la1 - zl :::; !a0 
- zl + 'TJ(z) 

hold for each z EK, where 

{ 
0 ifcp(z)::;cp(a 1 ) 

'T/(z) (cp(z) - cp(a1 ))½ otherwise 

If, moreover, IIPa1 - P a0 ilz   6   'T/(z), then 

1 o 'T/2 (z) - 52
la - zl :::; la - zl + 

I O I '2 a - z  

(65) 

(66) 

(67) 

(68) 

Proof: 11 P z 11 z ::; 11 z 11 z shows the boundedness of the bilinear form ( ( P z, Pw)) z
on the space Z x Z. Due to the optimality of a 1 we have for all z E K

2a(a1 , z - a 1) - l(z - a 1) + 2((Pa1 - P a0 , P z  - P a 1))z   0. (69) 

Taking account of (64) a simple calculation shows 

la1 - zl2 - ia0 
- zl2 = b(a 1 , a 1) - 2b(a1 , z) + 2b(a0 , z) - b(a0 , a0)

-IIPa1 - P a 0II} - 2((Pa1 - P a0 , P a1 
- Pz))z.

Utilizing (69), (62) and the simple inequality 

2a(a1 , z - a 1):::; a(z, z) - a(a 1 , a 1) 
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a straightforward calculation leads to (66), and (67) follows immediately. 
In case IIPa 1 - P a 0 ilz ::::: 8::::: 'T/(z), (66) gives 

la - zl 2 ia0 
- zl 2 :s; - 8 2 + 'T/2 (z) :s; 0, 

hence, 

and 

la 1 - zl :s; ia0 
- zl 

0 > - 8 2 + 'T/2 (z) ::::: (la 1 - zl + ia0 
- zl)(la 1 - zl - ia0 

- zl)
> 2lao - zl(la l - zl - lao - zl)

19 

proving (68). II 
We note that in Lemma 2 closedness of K is only required to ensure the 

existence of a 1 and could be replaced by the requirement that a 1 exists. 
P r o o f  o f  T h e o r e m  1: From (34), the definition of s(i) in substep ( c) of Method 
2, and Lemma 1 we conclude 

llv,i ,s - V,i ,s - 1 II ::::: llui ,s - V,i ,s - 1 II - llui ,s - ii,i ,s II > Di - %Ei > 0

for all 1 :s; s < s(i). 
Together with inequality (30) in Proposition 5 and d1 r i < (8i - ½Ei ) 2 due

to the first inequality (34), this implies 

llui ,s - ui ,s - 1 II2 > Ji(z*) - J i ( i , s ). 

Let z 1 ,0 = (Tu1 ,0 , v,1 ,0) . Application of Lemma 2 (inequality (68)) with

Z = X, Z1 = {z = (y, v,) E Xly = O}, 

<p = Ji,  given by (20), 

a(z, z) = l CyCydD + 2-b(z, z) for z, z E X ,Jn ri 

b(z, z) = j  (Ay - v,)(Ay - u)dD, 

l(z) = - J i (z) + a(z, z), 

3 K Y X U " " and a 0 = i , s - l= ad, u = u i - 2 Ei , 

together with Proposition 5 gives for 1 :s; s :s; s( i), 

. . 1 1 ( 
. 3 2 )lz''8 

- z*I < lz'• s - - z*I + 2d2 
d1ri - (8i - 2Ei ) 
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and (see (67)) 

12i ,s (il - z*I < lzi ,s (i J- 1 - z*I +  -
Utilizing (37), (39), and (34) we get for 1:::; s < s(i) 

and 

is * is 1 * 1 3 3 ( ( )
2
) l z '  - z I - l z '  - - z I <

2d2 
d1ri - {ji -

2Ei +
2v3Ei < 0

lz i ,s (i ) - z*I - lz i ,s (i )- 1 - z*I <   +  v 3 Ei ,
2 

(70) 

(71) 

Inequality (70) proves that s(i) < oo, because, as long as llv,i, s - v , i ,s - 111 > 6i ,
the reduction in lz i ,s - z* I is better than a nonzero amount independent of s. 

Lemma 2.2.2 in Polyak (1987) enables to state that the sequence {lz i ,s - z * I }  
converges if 

0 0 0 0L Ei < oo and L yr; ,  < oo. 
i=l i=l 

Due to (37) and (39), { lzi ,s - z*I} converges to the same limit. 
Let { z i k ,s ,, } with sk > 0 for each k, be a weakly convergent subsequence 

in X ,  z = (y,ii,) its weak limit. Observing (49), (51) and the convexity and
closedness of {(y,u)l1L E Ua d, y E Tu} (T given by (13)) in X ,  we conclude that 
2 is feasible. 

B y  the definition of J i  and Ji(z*) = Ji(v,*), the estimate

12i ,s - z*l2 - lz i ,s - 1 - z*l2 :::; J i (z*) - J i (2i ,s ) 

yields 

(72) 

Taking the limit in (72) for the subsequence { zi k ,s k } the weak lower semi-
continuity of the functional f0 (Cy - K,d) 2 dD in Y leads to

Since z is feasible, this proves that ii is optimal for Problem 2. Finally, Lemma 
1 in Opial (1967) proves the weak convergence of both { zi ,s } and { z i ,s } to z in 
X .  ■ 

According to Remark 1, Theorem 1 also proves the convergence of Method 
1 even without condition (34), which is fulfilled automatically for sufficiently 
large Di. 
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4.2. T h e  case o f  s tate  constraints 

Now let a state constraint 

y(v,) E G C Y 

be given, with G convex, closed and such that for some ii, E Uad 

y(u) E int G, 

as assumed in Problem 2. 

21 

(73) 

The only relevant modification is in the proof of Proposition 5. We show that 
inequalities (51), (57), and (58) remain true with modified constants Ci.  Then 
the other parts of the proofs of Proposition 5 and Theorem 1 remain unchanged. 

We give the changed part of the proof of Proposition 5 in between relations 
(50) and (58). 

Even though f/> s may not satisfy the state constraints we still have, with
( i ,s = (fi• S , iJ, i ,s )' that

llz i ,s - ( i ,s llx < Cs\ffi-

As z i ,s E G x Uad , this shows that 

With the abbreviation z( 11,) := (y( 11,), n), let, with 11, according to (73), 

Tmin := min IITii, -wllY,  Tmax := max llz(ii,) - z(v,)llx,wE&G uEUad 

wi ,s := arg min ll( i ,s -v l lx -
vEGxUad 

In case of f/- 8 rf_ G, wi ,s rf_ {z(ii,) + A(( i ,s - z(ii,)): ,\:;::: O}, let 

hi ,s E {z(ii,) + >-(( i ,s - z(ii,)) : ,\:;::: O} n (8G x Uad ),

(74) 

(75) 

bi ,s E {z(ii,) + >.(( i ,s - w i ,s ) : ,\:;::: O} n {h i ,s + µ(h i ,s _ wi ,s ) : µ:;::: O} 

(h i ,s , !Ji ,s arc uniquely defined by these relations). 
Obviously, 

ll( i ,s - wi ,s llx 
llb i ,s - z(ii,)llx 

II ( i ,s - h,i ,s llx
II h,i ,s - z( ii,) llx.

Due to the trivial implication 

a ry a ry -1-/: - = - = }  - - = - -
(3 6 a+f3 ,y+o' 
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GXUad 

Figure 1. 

we obtain together with (74) 

ll(i,s - hi,s llx 
llz(u) - (i,sllx 

. ll( i ,s -wi,sll 
llbi ,s - z(v,)llx + ll(i,s -wi,sllx X 

< Tmax ll(i s i s11 < Tmax ;;;:: - - . ' - W '  X _ - - C 3 y r i ,
Tmin Tmin 

If fJi ,s f:. G, w i ,s E {z(v,) + >-.(( i ,s - z(u)): )..   0}, this estimate is obvious.

(76) 

Let zi ,s be again the feasible point closest to 3:i ,s . Then because h,i ,s is 
feasible, (74) and (76) yield 

II 3:i,s - i , s  llx < 112i,s - hi,s llx :s; llzi,s - (i,s llx + ll( i ,s - hi,s llx

< 
( T m  

x + 1) C 3 y G
Tm1n 

corresponding to (51). 

(77) 

With f;i ,s and if• 8 given by (52), ( 40) we again have for all (y, v,) E G x Uad 
the inequality 

/ (i;i, s + i f 8)(Ay -A7f ,8)dD, + f' (v, - 1i '8)(ui ,s - V,i,s-l - cf8)dD   0. (78) 
lo lo 

Let, with u according to (73), wi ,s be given by 

. ( tf,
s )w',s = T u - 'Yo 11,Ji,s11 I 

'
(79) 

where --y0 > 0 is chosen to be small number such that wi,s E G for all ( i, s). 
Such a --y0 exists because the solution of S1(v,) (see (11)) depends continuously 
on v, E L2(D) with regard to II · IIY• 
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Taking v, = u and y = wi ,s , inequality (78) leads to 

llqi,s11 < 'Yo1 
[11:i,sll (llii, - V,i,s11 + ,'o) + v'Gllti,sllllv'Gi'sll

23 

+ llu - v/, s 
11 llv,i,s - u i ,s - 1 II] , (80) 

and, using (50), which is true in this case too, we obtain 

IIA:z/'s - f - v, i ,s II < C5T;

analogously to (57), (58). 

5. A simple example
To demonstrate the effect of regularization, let us consider an example: 

Minimize / _
1
1 
(y(0) - 1)2 dx

subject to 

- y "  = v,, y ( - 1 )  = y(l) = 0, 

with 

11, E Ua d {v E L 2 (- 1, 1) : v(x) :SO a. e. on (0,1), 

1 ° t 1°

} .}_1 .}_1 v(t)dtdx ::::: 0, .}_ 1
v(t)dt = 0 

The set Uad is a convex and closed subset of L 2 ( - l ,  1), and the above objec-
tive corresponds to the choice Cy = y(0), K-d = l .  According to (18) we consider
the operator C as a mapping from H J  ( - 1 ,  1) on L2 ( - 1 ,  1) and its boundedness 
is a consequence of the continuous embedding of H J  ( - 1 ,  1) into C [-1 ,  1]. 

For a given v, E Ua d , the function 

y'(x) = y'(-1) - ; • x  u(t)dt 
- 1

is absolutely continuous, and

y(x) = y ' ( - l ) ( x  + 1) - [ r

1 
L 'u(t)dtd( 

solves the boundary value problem. Observing the latter formula, due to the 
boundary conditions, we conclude for x = 1 that

1 r ;·  y'(-1) = 2 ./_ l ,  _1 v,(t)dtd(
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and for x = 0

y(0) = y'(-1) - / _
0

1 
/ _   v.(t)dtdt 

Taking into account that 11. E Uad, 

y'(-1) = 1 
; ·O ; • [ ;  

1 / 1  ; • , ;  
2 .  _1. _1 v.(t)dtd  + 

2 .fo . _1 
v.(t)dtd  

l ;·O ;•[; 1 ;•l ;•(; 
2 .  _1 . _ 1  v.(t)dtdl + 

2 .  0 . 0 
v.(t)dtdl 

1 
; • O  

;•[; 
< 2 _1. _1 v.(t)dtd(

Hence, for all 11, E Ua d, we infer 

and 

( 0 

;·/; l 
;·O I t ;  y(0) = y' (-1) - J _

1
. _1 v.(t)dtdl :S: - 2 .  _1

. _1 v.(t)dtd  :S: 0, 

/ _

1

1 (y(0) - l) 2 rlx   2. 

However, it is obvious that the process (yCll, vPl) = (0, 0) is feasible for the 
control problem and gives objective value t1 (y(0) - 1 ) 2 dx = 2, i.e., (y(l), vPl)
is optimal. 

It is easily seen that there arc other solutions, in particular, 

and 

{ -4,;.2 (cos 2Jrx - 1) for x E [-1, 0] 
0 for X E (0, 1] 

{ cos 2Jrx 
0 

for x E [-1, 0] 
for X E (0, 1] 

{ 

x2 1 
-2-,T,-2
x 2 +:E.+ ...1.. 
2 

x2 
2 16 

 2

for X E [-1, -¾] 
for X E ( -¾,  -¼]
for X E ( -¼,  0] 
for X E (0, 1] 

{ 
+1 
- 1
+1
0

for X E [-1, - \ J  
for X E ( -t, -;i] for X E ( - 4, 0] 
for ,r, E (0, l] 

Moreover, it is not difficult to verify that for arbitrary a E R 1

( ay (2) , av.(2)) and ( ay (3) , av. (3) ) , 
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are again solutions, i.e. the optimal set U* is unbounded. 
Now, let us consider the penalized problem: Minimize, with fixed Ti > 0, 

/ • l  
1

1 ·
1 

Ji(Y, v,) = .  
_ 1 

(y(0) - 1) 2 dx + Ti _1 
(y" + u) 2 dx s.t. y E Y, u E Ua d,

where, according to (14), Y = H 6 ( - l , l ) n H 2 (- 1, 1) . 

25 

No solution of this problem (if it is solvable) can satisfy the differential 
equation - y "  = u. 

-Indeed, the first variation of the functional J i  in (y, u) E Y x Ua d gives for
'T) E Y,  VE Uad 

1 [j'l 
; , _ 1  

{ (y(0) + arJ(0) - 1 ) 2 
- (y(0) - 1) 2 } dx+

: i  [
1

1 
{ (y" + arJ" + u + av) 2 - (y" + v.) 2 } dx] la=O 

[ j , 1  
1 

; • l  ] = 2 
_ 1 

(y(0) - l)rJ(0)dx + T i .  
_ 1 

(y" + u)('TJ" + v) dx.

If y "  +v. = 0, then (y, u) is a feasible process, hence y ( 0 ) - 1    - 1 ,  and, choosing
for instance rJ(x) = x 2 - 1  and v(x) = 0, we obtain a non-zero value of the first
variation. 

However, if (fj, il) is a solution of the penalized problem, then it is easily seen 
that for arbitrary a the pairs 

( fj + ay C 2 ) , il + au C2) ) or ( fj + ayC3) , il + au C3 ) ) 

are also solutions. 
Moreover, approximating u by piecewise constant functions and y b y  Her-

mitian cubic splines, one can verify that the approximate penalized problem is 
in general not uniquely solvable. For instance, if on the interval [-1, 1] a grid 
with step-size h = ¼ is chosen, then, with (Yh, uh) a solution of the approximate 
problem, the pair (fi + ay C3l , il + au C3l ) is also a solution for arbitrary a (this
is true because the Hermite approximation of the function y C3) coincides with 
y C3l ). 

Hence, the Hessian of the approximate penalty function is not regular. 
In Method 2 we deal with regularized penalty problems: 
Minimize 

subject t o y  E Y ,  v. E Ua d, 
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where Wi,s are strongly convex functions in X = Y x £ 2 (- 1, 1) (see (16), (17)). 
Approximating these problems as mentioned above, we obtain quadratic pro-
gramming problems with strongly convex objective functions in corresponding 
finite-dimensional spaces. Hence, fast converging methods can be applied for 
solving these finite-dimensional problems. 
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