
Control and Cybernetics
vol. 25 (1996) No. 1

Adaptive simulated annealing (ASA): lessons learned

by

Lester Ingber

Lester Ingber Research,
P.O.B. 857, McLean, VA 22101, U.S.A.,

e-mail: ingb er@ alumni. caltech. edu

Abstract: Adaptive simulated annealing (ASA) is a global opti­
mization algorithm based on an associated proof that the parameter
space can be sampled much more efficiently than by using other
previous simulated annealing algorithms. The author’s ASA code
has been publicly available for over two years. During this time the
author has volunteered to help people via e-mail, and the feedback
obtained has been used to further develop the code. Some lessons
learned, in particular some which are relevant to other simulated
annealing algorithms, are described.

1. Introduction

Adaptive simulated annealing (ASA) is a global optimization algorithm that
relies on randomly importance-sampling the parameter space, i.e., in contrast
to utilizing deterministic approaches often used by OR and mathematical pro­
gramming people.

Since the public release of the very fast simulated reannealing (VFSR) code
(Ingber, 1989), now called ASA (Ingber, 1993a), I have volunteered to help users
via e-mail on code-specific problems they might encounter. The popularity of
the code, roughly measured by the size of the ASAJist of people specifically
requesting to be placed on a monthly list of updates—now at about 500 names—
increased about a factor of two after an article in The Wall Street Journal
(Wofsey, 1993). I have had contact with thousands of users via e-mail, a few
via other channels of communication, and it is clear that these are just a small
fraction of people that have at least tried to use the code. Therefore, I conclude
that the code is quite stable and free of major bugs.

This paper deals with some of the lessons learned from this interaction. I
think that at least some of these lessons may be useful to other developers of
simulated annealing (SA) code, as well as to many users. A previous paper
has described SA in the context of its use across many disciplines, and the

34 L. INGBER

variation in use in actual practice versus the algorithm offered in theoretical
papers (Ingber, 1993b).

Section 2 gives a brief mathematical description of the ASA algorithm. Sec­
tion 3 describes some of the options in the code, and explains why they are
useful. Section 4 addresses some comparison tests and controversial claims,
emphasizing that in fact there are many shades of SA. Section 5 gives a brief
conclusion.

ASA source code in C-language is publicly available via anonymous ftp (Ing­
ber, 1993a), or via the world wide web (WWW) at
http://www.alumni.caltech.edu/^ingber/. Problems with the code can be ad­
dressed to ingber@alumni.caltech.edu. Requests to be placed on the ASA mail­
ing list should be addressed to asa-request@alumni.caltech.edu.

2. ASA algorithm

2.1. “Standard” simulated annealing (SA)

The Metropolis Monte Carlo integration algorithm (Metropolis et al., 1953)
was generalized by the Kirkpatrick algorithm to include a temperature schedule
for efficient searching (Kirkpatrick et al., 1983). A sufficiency proof was then
shown to put an lower bound on that schedule as 1/ log(t), where t is an artificial
time measure of the annealing schedule (Geman and Geman, 1984). However,
independent credit usually goes to several other authors for independently de­
veloping the algorithm that is now recognized as simulated annealing (Cerny,
1982; Pincus, 1970).

2.1.1. Boltzmann annealing (BA)

Credit for the first simulated annealing is generally given to a Monte Carlo
importance-sampling technique for doing large-dimensional path integrals aris­
ing in statistical physics problems (Metropolis et al., 1953). This method was
generalized to fitting non-convex cost-functions arising in a variety of problems,
e.g., finding the optimal wiring for a densely wired computer chip (Kirkpatrick
et al., 1983). The choices of probability distributions described in this section
are generally specified as Boltzmann annealing (BA) (Szu and Hartley, 1987).

The method of simulated annealing consists of three functional relationships.
1. ^t(^): Probability density of state-space of D parameters x = {x\ i =

1,Z)}, where the subscript T signifies a parameterization popularly re­
ferred to as the “temperature”.

2. Probability for acceptance of new cost-function given the just
previous value.

3. T(k\. schedule of “annealing” the “temperature” T in annealing-time
steps /c, i.e., of changing the volatility or fluctuations of one or both of the
two previous probability densities.

http://www.alumni.caltech.edu/%255eingber/
mailto:ingber@alumni.caltech.edu
mailto:asa-request@alumni.caltech.edu

Adaptive simulated annealing (ASA): lessons learned 35

The acceptance probability is based on the chances of obtaining a new state
with “energy” ^+1 relative to a previous state with “energy” E^

exp(-Ek+x/T)
exp(-£'fc+1/T') + exp(-Ek/T)

1
1 + exp(Aj£/T)

« exp(-A£?/T), (1)

where /EE represents the “energy” difference between the present and previous
values of the energies (considered here as cost functions) appropriate to the
physical problem, i.e., ĆEE = E^i — Ek. This essentially is the Boltzmann
distribution contributing to the statistical mechanical partition function of the
system (Binder and Stauffer, 1985).

This sampling algorithm also can be described by considering: a set of states
labeled by .t, each with energy e(rr); a set of probability distributions p(x)\ and
the energy distribution per state d(e(x)), giving an aggregate energy E,

X

(2)

The principle of maximizing the entropy, S',

S
X

(3)

where x represents a reference state, using Lagrange multipliers (Mathews and
Walker, 1970) to constrain the energy to average value T, leads to the most
likely Gibbs distribution G(z),

(4)

in terms of the normalizing partition function Z) and the Hamiltonian H oper­
ator as the “energy” function,

(5)

For such distributions of states and acceptance probabilities defined by func­
tions such as h(AE), the equilibrium principle of detailed balance holds. I.e.,
the distributions of states before, G(xk), and after, G(rrfc+i), applying the ac­
ceptance criteria, h(AE') = h(Ek+i — Ek) are this same:

G(^)h(A^)) = G(^+i). (6)

This is sufficient to establish that all states of the system can be sampled,
in theory. However, the annealing schedule interrupts equilibrium every time

36 L. INGBER

the temperature is changed, and so, at best, this must be done carefully and
gradually.

An important aspect of the SA algorithm is to pick the ranges of the param­
eters to be searched. In practice, computation of continuous systems requires
some discretization, so without loss of much generality for applications described
here, the space can be assumed to be discretized. There are additional con­
straints that are required when dealing with generating and cost functions with
integral values. Many practitioners use novel techniques to narrow the range
as the search progresses. For example, based on functional forms derived for
many physical systems belonging to the class of Gaussian-Markovian systems,
one could choose an algorithm for #,

= (27rT)_'D/2 exp[—A.t;2/(2T)], (7)

where A.t = x — x$ is the deviation of x from xq (usually taken to be the just-
previously chosen point), proportional to a “momentum” variable, and where
T is a measure of the fluctuations of the Boltzmann distribution g in the D-
dimensional .T-space. Given g(A.T), it has been proven (Geman and Geman,
1984) that it suffices to obtain a global minimum of E(x) if T is selected to be
not faster than

= <8>

with To “large enough”.
For the purposes of this paper, a heuristic demonstration follows, to show

that (8) will suffice to give a global minimum of T(.t) (Szu and Hartley, 1987).
In order to statistically assure, i.e., requiring many trials, that any point in
.T-space can be sampled infinitely often in annealing-time (IOT), it suffices to
prove that the products of probabilities of not generating a state x IOT for all
annealing-times successive to ko yield zero,

IF1-^)^00 0- (9)
k

This is equivalent to

52^=^°°«>, (io)
k

as seen by taking the log of (9) and Taylor expanding in g^. The problem then
reduces to finding T(&) to satisfy (10). Note that, given a very large space to
sample, often at best only a “weak” ergodicity can be assumed for this proof,
and any such ergodicity even for well-understood physical systems is an open
area of research (Ma, 1985).

For BA, if T(&) is selected to be (8), then (7) gives
oo oo OQ

52 gfe > 52 exp(-lnfc) = 52
k=ks k=k,Q k=ko

(11)

Adaptive simulated annealing (ASA): lessons learned 37

Although there are sound physical principles underlying the choices of (7)
and (1) (Metropolis et ah, 1953), it was noted that this method of finding the
global minimum in x-space was not limited to physics examples requiring bona
fide “temperatures” and “energies”. Rather, this methodology can be readily
extended to any problem for which a reasonable probability density h(Ax) can
be formulated (Kirkpatrick et ah, 1983).

2.1.2. Simulated quenching (SQ)

Many researchers have found it very attractive to take advantage of the ease
of coding and implementing SA, utilizing its ability to handle quite complex
cost functions and constraints. However, the long time of execution of standard
Boltzmann-type SA has many times driven these projects to utilize a tempera­
ture schedule too fast to satisfy the sufficiency conditions required to establish
a true (weak) ergodic search. A logarithmic temperature schedule is consistent
with the Boltzmann algorithm, e.g., the temperature schedule is taken to be

Tk — To
In ko
hTP (12)

where T is the “temperature”, k is the “time” index of annealing, and ko is
some starting index. This can be written for large k as

AT =

Tk+i =

-To
In ko Ak
A:(In A:)2 ’

Tk — To
In A:o

A;(ln k)2 (13)

k » 1

However, some researchers using the Boltzmann algorithm use exponential sched-
ules, e.g.,

Tk+1 = cTk, 0 < c < 1

Tk = Toexp((c- 1)A:), (14)

with expediency the only reason given. While perhaps someday less stringent
necessary conditions may be developed for the Boltzmann algorithm, this is not
now the state of affairs. The question arises, what is the value of this clear
misuse of the claim to use SA to help solve these problems/systems (Ingber,
1993b)? Below, a variant of SA, adaptive simulated annealing (ASA) (Ingber,
1989; Ingber, 1993a), in fact does juśtify an exponential annealing schedule, but
only if a particular distribution is used for the generating function.

38 L. INGBER

2.1.3. Fast annealing (FA)
Although there are many variants and improvements made on the “standard”
Boltzmann algorithm described above, many textbooks finish just about at this
point without going into more detail about other algorithms that depart from
this explicit algorithm (van Laarhoven and Aarts, 1987). Specifically, it was
noted that the Cauchy distribution has some definite advantages over the Boltz­
mann form (Szu and Hartley, 1987). The Cauchy distribution they define is

= (Arr2 +T2)(£I+1)/2’

which has a “fatter” tail than the Gaussian form of the Boltzmann distribution,
permitting easier access to test local minima in the search for the desired global
minimum.

It is instructive to note the similar corresponding heuristic demonstration,
that the Cauchy //(A#) statistically finds a global minimum. If (8) is replaced
by

T(fc) = (16)

then here
OO rp OO

<17>
ko kQ

Note that the’ “normalization” of g has introduced the annealing-time index A;,
giving some insights into how to construct other annealing distributions. The
method of FA is thus seen to have an annealing schedule exponentially faster
than the method of BA. This method has been tested in a variety of problems
(Szu and Hartley, 1987).

2.2. Adaptive Simulated Annealing (ASA)
In a variety of physical problems we have a D-dimensional parameter-space.
Different parameters have different finite ranges, fixed by physical consider­
ations, and different annealing-time-dep endent sensitivities, measured by the
curvature of the cost-function at local minima. BA and FA have g distributions
which sample infinite ranges, and there is no provision for considering differences
in each parameter-dimension, e.g., different sensitivities might require different
annealing schedules. These are among several considerations that gave rise to
Adaptive Simulated Annealing (ASA). Full details are available by obtaining
the publicly available source code (Ingber, 1993a).

ASA considers a parameter ak in dimension i generated at annealing-time
k with the range

4 € [A, Bi], (18)

Adaptive simulated annealing (ASA): lessons learned 39

calculated with the random variable yl,

4+i = (Ą+y^-Ai),

y* e [—1,1]-

Define the generating function
D D

gr(.y) = 2(|^|+Ti)ln(l+ 1/2;) = 9'^(y),

(19)

(20)

where the subscript i on Ti specifies the parameter index, and the ^-dependence
in Ti(k) for the annealing schedule has been dropped for brevity. Its cumulative
probability distribution is

(21)

y1 is generated from a u1 from the uniform distribution

i?GC7[0,l],

-!]• (22)

It is straightforward to calculate that for an annealing schedule for Ti

Ti(k) = Tb; exp(-cźV/jD),

a global minima statistically can be obtained. I.e.,
00 00

9k
ko ko

It seems sensible to choose control over c^, such that

Tfi — Toi exp(—mi) when kf = expn?;,
Ci = mi exp(—rii/D\

(23)

(24)

(25)

where mi and Hi can be considered “free” parameters to help tune ASA for
specific problems.

It has proven fruitful to use the same type of annealing schedule for the
acceptance function h as used for the generating function g, i.e., (23) and (25),
but with the number of acceptance points, instead of the number of generated
points, used to determine the k for the acceptance temperature.

40 L. INGBER

In one implementation of this algorithm, new parameters c^+1 are generated
from old parameters cĄ. by generating the yus until a set of D are obtained
satisfying the range constraints. In another alternative supported in ASA, useful
for some constraint problems, the y^s are generated sequentially for each test
of the cost function.

2.2.1. Reannealing
Whenever doing a multi-dimensional search in the course of a real-world non­
linear physical problem, inevitably one must deal with different changing sensi­
tivities of the a1 in the search. At any given annealing-time, it seems sensible to
attempt to “stretch out” the range over which the relatively insensitive parame­
ters are being searched, relative to the ranges of the more sensitive parameters.

It has proven fruitful to accomplish this by periodically rescaling the anneal­
ing-time k, essentially reannealing, every hundred or so acceptance-events (or
at some user-defined modulus of the number of accepted or generated states),
in terms of the sensitivities Si calculated at the most current minimum value of
the cost function, A,

Si = dL/da1. (26)
In terms of the largest st = smax, a default rescaling is performed for each ki of
each parameter dimension, whereby a new index k'i is calculated from each k^

ki > k i,

Tik(s maXi/s ^),

k'i = (\n(Ti0/Tik,)/ci)D. (27)

Tio is set to unity to begin the search, which is ample to span each parameter
dimension.

The acceptance temperature is similarly rescaled. Since the initial accep­
tance temperature is set equal to an 'initial trial value of L, this is typically
very large relative to the current best minimum, which may tend to distort the
scale of the region currently being sampled. Therefore, when this rescaling is
performed, the initial acceptance temperature is reset to the maximum of the
most current minimum and the best current minimum of £, and the annealing­
time index associated with this temperature is reset to give a new temperature
equal to the minimum of the current cost-function and the absolute values of
the current best and last minima.

Also generated are the “standard deviations” of the theoretical forms, cal­
culated as [d2L/(<?a^)2]-1/2, for each parameter This gives an estimate of
the “noise” that accompanies fits to stochastic data or functions. At the end of
the run, the off-diagonal elements of the “variance matrix” are calculated for all
parameters. This inverse curvature of the theoretical cost function can provide
a quantitative assessment of the relative sensitivity of parameters to statistical
errors in fits to stochastic systems.

Adaptive simulated annealing (ASA): lessons learned 41

2.2.2. Quenching
Another adaptive feature of ASA is its ability to perform quenching in a me­
thodical fashion. This is applied by noting that the temperature schedule above
can be redefined as

Ti(ki) = T0iexp^Cik^/D),

Ci = miexp(-ni<2i/P), (28)

in terms of the “quenching factor” Qi. The above proof fails at (24) if Qi > 1
as

= (29)
k k

This simple calculation shows how the “curse of dimensionality” arises, and
also gives a possible way of living with this disease. In ASA, the influence of
large dimensions becomes clearly focussed on the exponential of the power of
k being 1/D, as the annealing required to properly sample the space becomes
prohibitively slow. So, if we cannot commit resources to properly sample the
space ergodically, then for some systems perhaps the next best procedure would
be to turn on quenching, whereby Qi can become on the order of the size of
number of dimensions.

The scale of the power of 1/D temperature schedule used for the acceptance
function can be altered in a similar fashion. However, this does not affect the
annealing proof of ASA, and so this may used without damaging the (weak)
ergo dicity property.

2.2.3. ASA applications
The above defines this method of adaptive simulated annealing (ASA), previ­
ously called very fast simulated reannealing (VFSR) (Ingber, 1989) only named
such to contrast it the previous method of fast annealing (FA) (Szu and Hartley,
1987). The annealing schedules for the temperatures Ti decrease exponentially
in annealing-time k, i.e., Ti = TiQ exp(—CikVD). Of course, the fatter the tail of
the generating function, the smaller the ratio of acceptance to generated points
in the fit. However, in practice, it is found that for a given generating function,
this ratio is approximately constant as the fit finds a global minimum. There­
fore, for a large parameter space, the efficiency of the fit is determined by the
annealing schedule of the generating function.

A major difference between ASA and BA algorithms is that the ergodic
sampling takes place in an n+1 dimensional space, i.e., in terms of n parameters
and the cost function. In ASA the exponential annealing schedules permit
resources to be spent adaptively on reannealing and on pacing the convergence
in all dimensions, ensuring ample global searching in the first phases of search
and ample quick convergence in the final phases.

42 L. INGBER

I have used ASA in several systems, ranging from combat analysis (Ingber,
Fujio, and Wehner, 1991; Ingber and Sworder, 1991), to finance (Ingber, 1990;
Ingber, Wehner et al., 1991), to neuroscience (Ingber, 1991), to a set of test
problems (Ingber and Rosen, 1992), to a new technique combining the power of
SA with the physics of large-scale systems (Ingber, 1992).

An optimization algorithm typically is just one tool used in a major project,
and many users of ASA use this code as just one such tool. Furthermore,
the author has made it a policy not to give out any information he receives
from users unless they specifically permit him to do so. Thus, many people
ask questions and give feedback on the code they might not give otherwise. In
order to get maximum feedback without unduly bothering researchers, the e-
mail ASAJist is not open forum, but rather an efficient moderated medium to
gather information. Some published acknowledgments to use of the code are in
the asa.papers file of the ASA archive; the disciplines range from physics (Brown
et al., 1994; Tang et al., 1995) to neural networks (Cohen, 1994; Indiveri et al.,
1993) to difficult imaging problems (Wu and Levine, 1993) to finance (Wofsey,
1993), where most of the latter uses are kept proprietary.

3. ASA options

3.0.4. Options

ASA likely is the most powerful and flexible SA code presently available, be­
cause the code has benefited from the feedback of the many users, and their
feedback has been used to add much to the code beyond the basic ASA algo­
rithm described above.

The code has two basic modules in the ASA C-code, a user and an asa
module. All OPTIONS in the code have been tested to work with templates
provided in the user module. Feedback has developed a code which seems to run
well across many platforms, e.g., PC’s, Macs, Crays, many UNIX workstations,
etc.

The emphasis in development, of ASA has been to add power and flexibility
wherever possible. To make these extra features and code accessible to non­
expert programmers, a “meta-language” of OPTIONS is used. Many of these
OPTIONS can be set in the provided Makefile, an asa_opt data file from which
to read in information, arguments passed to the compilation procedures, or in
the user module files (user.c, user.h , and asa_user.h, the latter being a bridge
between the asa and user modules).

A price is paid for this continual development of a more powerful and more
flexible code. The new user is presented with many OPTIONS, on the order of
a hundred. In many cases, when the ASA default OPTIONS work fine, only the
user’s own call to his/her cost function is required. However, if these defaults
are not suitable for a particular system, then the user can become bewildered
by the many OPTIONS. If not much is known a priori about the system to be

Adaptive simulated annealing (ASA): lessons learned 43

optimized, then the task is to try to find the values of the OPTIONS appropriate
to the given system. The less known about the system, the harder is this task.

Experiences support the premise that the output of the code, using the
ASA_PRINT_MORE OPTIONS to give information at each new best accepted
state, often can be used to diagnose problems in annealing. Eventually, I hope
that enough experience will be generated, to be able to develop some kind of
graphical menu-driven expert system to help guide users to optimize a wide
range of cost functions. Beyond this, I dream of a day when such a user-friendly
shell can guide users to alternative optimization algorithms at different scales
and stages of the optimization process.

3.1. Examples of OPTIONS

The following discussion of some of the. OPTIONS available in ASA also serves
to illustrate the typical kinds of problems many users have with their particular
systems, and some of the approaches that SA can offer to face these prob­
lems. The OPTIONS are organized into three group. The DEFINE.'OPTIONS
comprise two set of OPTIONS, the Pre-Compile DEFINE.OPTIONS and the
Printing DEFINE.OPTIONS, which are called at the time of compilation; these
comprise about half of the OPTIONS. The other Program OPTIONS are housed
in a structure passed with the cost function, and together with the other pa­
rameters passed in the cost function, these can be modified adaptively. That is,
they can be changed within the cost function to take effect upon reentering the
asa program.

3.1.1. Integer and continuous parameters

ASA can accommodate mixtures of integer and continuous parameters. This
is accomplished quite simply, with a small overhead for integers, by truncating-
generated floating-point numbers within sensible integral windows. There have
been many “rumors” that SA can only handle integer or continuous parameters,
but these statements are unsupported.

3.1.2. Constraints

One of the immediate attractions of SA to people trying to optimize complex
systems is the ease with which SA can accommodate complex constraints. Typ­
ically, there is no need for penalty functions, etc. Generated points that do not
satisfy the constraints are simply rejected before trying any acceptance test.

Equality constraints, if processed as above, present a problem for any global
optimization that relies on sampling, because the search is being constrained on
the surface of some volume, and the entire volume is being sampled. Therefore,
it is recommended that the user first numerically substitute solution(s) of the
the equalities for some parameters. For example, if the cost function C has n

44 L. INGBER.

parameters, C(pi ,p2, ■ • ■ ,'Pnh and an equality constraint exists between param­
eters pn and Pn-i) then solve this equation for pn) numerically or algebraically,
redefining the cost function to one with n — 1 parameters, Cf. If the solution
to this equation, or perhaps a set of m such equality constraints to reduce the
number of parameters actually processed by ASA to n—m, is not simply written
down, then such constraints must be solved with other algorithms within the
cost function.

3.1.3. Annealing scales

Perhaps the easiest to understand problem that can arise when using SA, also
is the the most often neglected. I get many queries that start out questioning
why ASA doesn’t immediately find the global optimal point? The answer most
often lies in the scaling parameters used in annealing the parameter and/or cost
temperatures.

For example, if the search is carried out in a system with several local min­
ima, but the temperature is too low so that only rarely can the search sample
these minima, it may take an extremely long time with arbitrarily good numer­
ical precision to eventually sample these minima as normal annealing proceeds
to lower and lower temperatures. Clearly, it would be better to have the starting
temperature at the scale in question be commensurately larger, and perhaps be
cooled more slowly.

(a) Parameter temperatures. In some SA algorithms, like BA, the starting­
temperature controls the values of temperature encountered at subsequent
stages of search. In ASA, because of the finite ranges of the parameters,
the parameter temperatures are started to establish to a fat tail through­
out the range; the exponential annealing rates usually permit selecting­
even quite large initial ranges to be sure of covering all optima. There
are free ASA-parameters for each temperature to scale its exponential
decrease, without affecting the basic sampling proof.

(b) Cost temperature. The annealing scale for the cost temperature, also called
the acceptance temperature, affects the rate of narrowing the window of
the Boltzmann acceptance test. In ASA, this scale can be adaptively
changed, and even the Boltzmann test can be changed to a different dis­
tribution.

3.1.4. Reannealing
(a) Parameter temperatures. For the parameter temperatures, the tangents

(or any other alternative functions that might be defined by the user) are
used as a relative measure of the “steepness” of each dimension the most
recent best saved state. As demonstrated for the ASA-TEST problem
(Ingber, 1993b), this feature can enhance the efficiency of the search.

Adaptive simulated annealing (ASA): lessons learned 45

(b) Cost temperature. For the cost temperature, a separate OPTIONS permits
rescaling of the cost temperature to be set to the scale of the minimum
of the current cost temperature and the absolute values of the last and
best saved minima, to keep the acceptance test sensitive at a reasonable
scale. This can be extremely important of the system’s terrain changes
with the scale of the search. This procedure also may need to radically
altered, possible with other OPTIONS, if the search early becomes stuck
in local optima, e.g., because the system’s terrain abruptly changes with
the scale of the search.

3.1.5. Quenching

An SA algorithm loses much of its authority if the search “cheats” by trying
to anneal at rates faster than permitted by its associated proof, e.g., simulated
quenching (SQ). However, this can be useful in a number of circumstances (hi­
gher, 1993b).

When the dimension of a parameter space, each parameter having a con­
tinuous or large integral set of values, reaches 15 to 20, the volume of search
typically becomes quite large and this can severely tax most present-day work­
stations. Instead of just giving up on SA and trying a different “greedy” and/or
quasi-Newton algorithm, ASA provides a methodical way to deviate from SA
into SQ algorithms.

As another use of quenching, one that does not necessarily violate any sam­
pling proof, it may be useful in the course of search to adaptively drop subsets
of parameters that seem to have been reasonably optimized relative to other
parameters. The remaining parameters can then be more efficiently searched
within their smaller dimensional space, by adjusting the dependence of the an­
nealing to the new dimension. This can be accomplished conveniently with the
QUENCHing OPTIONS.

3.1.6. ASA sampling

Since ASA accomplishes its fit by importance sampling the space of parame­
ters, it would seem that this process should provide a good sampling technique
for other purposes, e.g., performing integrals. Of course, as stated above, the
use of Monte Carlo techniques for performing integrals (Metropolis et al., 1953)
is generally credited to be the origin of the development of SA (Kirkpatrick
et al., 1983). However, importance sampling with the fastest permitted tem­
perature schedules often can lead to quite poor resolutions of local minima
which may substantially contribute to integrals. Then, the rates of annealing
must be slowed down, e.g., using inverse QUENCHing, to get better resolution.
The ASA_SAMPLE OPTIONS collects the generating and acceptance biases in­
curred during importance sampling, so that this information can be used more
generally than for just finding the optimal point of the fit.

46 L. INGBER

3.1.7. Self optimization
An advantage of C code over some other languages is the relative ease by which
recursive calls can be implemented. Some care must be taken to keep variables
local to each subroutine. In its current form ASA can recursively call itself.
Some complex problems, possessing nests of optimized systems, require this.

If not much information is known about a particular system, if the ASA
defaults do not seem to work very well, and if after a bit of experimentation it
still is not clear how to select values for some of the ASA OPTIONS, then the
SELF-OPTIMIZE OPTIONS can be very useful. This sets up a top level search
on the ASA OPTIONS themselves, using criteria of the system as its own cost
function, e.g., the best attained optimal value of the system’s cost function (the
cost function for the actual problem to be solved) for each given set of top level
OPTIONS, or the number of generated states required to reach a given value of
the system’s cost function, etc. Since this can consume a lot of CPU resources,
it is recommended that only a few ASA OPTIONS and a scaled down system
cost function or system data be selected for this OPTIONS.

Even if good results are being attained by ASA, SELF_OPTIMIZE can be
used to find a more efficient set of ASA OPTIONS. I think that this kind of
OPTIONS would be useful for most useful for many non-linear optimization al­
gorithms. Many of the OPTIONS broken out in clear view in ASA are similarly
represented but “hidden” within the code of other algorithms. Self optimization
of such parameters can be very useful for production runs of complex systems.

3.1.8. Alternative distributions/functions
There are OPTIONS to permit replacing or modifying the functions and distri­
butions used in the asa module. Foe example, modifications can be made of the
generating function (e.g., variants of the Boltzmann and Cauchy distributions
are given in the user module), the acceptance function (e.g., a class of func­
tions that asymptotically approach the Boltzmann function is given in the user
module), and the reannealing functions used to rescale the parameter and cost
temperatures.

3.1.9. Parallel code
It is quite difficult to directly parallelize an SA algorithm (Ingber, 1993b),
e.g., without incurring very restrictive constraints on temperature schedules
(Kimura and Taki, 1991), or violating an associated sampling proof (Frost,
1993). However, the fat tail of ASA permits parallelization of developing gener­
ated states prior to subjecting them to the acceptance test (Ingber, 1992). The
ASAJPARALLEL OPTIONS provide parameters to easily parallelize the code,
using various implementations, e.g., PVM, shared memory, etc.

The scale of parallelization afforded by ASA, without violating its sampling­
proof, is given by a typical ratio of the number of generated to accepted states.

Adaptive simulated annealing (ASA): lessons learned 47

Several experts in parallelization suggest that massive parallelization e.g., on
the order of the human brain, may take place quite far into the future, that this
might be somewhat less useful for many applications than previously thought,
and that most useful scales of parallelization might be on scales of order 10
to 1000. Depending on the specific problem, such scales are common in ASA
optimization, and the current ASA code can implement such parallelization.

No specific parallel implementation has yet been included in the code. A
project was set up under an National Science Foundation (NSF) grant of Cray
time at thę Pittsburgh Supercomputer Center for this purpose, but we soon
realized that the grant rules restricted us to first vectorize the ASA code on a
C90. This seemed like a lot of effort for a specific architecture, e.g., an effort
that would not even translate into useful code on a T3D, and yet this still
would not address the true parallelization of the ASA code. Therefore, our
volunteer group went as far as to confirm the nature of the required code, and
I placed the above “hooks” into the present code. People who played a major
role in examining these issues were Tim Burns of the Utah Supercomputing
Institute, Alan Cabrera of Sanwa Financial Products Co., and Wolfram Gloger
of Poliklinik fur Zahnerhaltung und Parodontologie.

4. Misleading SA claims

4.1. General considerations

4.1.1. Comparisons among algorithms

There is not much doubt that, for any reasonably difficult nonlinear or stochas­
tic system, some optimization codes will perform better than others. Nonlinear
systems are typically non-typical, and so it should be expected that some algo­
rithms are better suited for some systems than for others. It is unlikely that
there ever will be developed a “black-box canned” algorithm as exist for many
linear systems.

Thus, comparisons among algorithms on simple “toy” problems, while they
may be interesting and necessary (and therefore are included below), perhaps
exposing something of the nature of the tested algorithms, may offer little insight
to help a given researcher faced with a new problem. Most likely, the researcher
must work to learn more about the system to best apply a given algorithm.

There is a formal proof that all algorithms should perform the same over all
problems (Wolpert and Macready, 1995). This obviously is of little practical help
for a given particular problem, albeit the authors claim that their approach offers
some guidelines for specific algorithms. For example, it would be ill-advised to
draw the conclusion that therefore one might as well always just use Newton’s
algorithm on all problems faced by a research group. However, such research is
necessary to bring more objectivity to the present “art” of global optimization.

48 L. INGBER

4.1.2. Tuning algorithms for specific problems

There is not much doubt that, for any reasonably difficult nonlinear or stochastic
system, a given optimization algorithm can be “tuned” to enhance its perfor­
mance. Indeed, since it takes some time and effort to become familiar with
a given code, the ability to tune a given algorithm for use in more than one
problem should be considered an important feature of an algorithm.

4.2. Examples of comparisons

4.3. Genetic algorithms (GA)

A direct comparison was made between ASA/VFSR and a publicly available
genetic algorithm (GA) code, using a test suite already adapted and adopted
for GA (Schraudolph and Grefenstette, 1991). In each case, ASA outperformed
the GA problem.

It should be clear that GA is a class of algorithms that are interesting in
their own right. GA was not originally developed as an optimization algorithm
(De Jong, 1992), and basic GA does not offer any statistical guarantee of global
convergence to an optimal point (Forrest, 1993). Nevertheless, it should be
expected that GA may be better suited for some problems than SA.

4.3.1. Comparing BA, FA, and ASA

A study was made comparing the performance among Boltzmann annealing
(BA), fast annealing (FA), and ASA, using the difficult test problem that comes
with the ASA code (Rosen, 1992). Only ASA regularly attained the global min­
imum, and it was more efficient in attaining regular minima at each comparable
number of generated states than BA or FA. The ASA-TEST problem contains
IO20 local minima with a parameter dimension of 4 (Corana et al., 1987), and
it typically takes 2000-3000 generated states, or about 2 CPU-sec on a Sun
SPARC-II, to find the global minimum.

4.3.2. Dynamic hill climbing (DHC)

Michael de la Maza posted notices to public electronic bulletin boards, e.g.,
as summarized in a public mailing list GA-List@AIC.NRL.NAVY.MIL, that
his new algorithm, dynamic hill climbing (DHC), clearly outperformed genetic
algorithms and ASA. His code is available by sending e-mail to dhc@ai.mit.edu.
Since DHC is a variant of a “greedy” algorithm, it seemed appropriate to permit
ASA to also enter its quenching (SQ) domain. The following excerpt is the reply
posting in the above bulletin board.

“SQ techniques like GA obviously are important and are crucial to solving
many systems in time periods much shorter than might be obtained by SA. In
ASA, if annealing is forsaken, and QUENCHing turned on, voiding the proof of

mailto:GA-List@AIC.NRL.NAVY.MIL
mailto:dhc@ai.mit.edu

Adaptive simulated annealing (ASA): lessons learned 49

sampling, remarkable increases of speed can be obtained, apparently sometimes
even greater than other ‘greedy’ algorithms. For example, in Ingber and Rosen
(1992) along with 5 GA test problems from the UCSD GA archive, another
harder problem (the ASA_TEST problem that comes with the ASA code) was
used. In Ingber (1993b) QUENCHing was applied to this harder problem. The
resulting SQ code was shown to speed up the search by as much as as factor of
86 (without even attempting to see if this could be increased further with more
extreme quenching). This is greater than the factor of 30 that was reported by
Michael de la Maza for Dynamic Hill Climbing (DHC). This is a simple change
of one number in the code, turning it into a variant of SQ, and is not equivalent
to ‘tuning’ any of the other many ASA options, e.g., like SELF-OPTIMIZE,
USER_COST_SCHEDULE, etc. Note that SQ will not suffice for all systems;
several users of ASA reported that QUENCHing did not find the global optimal
point that was otherwise be found using the ‘correct’ ASA algorithm”.

4.3.3. Tsallis statistics

A recent paper claimed that a statistics whose parameterization permits an
asymptotic approximation to the exponential function used for the Boltzmann of
the standard SA acceptance test, Tsallis statistics, is superior to the Boltzmann
test (Penna, 1994), and an example was given comparing standard SA to this
new algorithm in the traveling salesman problem (TSP). There are two issues
here: (a) the value of the Tsallis test vs the Boltzmann test, and (b) the use of
TSP for the confirmation of (a).

It seems very reasonable that the Tsallis test should be better than the
Boltzmann test for the SA acceptance test. For example, if the Boltzmann
statistics did well on a given cost function (7, then it might be the case that
for the cost function C1 — exp(C) a more moderate test, such as obtained for
some parameterizations of the Tsallis statistics, would be more appropriate to
avoid getting stuck in local minima of C'. In fact, from its first inception VFSR
and ASA have included parameters to effect similar alternatives, and the latest
versions of ASA now have the Tsallis statistics as another alternative that can
be commented out. I have not yet experienced any advantages of this over the
Boltzmann test when other ASA alternatives are permitted to be used, but it
seems likely that there do exist some problems that might benefit by its use.

The use of TSP as a test for comparisons among SA techniques seems quite
inappropriate. To quote another source (Wolpert and Macready, 1995): “As an
example of this, it is well known that generic methods (like simulated anneal­
ing and genetic algorithms) are unable to compete with carefully hand-crafted
solutions for specific search problems. The Traveling Salesman (TSP) Problem
is an excellent example of such a situation; the best search algorithms for the
TSP problem are hand-tailored for it (Reinelt, 1994)”.

50 L. INGBER

4.3.4. Shubert problem

In Cvijovic and Klinowski (1995) some strong claims about the superiority of
taboo search over genetic algorithms and simulated annealing were made.

I took the only function given in that paper that also gave all parameters
in this article, the Shubert function, and ran a straight ASA test with abso­
lutely no tuning. (I do consider tuning essential for optimum use of any global
optimization algorithm.) Table 3 of that paper states that the results were ob­
tained by counting the number of generated cost functions needed to first attain
a known global minimum of -186.7309. (There are 18 global minima out of 760
local minima). That paper gives results for taboo search (TS), and two variants
of simulated annealing, SAI and SA2, averaged over 100 runs. SAI required
241,215 generated cost functions; SA2 required 780 generated cost functions;
TS required 727 generated cost functions. The same test was performed with
ASA, and it was found that ASA required 577 generated cost functions. More
details of the coding of this problem and the results of the ASA calculation are
given in the NOTES file of the ASA code.

The result of course will vary somewhat with the initial seed for the random
number generator and with the initial guess for the 2 parameters. As argued
for many other cases, the fat tail of ASA, creating a rather large generated to
acceptance ratio, usually insures that the variance of the results is not too large.
(Note that here there .are 18 global minima which may cause more of a spread.)
The 100 iterations of ASA used the default to let ASA randomly select the
initial values for the annealing loop (as was implied for SAI, SA2, and TS). The
results from ASA (similar results not reported in that paper) were a minimum
number of generated point to be 231, a maximum number of generated point to
be 1352, a mean of 577.1, and a standard deviation of 145.6.

4.3.5. Colville problems

In early 1993 I was contacted by Zbigniew Michalewicz, author of a new code,
GENECOP, a GA-based optimization package available via anonymous ftp from
unccsun.uncc.edu in directory coe/evol. He stated that the ASA code failed to
get any reasonable fit to two Colville problems, a set of problems developed
by Colville, Flóudas and Pardalos. He demonstrated this by offering his own
results with GENECOP in which he obtained better results that that obtained
previously in the literature on one these problems.

On one problem, after I learned that GENECOP first made algebraic sub­
stitutions to eliminate equality constraints, this also was performed this before
using ASA/VFSR. GENECOP had produced better results than previously ob­
tained in the literature for this example, and ASA/VFSR obtained even bet­
ter results than GENEGOP. The previously published results gave a final cost
of -47.707579; GENECOP gave cost of -47.760765; ASA/VFSR gave cost of
-47.76109. For such systems, I have suggested that GENECOP be used as a

unccsun.uncc.edu

Adaptive simulated annealing (ASA): lessons learned 51

front end to ASA.
On the other problem, using the default parameters of ASA, the code did in­

deed hover in a local minimum, likely for so long that it might take an enormous
amount of human time and unrealistic computer precision (to keep sampling at
incredibly small temperatures) to find the global minimum. However, just a
few minutes of modestly tuning a few ASA parameters produced the global
minimum very efficiently.

More details of the coding of these two problems and the results of the ASA
calculations are given in the NOTES file of the ASA code.

5. Conclusion

If asked to state one major common feature of nonlinear systems, in the context
of optimization, the feature most likely should be given is that nonlinear systems
typically are non-typical. It is unlikely that any “canned black-box” code can be
developed, requiring no or few minor adjustments, that will usefully guarantee
efficient global optimization for severely nonlinear systems, e.g., similar to what
might be expected for many quasi-linear systems.

In the absence of knowledge about a particular system, given that only SA
can offer at least a “statistical” proof of global optimization, then the first algo­
rithm of choice clearly is SA. Modifications of SA, e.g., SQ quenching algorithms,
may be competitive with other techniques, e.g., simplex or genetic algorithms,
but among these the best choice is not so clear. SQ does offer a relatively sim­
ple approach to quickly writing code for optimization, but ultimately the end
results must justify this means.

This argument for the use of SA has an opposite side. If some informa­
tion about a system can be incorporated into some other global optimization
technique, and it can be determined that the technique can deliver the global
optimum point, often that technique will be more efficient than SA. E.g., a
quasi-Newton algorithm will be more efficient than SA for parabolic systems.

For many researchers, the first choice of algorithm to use for a nonlinear or
stochastic problem likely will be one with which they already are familiar. If
that fails, then SA is an option to try next. More research needs to be done to
see if a more objective classification of nonlinear systems can be developed to
help guide a given researcher to a given algorithm for a given problem. As the
examples included in the documentation of the ASA code illustrate, there have
been “surprises” thereby some very difficult problems have been quickly solved
by ASA, while others have required quite a bit of “tuning” to establish a good
set of starting OPTIONS.

Especially among first-time users of SA, often there is much misunderstand­
ing and lack of appreciation of just what an SA code can immediately do for
a particular problem. Some education is necessary to make users aware of the
potential problems that may arise and what remedies the particular algorithm
can offer to overcome these obstacles.

52 L. INGBER

References

Binder, K. and Stauffer, D. (1985) A simple introduction to Monte Carlo
simulations and some specialized topics, In: Applications of the Monte
Carlo Method in Statistical Physics, K. Binder (Ed.). Berlin, Springer-
Verlag.

Brown, R., Rulkov, N.F. and Tufillaro, N.B. (1994) Synchronization
of chaotic systems: the effects of additive noise and drift in the dynamics
and driving. Phys. Rev. E (to be published)

CERNY, V. (1982) A thermodynamical approach to the travelling sales­
man problem: An efficient simulation algorithm,. Report, Bratislava,
Czechoslovakia, Comenius University.

Cohen, B. (1994) Training synaptic delays in a recurrent neural network.
M.S. Thesis, Tel-Aviv, Israel, Tel-Aviv University.

Corana, A., Marchesi, M., MARTINI, C. and Ridella, S. (1987) Mini­
mizing multimodal functions of continuous variables with the “simulated
annealing” algorithm. ACM Trans. Mathl. Software, 13, 3, 262-279.

CVIJOVIC, D. and KLINOWSKI, J. (1995) Taboo search: An approach to the
multiple minima problem. Science, 267, 5198, 664-666.

De Jong, K.A. (1992) Genetic algorithms are NOT function optimizers, In:
Foundations of Genetic Algorithms: Proceedings 2Ą-29 July 1992, D.
Whitley (Ed.). Vail, CO, Morgan Kaufman.

FORREST, S. (1993) Genetic algorithms: Principles of natural selection applied
to computation. Science, 261, 5123, 872-878.

Frost, R. (1993) Ensemble Based Simulated Annealing (EBSA), ftp.sdsc.edu:
/pub/sdsc/math/Ebsa, La Jolla, GA, University of California San Diego.

GEMAN, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distribution
and the Bayesian restoration in images. IEEE Trans. Patt. Anal. Mac.
Int., 6, 6, 721-741.

Indiveri, G., Nateri, G., Raffo, L. and Caviglia, D. (1993) A neural
network architecture for defect detection through magnetic inspection. Re­
port, Genova, Italy, University of Genova.

INGBER, L. (1989) Very fast simulated re-annealing. Mathl. Comput. Mod­
elling, 12, 8, 967-973.

INGBER, L. (1990) Statistical mechanical aids to calculating term structure
models. Phys. Rev. A, 42, 12, 7057-7064.

INGBER, L. (1991) Statistical mechanics of neocortical interactions: A scaling­
paradigm applied to electroencephalography. Phys. Rev. A, 44, 6, 4017-
4060.

INGBER, L. (1992) Generic mesoscopic neural networks based on statistical
mechanics of neocortical interactions. Phys. Rev. A, 45, 4, R2183-R2186.

INGBER, L. (1993a) Adaptive Simulated Annealing (ASA).
[ftp.alumni.caltech.edu: /pub/ingber/ASA-shar, ASA-shar.Z, ASA.tar.Z,
ASA.tar.gz, ASA.zip], McLean, VA, Lester Ingber Research.

ftp://ftp.sdsc.edu
ftp://ftp.alumni.caltech.edu

Adaptive simulated annealing (ASA): lessons leai-ned 53

INGBER, L. (1993b) Simulated annealing: Practice versus theory. Mathl.
Comput. Modelling, 18, 11, 29-57.

Ingber, L., Fujio, H. and Wehner, M.F. (1991) Mathematical compari­
son of combat computer models to exercise data. Mathl. Comput. Mod­
elling, 15, 1, 65-90.

Ingber, L. and Rosen, B. (1992) Genetic algorithms and very fast simu­
lated reannealing: A comparison. Mathl. Comput. Modelling, 16, 11,
87-100.

Ingber, L. and Sworder, D.D. (1991) Statistical mechanics of combat
with human factors. Mathl. Comput. Modelling, 15, 11, 99-127.

Ingber, L., Wehner, M.F.,Jabbour,G.M., and Barnhill, T.M. (1991)
Application of statistical mechanics methodology to term-structure bond­
pricing models. Mathl. Comput. Modelling, 15, 11, 77-98.

Kimura, K. and Taki, K. (1991) Time-homogeneous parallel annealing al­
gorithm,. Report TR-673, Tokyo, Japan, Institute for New Generation
Computer Technology.

Kirkpatrick, S., Gelatt, C.D., Jr. and Vecchi, M.P. (1983) Optimi­
zation by simulated annealing. Science, 220, 4598, 671-680.

Ma, S.-K. (1985) Statistical Mechanics. Philadelphia, World Scientific.
Mathews, J. and Walker, R.L. (1970) Mathematical Methods of Physics,

2nd ed. New York, NY, Benjamin.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller,

A.H., and Teller, E. (1953) Equation of state calculations by fast
computing machines. J. Chem. Phys., 21, 6, 1087-1092.

PENNA, T.J.P. (1994) Traveling salesman problem and Tsallis statistics.
Phys. Rev. E, 50, 6, R1-R3.

PINCUS, M. (1970) A Monte Carlo method for the approximate solution of
certain types of constrained optimization problems. Oper. Res., 18, 1225-
1228.

Reinelt, G. (1994) The Traveling Salesman, computational solutions for TSP
applications. Berling, Springer.

Rosen, B. (1992) Function optimization based on advanced simulated anneal­
ing. IEEE Workshop on Physics and Computation - PhysComp ’92, 289-
293.

Schraudolph, N.N. and Grefenstette, J.J. (1991) A Users Guide to
GAUCSD 1.2. Report, La Jolla, GA, University of California at San
Diego.

Szu, H. and Hartley, R. (1987) Fast simulated annealing. Phys. Lett. A,
122, 3-4, 157-162.

Tang, X.Z., Tracy, E.R., Boozer, A.D., deBrauw, A. and Brown, R.
(1995) Symbol sequence statistics in noisy chaotic signal reconstruction.
Phys. Rev. E, 51, 4, (in press).

VAN Laarhoven, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing:
Theory and Applications. Dordrecht, The Netherlands, D. Reidel.

54 L. INGBER

WOFSEY, M. (1993) Technology: Shortcut tests validity of complicated for­
mulas. The Wall Street Journal, 222, 60, Bl.

WOLPERT, D.H. and MACREADY, W.G. (1995) No free lunch theorems for
search. Report, Santa Fe, NM, Santa Fe Institute.

Wu, K. and Levine, M.D. (1993) 3-D object representation using paramet­
ric geons. TR-CIM-93-13, Montreal, Canada, Center for Intelligent Ma­
chines, McGill University.

