
Control and Cybernetics

vol. 25 (1996) No. 1

Simulated annealing and genetic algorithms for shape
detection1

1 This work was partly supported by the EC Esprit Basic Research Action Nr. 7141
(ALCOM II) and the EC Human Capital and Mobility Project “Efficient Use of Parallel
Computers: Architecture, Mapping and Communication”

by

Miriam Di Ianni*, Ralf Diekmann**, Reinhard Liiling**,
Jurgen Schulze** and Stefan Tschóke**

*Dip. di Informatica e Sistemistica,
University di Roma ’La Sapienza’, Italy

e-mail: diianni@dsi.uniromal.it

**Department of Mathematics and Computer Science,
University of Paderborn, Germany

e-mail: {diek, rl, schlunz, sts}@uni-paderborn.de

Abstract: The paper presents three heuristical methods for the
solution of the shape detection problem. This problem arises in a
large number of applications and is therefore of large interest to de
velop effective methods for its solution. We formulate the shape
detection problem as a combinatorial optimization problem and use
methods based on simulated annealing and genetic algorithms for
its solution. To speed up the detection process we develop a paral
lelization strategy for both methods.

As a third method we present a constructive heuristic based on
filtering noise. Experimental results show that the simulated anneal
ing and the constructive method give very good results, computed
in short time.

1. Introduction
Digital images are used in several different applications. At first, two of the
main users of digital images were medical sciences, using them e.g. to detect
chromosome abnormalities, and remote sensing, where satellites daily produced
new images of the earth. At present, digital images are also used in many other
fields, such as other medical applications (tomography, X-rays), biology, some
industrial applications. All these application fields stressed the relevance of
finding good solutions to the problem of automatic image analysis.

mailto:diianni@dsi.uniromal.it
paderborn.de

160 M. DI IANNI ct al.

The tools which are used to deal with digitized images are generally called
image processing procedures. A common problem in dealing with images is that
they are often noisy. Thus, image processing procedures are required to remove
the noise, restoring the “original” image. Furthermore, in some cases, they are
also required to automatically analyze the image, distinguishing in it the objects
from the background and recognizing particular objects contained in it. A lot
of literature has been devoted to image processing problems, both with respect
to the noise removal problem, which is strictly connected with the problem
of separating objects points from background points, generally solved by image
thresholding algorithms, and with respect to the recognition of particular objects
(cf. e.g. Angell and Barber, 1977; Ballard and Sabbah, 1983; Chen and Lee,
1990; Hung, 1993; He and Kundu, 1991; Jakubowski, 1990; Lee, Lu and Tsai,
1990; Nakagawa and Rosenfeld, 1979; Rosenfeld, 1990, Sigale and Dixon, 1984;
Sinha and Giardina, 1990; Wang, Hanson and Riseman, 1988; Wojcik, 1983).

In this paper we consider the problem of recognizing simple geometric shapes
in a picture corrupted by noise. The algorithmic techniques we use for its
solution are simulated annealing, genetic algorithms and a constructive method
based on noise filtering.

Simulated annealing is a powerful stochastic technique for solving combi
natorial optimization problems. One of the main drawbacks of simulated an
nealing is its high computational requirements. Because of this, a number of
parallel implementations have been proposed (cf. Aarts, de Bont, Hbers and
van Laarhoven, 1986; Banerjee, Jones and Sargent, 1990; Casotto, Romeo and
Sangiovanni-Vincentelli, 1987; Diekmann, Luling and Simon, 1993; Kravitz and
Rutenbar, 1987; Poussel-Ragot and Dreyfus, 1990; Witte, Chamberlain and
Franklin, 1990). In particular, in Diekmann, Luling and Simon (1993) some
problem independent parallel implementations of simulated annealing have been
described.

Simulated annealing has been proposed to solve image recognition prob
lems (cf. Bongiovanni, Crescenzi and Guerra, 1992; Carnevali, Coletti and
Patternello, 1985; Tan, Gelfand and Delp, 1989). In particular, in Bongiovanni,
Crescenzi and Guerra (1992) a parallel implementation of simulated annealing
for the shape detection problem has been proposed. In this paper we present the
results obtained using the farming implementation of simulated annealing as it
was proposed in Diekmann, Luling and Simon (1993) for other applications.

In Section 2. of this paper, the shape detection problem is formally defined
and its representation in terms of a combinatorial optimization problem is de
scribed. In Section 3. the general simulated annealing algorithm is described
together with some of the parallel implementations proposed for it. In Section
4. we describe a genetic algorithm for the shape detection problem. This algo
rithm is inherently parallel. In Section 5. we present a constructive heuristic for
the shape detection problem which is based on a noise filter. Performance mea
surements presented in Section 6. for the different algorithms finish the paper.

Simulated annealing and genetic algorithms for shape detection 161

ĄiJ) = (

2. The shape detection problem
The shape detection problem (from now on, in short, SDP) can be defined as
follows: given a picture representing a set of (eventually overlapping) geometric
shapes, i.e., parallelograms, ellipses, triangles and so on, compute the list L of
the shapes included in the picture. In general, the picture is corrupted by noise
and the goal is, according to what discussed in the introduction, to distinguish
among “noise” pixels and “regular” ones and to recognize the shapes contained
in the image.

The picture is represented as a binary matrix A such that

0 if pixel (i,j) is white
1 if pixel (i,j) is black.

where 1 < i,j < n and, in absence of noise, black pixels belong to a shape
while white pixels represent background.

We assume that the shapes to be detected are represented in terms of a set of
parameters. For instance, a parallelogram is represented by three of its vertices,
an ellipse by the length of its two axes, and so on. The problem consists then
in finding a set of parameters which describe the picture.

The SDP can be formulated in term of an optimization problem (Bongio-
vanni, Crescenzi and Guerra, 1992). A cost function is defined as the difference
between the observed image and the image obtained by some estimated set of
parameters

n n

c=eEwm)-^')i+^
i=l j=l

where A' = 1 if some shape included in some guessed L contains pixel (i, j).
The goal is finding a list Lq such that C is minimum.

The term kN controls the number of shapes, N being the number of shapes
included in L and k a weighting factor. This last term is used in order to avoid
to consider as a shape a small set of pixels. It is particularly useful in presence
of noise. Observe that, if very noisy pictures are considered, then it is likely
that (relatively) large sets of close pixels are not to be considered as shapes but
they are due to noise. Then, it is worth to assign k an higher value than in the
case of a low noise picture.

To simplify the following algorithms and measurements we restrict the SDP
from its general form (as described above) to the detection of images build of
overlapping rectangular objects.

3. A simulated annealing algorithm for the SDP
Simulated annealing is a powerful stochastic technique for solving (hard) com
binatorial optimization problems.

162 M. DI IANNI ct al.

begin
T:=T0-
choose an initial configuration Co",
C := Co;
while T > 7i do
begin

while equilibrium has not been reached do
begin

choose a neighbor configuration of (7;
A := cost(C') — cost(C};
if A < 0 then C := C'
else C := C' with probability e-y;

end;
T := cooling(T};

end;
end.

Figure 1. Structure of the simulated annealing algorithm

It differs from other techniques based on iterative improvements of the cost
function in that it allows occasional worsenings in the cost function thus avoiding
to get stuck into local minima.

A simulated annealing algorithm (SAA) starts from an initial configuration
and tries to find an optimal configuration (with respect to the given cost func
tion) by generating a sequence of small changes (perturbations} to the current
solution. The changes that improve the value of the cost function are always ac
cepted, like in an iterative improvement method, while the changes that worsen
the value of the cost function are accepted with a probability that depends on
the value of a control parameter called temperature. At the beginning, such a
parameter is assigned with a high value and it is decreased during the evolution
of the process. The algorithm ends when the temperature has reached some
minimum value. The general structure of a SAA is presented in Figure 1.

3.1. Configuration space and cooling schedule

Simulated annealing has been proposed to solve image recognition problems
(cf. e.g. Carnevali, Coletti and Patternello, 1985; Bongiovanni, Crescenzi and
Guerra, 1992). As far as the shape detection problem is concerned, a configura
tion of the simulated annealing algorithm is defined to consist of a set of shapes.
A neighbor configuration is obtained by performing a change to the current con
figuration which involves one single shape based on a random choice. Thus, the
simulated annealing algorithm starts from any initial configuration and tries to
improve the value of cost by attempting a change at each step. In particular,
the following changes are considered:

Simulated annealing and genetic algorithms for shape detection 163

GENERATE: Creates a new element at random position and of random size.
DELETE: Removes an existing element.
STRETCH/SHRINK: Stretching or shrinking of an existing element by a small

number of pixels.
SPLIT: Divides an existing shape into two by removing one line of pixels inside

of it. (Observe that this last operation is not defined for arbitrary shapes
since, for instance, removing a line of pixels in an ellipse does not bring
to a pair of ellipses.)

At each iteration of the simulated annealing algorithm one of the operations
is chosen at random and applied to the current configuration. Thus there is no
guidance in the search process.

As a cooling schedule we used the self adapting schedule presented in Huang,
Romero, Sangiovanni-Vincentelli (1986). The advantage of using such a schedule
is that the temperature decrease is guided by the search process itself, thus
the parametrization of the algorithm is minimized. Self adaptive schedules
decrease the temperature in dependence of the average cost function value and
its variance.

3.2. Parallelization of simulated annealing algorithms

One of the major drawbacks of simulated annealing is its high computational
requirements. One way to overcome this problem is using parallelism. There
are a number of ways parallelism can be applied to simulated annealing (cf. e.g.
Aarts, de Bont, Hbers and van Laarhoven, 1986, Banerjee, Jones and Sargent,
1990, Casotto, Romeo and Sangiovanni-Vincentelli, 1987, Diekmann, Lueling
and Simon, 1993, Kravitz and Rutenbar, 1987, Poussel-Ragot and Dreyfus,
1990, Witte, Chamberlain and Franklin, 1990).

In general one can distinguish two principles for parallelizing simulated an
nealing: The first is based on partitioning the problem describing data and
performing simulated annealing on each data subset, whereas the second strat
egy parallelizes the SAA itself.

The first principle was used in an implementation for the SDP presented
in Bongiovanni, Crescenzi and Guerra (1992). There are two reasons why we
chose the second method for our parallelization: One reason is that the parallel
efficiency of the first principle is in general limited by the extend to which the
problem can be split up into smaller subproblems, which itself can be treated
by simulated annealing. The other and more striking reason is that the depen
dency relations between different subproblems in general lead to a worse solution
quality for the parallel algorithm, compared to the sequential implementation.
Therefore we used a method presented in Diekmann, Lueling and Simon (1993)
which in general provides the solution quality of the sequential algorithm also
for the parallel implementation and achieves reasonable speedup at the same
time.

164 M. DI IANNI et al.

begin
S = set of feasible solutions
for i = 1 to L

begin
S' = MUTATE(S)
S" = RECOMBINE^')
S = SELECTS")

end;
end

Figure 2. Structure of genetic algorithm for the shape detection problem

For the shape detection problem, the best performance can be achieved using
a farming technique. Using this method one processor, the farmer, generates
neighboring configurations which are evaluated by the workers. The local worker
processor also decides about the acceptance of the current local solution. If the
solution is accepted, it is sent back to the central farmer.

We implemented this method on a Transputer network. Performance mea
surements are presented in Section 6.

4. A genetic algorithm for the SDP
Genetic algorithms have shown to be one of the most promising approaches
to apply concepts from nature to solve combinatorial optimization problems.
Other concepts adopted from nature are for example neural networks which
have also shown some performance when used for solving combinatorial opti
mization problems but are usually outperformed by classical methods. One of
the main advantages of genetic algorithms are their general applicability. Thus,
one has to invest very little knowledge about the structure of the optimization
problem to get some solution. To find real good solutions one has to study the
problem structure in more detail. This effect is comparable to the use of sim
ulated annealing. Another advantage of genetic algorithms, which is especially
important in our context, is the fact that these types of algorithms contain
some kind of inherent parallelism, which makes it very easy to map them onto
parallel/distributed computing systems.

A genetic algorithm basically consists of three different genetic operators:
mutation, selection and recombination. These operators are applied iteratively
to a set of feasible solutions, the so called population. While repeating this
process, the solution quality of the population is improved until either all can
didates stagnate at a local optimum or a fixed number of populations have been
evaluated.

Figure 2 describes the overall structure of a genetic algorithms as it is used

Simulated annealing and genetic algorithms foi- shape detecth 165

begin
= 0, G {1, ...,n}

while moving a frame of size a x b in snake-like order over A do
begin

if the frame of size a x b in A contains at least a • b • r black pixels
and this frame is not completely colored with black pixels in B

repeat
add black rows and columns to the frame if the
ratio of black pixels in the enlarged frame is still
larger than r,

until the frame has not been enlarged
copy the resulting frame to B and color it black

end
end

Figure 3. Computing feasible solutions

for our experiments. In the following we describe how the different procedures
are constructed for the special case of the shape detection problem.

4.1. Computing the initial population

As genetic algorithms work on a number of feasible solutions, the so called
population, one has to generate a number of solutions in the initial phase of
the algorithm. We do this by using a simple heuristic for the shape detection
problem.

The heuristic is parameterized by the size of a subpicture a and b and a
given number r, 0 < r < 1 and generates a feasible solution described by a
matrix B(ź,J), 1 <i,j < n. It starts moving a frame of size a x b in snake-like
order over the noisy image A. Every time this frame covers a set of pixels which
are colored by more than r percent with black, the algorithm tries to adjust a
rectangle on this location. The rectangle is extended until the ratio of black
pixels it covers decreases below r percent. The detailed algorithm is listed in
Figure 3.

To construct the initial population, we run this algorithm for a set of param
eters a, b and r. The overall population contains m feasible solutions at every
time.

4.2. Selection operator

The selection operator usually takes the quality of configurations (the so called
fitness) into account. Solutions with high fitness are selected more frequently

166 M. DI IANNI ct al.

begin
sum = C(si) + C(s2) + • ■ • 4- C[sm)
for i = 1 to m do
begin

choose solution Si 6 {si,..., sm} with probability C(si)/sum
S' = S'U Si

end
end

Figure 4. The selection operator

for recombination. Suppose the overall population is represented by a list of
solutions S = si,..., sm with associated cost function values C(si),...,C(sm).

The selection algorithm constructs a new population S' by iteratively choos
ing one item of the old population according to its fitness. This solution is added
to the new population. Repeating this m times, the new population contains a
solution with good solution quality more often. Therefore, this element will be
used for recombination with higher probability. The detailed algorithm is listed
in Figure 4.

4.3. Recombination operator

The recombination operator iteratively chooses two elements from the actual
population and builds a new element out of these two solutions. This process is
repeated for a constant number of iterations.

To construct a feasible solution s^ out of two random chosen solutions s7; and
Sy, Si is first copied to s^. Then a random shape element from both solutions
Si and s7- is chosen. If there is an overlap between this two shapes the minimal
shape containing both is inserted into the s^. If no overlap exists between the
two selected elements, both are placed in the new solution s^.

The two parents Si and Sj are chosen according to their cost function value.
Here we use the same method as in the selection operation. The newly generated
element s^ is inserted into the population and replaces either Si or Sj, depending
on which of both has the smaller fitness. Thus, the overall number of elements
in the population stays constant.

4.4. Mutation operator

The mutation operator randomly selects elements of the actual population and
applies local modifications. The mutation operations are comparable to those
already listed for the simulated annealing procedure (cf. Sec. 3.1.). To get a
better convergence behavior we used slightly more powerful operations:

Simulated annealing and genetic algorithms for shape detection 167

GENERATE: Creates a new element at random position and of random size.
DELETE: Removes an existing element.
UNION: Selects two elements at random and substitutes them by the smallest

shape that contains both selected elements.
MOVE: Selects a random element and moves it into a random chosen destina

tion. The maximal moving distance is equivalent to half of the maximal
side length of the shape. After moving the element it can be stretched or
shrunk as described for the simulated annealing algorithm.

The operations are applied to a number of randomly chosen elements. The
actual number is a parameter of the genetic algorithm and depends on the
number m describing the population size. The operator which is applied to the
elements is also chosen at random in each case.

4.5. Parallelization of genetic algorithms

A genetic algorithm is inherently parallel since the overall population can be
distributed onto a processor network in a very natural way. Every processor
can run its local genetic algorithm on its own subpopulation. Thus, this paral
lelization follows Darwin’s island approach. On each island (processor) a local
population is resident, which evolves independently of the populations on the
other islands. An exchange of individuals only happens in irregular intervals,
when individuals are island-overlappingly selected for recombination.

Strategies of this type have been used for genetic algorithms (see e.g. Kroger,
Schwenderling, Vornberger, 1991) and it has been observed that the solution
quality is in general comparable to that of the sequential algorithms while
achieving significant speedup.

5. A constructive heuristic
Additionally to general methods like simulated annealing and genetic algorithm
we also developed a constructive heuristic tailored to the shape detection prob
lem. The heuristic consists of two phases as there are an image preprocessing
and a heuristic shape detection.

5.1. Image preprocessing

The image preprocessing phase of our heuristic tries to compute the best possible
approximation to the supposed original image without any shape detection at
all. It only consists of changing the pixel information of a given image. On a
copy of a given noisy image some functions to swap pixels are applied, completely
eliminating noise up to 40% and amplifying rectangular contours. We reached
our best results with four functions applied in the order described below.

168 M. DI IANNI et al.

Figure 5. Filtering noise Figure 6. Smoothing edges

Figure 7. Amplifying corners Figure 8. Error correction

5.1.1. Filtering noise

The noise filtering function computes for every pixel the number of black and
white pixels in a surrounding square of given radius. If less than 45% of the
surrounding pixels are white then the center pixel is turned to black. If less
then 45% of the surrounding pixels are black the center pixel is turned to white.
The function is applied iteratively with decreasing radius from 7 to 1 (Figure 5
shows an example with radius 2). In the resulting image noise of less or equal
to 40% is completely eliminated with high probability, but edges of the shape
are not straight and all corners of the shape are rounded with a radius of at
least 5 pixels.

5.1.2. Smoothing vertical and horizontal edges

In the resulting image small hills and small sinks of up to 5 pixels are removed
from all vertical and horizontal shape/background edges (see Figure 6).

5.1.3. Amplifying rectangular corners

In this function for all eight types of corners (north-west outer corner as in
figure 7, north-west inner corner, NE outer, NE inner, SW-o, SW-i, SE-o, SE-i)
every pixel of the image is scanned with two sweep lines in decreasing distance
(3,2,1) from the examined pixel. If at least one sweep line is not crossing a
shape background edge a white pixel of a round corner can be set to black when
scanning shape corners and a black can be set to white if scanning background
corners.

Simulated annealing and genetic algorithms for shape detecti< 169

5.1.4. Error correction of vertical and horizontal edges

Errors in the position of shape/background edges are corrected by comparing-
processed image with the noisy input image. If a black line of an edge of the
processed image has less than 45% black pixels in the noisy input image it is
turned to white and if a white line has less than 45% white pixels is is turned
to black.

After applying all four functions the pixel difference of the preprocessed
image to the original shape is in average 0 for noise <=25%, about 1% for noise
<=35% and about 5% for noise for <=42%. Images with more than 46% noise
cannot be handled with this filter.

5.2. Rectangle detection

After preprocessing the input image we still have no information about the
shape. But now the rectangle detection is very simple, because the approxima
tion to the original image is very good in most cases. We use a heuristic, which
is optimal if the pixel difference to the original shape is 0. Take a black pixel of
the shape and expand the pixel to all direction as far as the growing rectangle is
still completely part of the shape, i.e. consists of black pixels. If there is a black
pixel left which is not covered by previously constructed rectangles then do the
expansion once more. If not, stop with the minimal number of image covering,
overlapping rectangles.

6. Measurement results
6.1. Benchmark suite

To test the described algorithms we used four images of size 100 x 100 consisting
of a number of black rectangles placed on a plain white ground. Figure 9 shows
the four images. Each of them is used with 10, 20 and 35 percent of uniform
noise. Figure 10 shows the first test instance with increasing noise.

Figure 9. The four test instances

170 M. DI IANNI ct al.

Figure 10. The first instance with 0%, 10%, 20% and 35% noise

6.2. Results: Detected shapes

Table 1 shows results of the three algorithms on each of the four test problems.
We define A = 52|Ao(i5<7) — 71/(2, J) | as the difference between the detected
image and the original one without noise. R indicates the number of detected
rectangles. SA are the results of the SAA, GA those of the genetic algorithm.
Additionally we give the best solution found for the start population of the
GA. This solution is calculated by the simple heuristic (SH) described in Sec
tion 4.1. The column named CH gives the results of the constructive heuristic
from Section 5.

Table 1. Comparison of the results from the three approaches to the SDP.

81—
1 N(%) SA SH

A R
GA CH

A RA R A R
1 10 0 5 126 7 42 5 0 5

(5) 20 6 7 430 5 160 5 0 5
35 80 5 3736 542 683 96 120 6

2 10 0 3 87 10 52 8 0 3
(3) 20 12 5 249 25 151 15 0 3

35 81 4 3174 458 930 107 0 3
3 10 0 4 95 8 63 12 0 4

(4) 20 4 5 226 27 159 14 0 4
35 64 4 3151 434 764 41 60 4

4 10 0 3 46 6 31 5 0 3
(3) 20 11 4 595 196 270 17 0 3

35 86 4 1363 144 922 95 39 3

The results of SAA and GA are the best results out of several runs with
different random sequences. Our implementation of SA turns out to be very
stable. The mean values of 10 runs do not differ significantly from the best
results. The cooling schedule parameters correspond to the original setting of
Huang et. al. (1986) as they are also reported in Diekmann, Luling and Simon

Simulated annealing and genetic algorithms for shape detection 171

Figure 11. Solution of SAA, Figure 12. Solution of SAA,
image 1, 20% and 35% noise image 3, 20% and 35% noise

Figure 13. Initial and GA-solution
of image 1 with 35% noise

Figure 14. Initial and GA-solution
of image 1 with 20% noise

(1993). The frozen criterium is fullfilled if either no cost variation occurs in
4 successive chains or if T~c(Tf)-C0 < e where e — 0.01 and C(Tf) is the
average of cost variations at temperature Tf. The equilibrium detection uses
Huang’s criterion, too, with a minimum of n/2 accepted and a maximum of
n2/40 generated perturbations.

The GA is run with a population size between 50 and 150 and between 10
and 30 generations. The mutation rate is varied between 10 and 50% and the
recombination rate between 30 and 80%. After each change of an arbitrary

Figure 15. Solution of the constructive heuristic, image 1 (35% noise) after
phase 1 (noise filtering, A = 461), 2 (smoothing edges, A = 443), 3 (amplifying
corners, A — 362) and 4 (error correction, A = 120)

172 M. DI IANNI et al.

rectange, it is adusted by a value of up to ±5 pixels in each direction in order
to locally maximize the cost function. The results are the best found within 50
runs with different parameters.

Some of the results are shown in Figures 11 to 15. Figure 11 and 12 show the
detected images of SAA on the test instance 1 and 3 with 20% and 35% noise.
It can be seen that the results correspond directly to the original pictures. The
small differences do not affect the overall impression.

Figures 13 and 14 show results of our genetic algorithm on image 1 with
20% and 35% noise compared to the best initial solutions found by the simple
heuristic SH. The pictures show that the GA finds substantial improvements to
the initial solution although the results are not comparable to those of SA or
the constructive heuristic CH. If only noise reduction is considered, the overall
impression is reasonable, i.e. the overall shape (not considering details too much)
corresponds to the original picture.

Figure 15 shows image 1 with 35% noise after the different steps of the
constructive heuristic. The noise reduction step is image independent and can
therefore be used as preprocessing step to the other heuristics, too. The second,
third and forth step work, as they are, only if rectangular corners and edges
parallel to the coordinate axes are considered. These phases can, of course, be
adapted to other types of images. The results of the constructive heuristic are
very impressive. As it is tailored to images consisting of overlapping rectangles
that were used as benchmark suite, it is able to find in almost every case the
original image (cf. Table 1).

6.3. Results: efficiency

The running times of the heuristic optimization algorithms depend directly on
the choice of parameters. The efficient self adapting cooling schedule of the SAA
enables a sequential running time of about 30 seconds on a SUN SS10, nearly
independent of the considered image. This running time is comparable to that
of the constructive heuristic. The genetic algorithm takes about 10 times more
running time.

The simple parallelization strategy which was chosen to speed up the SAA
offers the potential to decrease the running time by a factor of 2 on 4 processors.
The use of larger parallel systems makes no sense with this farming approach,
as the time to calculated the cost difference within the simulated annealing loop
takes only linear time. This observation corresponds to the results of Diekmann,
Luling and Simon (1993).

7. Conclusions
In this paper we formulated the shape detection problem as a combinatorial op
timization problem. We showed how to apply simulated annealing and genetic
algorithms to the problem and designed a specialized construction heuristic,

Simulated annealing and genetic algorithms for shape detection 173

tailored to images consisting of overlapping rectangles which are used in the
benchmark suite. The construction heuristic is mainly based on noise filter
ing, edge smoothing and corner correction and can detect shapes built up by
rectangles very efficiently

The use of simulated annealing with an efficient self adapting cooling sched
ule delivers results that are comparable to those of the specialized heuristic.
Images with up to 35% of noise are detected by SA with an error of less than
1% in almost all cases within 30 seconds of sequential time on a standard work
station. We also showed how to speed up the simulated annealing algorithm by
a factor of 2 without affecting the convergence behavior, using a simple farming
approach.

Our implementation of a genetic algorithm for the shape detection problem
delivers results which are, considered on there own, reasonable. However, com
pared to those of SA they are not very convincing. This may result from our
difficulty to define good crossover operators and to find the right setting to the
large number of parameters of this method. This problem does not arise with
SA because of the possibility to use a self adapting cooling schedule.

In general we conclude that it is much easier to apply simulated annealing
to the shape detection problem than to use genetic algorithms, at least if no
kind of “automatic parameter setting” is given for the GA.

Our future work will focus on the generalization of the SA implementation
to the detection of arbitrary objects.

Acknowledgements

We thank Derk Meyer and Robert Preis (Paderborn) for the implementation of
the genetic algorithm. Thanks go also to Gianluca Trombetta (Rome) for the
implementation of the simulated annealing algorithm.

References

Aarts, E.H.L., de Bont, F.M.J., Habers, E.H.A. and van Laarhoven,
P.J.M. (1986) Parallel implementations of the statistical cooling algo
rithm. Integration: the VLSI Journal, 4, 209-238.

ANGELL, P.H., Barber, E. (1977) An algorithm for fitting circles and el
lipses to megalithic stone rings. Science and Archaeology, 20, 11-16.

BALLARD, D., S ABB AH, E. (1981) On Shapes. 7th Int. Joint Conf, on Artifi
cial Intelligence, Vancouver, 607-612.

BALLARD D., SABBAH E. (1983) Viewer independent shape recognition.
IEEE Trans, on Pattern Analysis and Machine Intelligence, PAMI-5,
653-660.

Banerjee, P., Jones, M.H. and Sargent, J.S. (1990) Parallel simulated
annealing algorithms for cell placement on hypercube multiprocessor.

174 M. DI IANNI ct al.

IEEE Trans, on Parallel and Distributed Systems, 1, 91-106.
Bongiovanni, G., Crescenzi, P. and Guerra, C. (1995) Parallel simu

lated annealing for shape detection. Computer Vision and Im,age Un
derstanding, 61, 1, 60-69.

Carnevali, P., Goletti, L. and Patternello, S. (1985) Image process
ing by simulated annealing. IBM J. Res. Develop.

Casotto, A., Romeo, R. and Sangiovanni-Vincentelli, A. (1987) A
parallel simulated annealing for the placement of macro-cells. IEEE Trans,
on Computer-Aided Design, CAD-6, 838-847.

Chen, L.H. and Lee, K.L. (1990) A new method for circular object detection
and location. Patt. Recogn. Lett., 11, 691-697.

Diekmann, R., Luling, R. and Simon, J. (1993) Problem independent dis
tributed simulated annealing and its applications, Applied Simulated An
nealing. R.V.V. Vidal (ed.), Springer LNEMS 396, 17-44.

FREEMAN, R. (1978) Shape description via the use of critical points. Pattern
Recognition, 10, 159-166.

He, Y. and Kundu, A. (1991) 2-D shape classification using hidden Markov
model. IEEE Trans, on Patt. Analysis and Machine Intelligence, 13,
1172-1184.

Hung, D.C.D. (1993) Non-conventional algorithm for representing and recog
nizing complicated two-dimensional objects. Patt. Recogn., 26, 495-504.

Huang, M.D., Romeo, F., Sangiovanni-Vincentelli, A. (1986) An effi
cient general cooling schedule for simulated annealing. IEEE International
Conference on Computer Aided Design, 381-384

JAKUBOWSKI, R. (1990) Decomposition of complex shapes for their structural
recognition. Information Sciences, 50, 35-71.

Kroger, B., Schwenderling, P., Vornberger, O. (1991) Genetic Pack
ing of Rectangles on Transputers. In: Transputing 91, P. Welsh, D. Stiles,
T.L. Knuii and A. Bakkers (ed), IOS Press Amsterdam, pp. 593-608.

Kravitz, S.A. and Rutenbar, R.A. (1987) Placement by simulated anneal
ing on a multiprocessor. IEEE Trans, on Computer-Aided Design, CAD-
6, 534-549.

VAN LAARHOVEN, P.J.M. and Aarts, E.H. (1988) Simulated annealing:
theory and applications. D. Reidel Publishing Company.

LANGRIDGE, B., (1972) On the computation of shape. In: Frontiers in Pattern
Recognition, Academic Press.

Lee, R., Lu, P.C. and Tsai, W.H. (1990) Moment preserving detection of
elliptical shapes in gray-scale images. Patt. Recogn. Letters, 11, 405-414.

Murray, D.W., Kashko, A. and Buxton, H. (1986) A parallel approach
to the picture restoration algorithm of Geman and Geman on a SIMD
machine. Image and Vision Computing, 4, 3, 133-142.

Nakagawa, Y., Rosenfeld, A. (1979) A note on polygonal and elliptical
approximation of mechanical parts. Pattern Recognition, 11, 133-142.

Simulated annealing and genetic algorithms for shape detection 175

POUSSEL-RAGOT, P. and DREYFUS, G. (1990) A problem independent paral
lel implementation of simulated annealing: models and experiments. IEEE
Trans, on Computer-Aided Design, CAD-9, 827-835.

Rosenfeld, A. (1990) Fuzzy Rectangles. Patt. Recogn. Lett., 11, 677-679.
Sinha, D. and Giardina, C.R. (1990) Discrete black and white object recog

nition via morphological functions. IEEE Trans, on Patt. Analysis and
Machine Intelligence, 12, 275-293.

Slgale, U., Dixon, N.A. (1984) Freedom descriptions: A way to find figures
that approximate given points. Pattern Recognition, 17, 631-636.

SOLTAN, V. and GORPINEVICH, A. (1993) Minimum dissection of a rectangu
lar polygon with arbitrary holes into rectangles. Discrete and Computa
tional Geometry, 9, 57-79.

Tan, H.L., Gelfand, S.B. and Delp, E.J. (1989) A cost minimization ap
proach to edge detection using simulated annealing. In: Proc, of the 1989
Conference on Computer Vision and Pattern Recognition, 89-91.

Wang, C.Z.., Hanson, A., Riseman, P.W. (1988) Fast Extraction of El
lipses. In: Proc, of the 9th Int. Conf, on Pattern Recognition, Rome,
508-510.

Witte, E.E., Chamberlain, R.D. and Franklin, M.A. (1990) Parallel
simulated annealing using speculative computation. In: Int. Conf, on
Parallel Processing, 286-290.

Wen, W. and Lozzi, A. (1992) Recognition and inspection of two-dimen
sional industrial parts using subpolygons. Pattern Recognition, 25, 1427-
1434.

WOJCIK, S. (1983) Method of contour recognition. Digital Systems for Indus
trial Automation, 2, 63-83.

