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Abstract: The paper concerns the interval method for solving
the one-dimensional heat conduction problem. It is based on the
conventional backward finite difference scheme with the appropriate
local truncation error terms that are also taken into account. For
the theoretical formulation of the interval approach we can show
that the exact solution is included in the interval one. In practice,
there are problems, for which we cannot determine the endpoints of
the error term intervals exactly. Nevertheless, if we use the appro-
priate approximation, related to the endpoints considered, then the
numerical experiments confirm that the interval solution includes
the exact one.
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1. Introduction

As we know, when performing numerical calculations, considerable attention
should be devoted to the accuracy of the results obtained. The main sources of
errors are related to the initial data inaccuracy, the floating-point arithmetic,
and the approximate numerical methods used. Fortunately, there are a few dif-
ferent approaches that enable taking into account a given number together with
a related inaccuracy, and hence provide some information about the possible de-
viation of the result obtained from a desired exact value when the computations

∗Submitted: August 2013; Accepted: February 2016



464 M.A.Jankowska, A.Marciniak, T.Hoffmann

are finished. The techniques to be considered in this context are as follows: the
interval arithmetic (Moore et al., 2009; Sunaga, 1958; Kulisch, 2013), the fuzzy
arithmetic (Burczynski and Skrzypczyk, 1997; Kosinski, 2004) and the incre-
mental arithmetic (Borawski, 2012). The paper concerns the first approach, i.e.
the interval arithmetic and the interval methods (see also Hammer et al., 1993;
Jaulin et al., 2001; Marciniak, 2009; Gajda et al., 2008) with a special attention
directed to the interval methods used for solving some heat conduction problem.

The interval backward finite difference method proposed is based on the ap-
propriate conventional scheme with its local truncation error term included. It
is developed for the heat conduction problem (see Section 2.1) with the initial
condition and the Dirichlet boundary conditions. For its theoretical formulation
it can be shown that the interval solution obtained includes the exact one (see
Section 2.2). Then, in Section 2.3, we propose a method of approximation of the
endpoints of the error term intervals. Such approach is required in the case of
problems, for which the exact determination of the endpoints considered is not
possible. Note that if we use this approximation, then we cannot guarantee that
the exact solution belongs to the interval one. In spite of this, the numerical ex-
periments presented in Section 3 show that such inclusion occurs. Note that the
interval methods based on some finite differences have been previously formu-
lated for the heat conduction problem with the Dirichlet and mixed boundary
conditions (Marciniak, 2012; Jankowska and Sypniewska-Kaminska, 2013) and
also for the problems described by the diffusion, Poisson and wave equations
(Hoffmann and Marciniak, 2013; Jankowska, 2012; Nakao, 2001; Nakao et al.,
2013; Szyszka, 2012, 2015).

The authors directed the attention towards the interval methods based on
finite differences and their implementation in the interval floating-point arith-
metic due to several essential reasons. As we know, the conventional numerical
methods used for solving the initial-boundary value problems, do not allow us to
take into account the uncertain values of parameters present in a problem formu-
lation. Such a necessity is particularly important when we address some bioheat
transfer problems (e.g. in soft tissues, with particular reference to skin, see Ma-
jchrzak et al., 2011; Mochnacki and Piasecka-Belkhayat, 2013). The interval
arithmetic applied allows us to represent some parameters, such as thermophys-
ical properties of skin and blood, in the form of intervals. It is an important
feature of the interval methods, given that we usually know a range of values
that can be taken by parameters in the effect of influence of some environmental
factors, i.e. age, state of health, lifestyle etc. Furthermore, the interval solu-
tions obtained include also the error of the conventional method and the errors
caused by the floating-point arithmetic used by computers, i.e. the rounding
errors and the representation errors. An application of the interval finite dif-
ference methods to such a class of problems can be found in, e.g., Mochnacki
and Piasecka-Belkhayat (2013), Jankowska and Sypniewska-Kaminska (2012),
Jankowska (2014). On the other hand, the main reason for adopting the finite
difference approach is the fact that we know the formula of the local truncation
error term. As we mentioned, the exact values of the endpoints of the error term
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intervals are usually difficult or even impossible to determine. Nevertheless, we
can apply a method of their approximation and, as many experiments confirm,
the exact solution belongs to the interval solution obtained.

2. Interval backward finite difference method for solving

the heat conduction problem

2.1. Heat conduction problem

Consider the one-dimensional heat conduction problem given by the governing
equation

∂u

∂t
(x, t)− α2 ∂

2u

∂x2
(x, t) = 0, 0 < x < L, t > 0, (1)

subject to the initial condition and the Dirichlet boundary conditions

u (x, 0) = f (x) , 0 ≤ x ≤ L, (2)

u (0, t) = ϕ1 (t) , u (L, t) = ϕ2 (t) , t > 0. (3)

The heat conduction problem (1)-(3) concerns the distribution of heat along an
isotropic rod of length L (an isotropic infinite plate of thickness L) over time.
A function u = u(x, t) describes the temperature at a given location x and time
t. We assume that the temperature within each cross-sectional element of the
rod is uniform. Moreover, the rod is perfectly insulated on its lateral surface.
The constant α =

√
κ is a material-specific quantity. It depends on the thermal

diffusivity κ = λ/(cρ), where λ is the thermal conductivity, c is the specific
heat, and ρ is the mass density of the body. It is assumed that λ, c, and ρ are
independent of the position x in the rod.

2.2. Conventional and interval backward finite difference methods

Now we establish a grid on the domain. First, we set the maximum time Tmax.
Then, we choose two integers, n, m, and we find the mesh constants h, k such
that h = L/n and k = Tmax/m. Hence, the grid points are (xi, tj), where
xi = ih for i = 0, 1, . . . , n and tj = jk for j = 0, 1, . . . ,m.

Subsequently, we use the backward finite difference formula for ∂u/∂t (xi, tj)
and the central finite difference formula for ∂2u/∂x2 (xi, tj), together with the
appropriate local truncation errors, i.e.

∂u

∂t
(xi, tj) =

u(xi, tj)− u(xi, tj−1)

k
+

k

2

∂2u

∂t2
(xi, ηj) , (4)

∂2u

∂x2
(xi, tj) =

u(xi−1, tj)− 2u(xi, tj) + u(xi+1, tj)

h2
− h2

12

∂4u

∂x4
(ξi, tj) . (5)
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Hence, if we substitute (4)-(5) to the equation (1), expressed at the grid points
(xi, tj), we obtain

(1 + 2λ)u(xi, tj)− λu(xi−1, tj)− λu(xi+1, tj) = u(xi, tj−1)

−k2

2

∂2u

∂t2
(xi, ηj)− α2 kh

2

12

∂4u

∂x4
(ξi, tj) , (6)

i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m,

where λ = α2
(
k/h2

)
, ηj ∈ (tj−1, tj), ξi ∈ (xi−1, xi+1). Finally, for the initial

and boundary conditions (2)-(3), expressed at the grid points (xi, tj), we have

u(xi, 0) = f (xi) , i = 0, 1, . . . , n, (7)

u(0, tj) = ϕ1 (tj) , u(L, tj) = ϕ2 (tj) , j = 1, 2, . . . ,m. (8)

For the formulation of the interval couterpart of the conventional backward
finite difference method here considered, we transform the exact formula (6)
with (7)-(8) into the appropriate separate forms, according to the position in
the grid. We have

(1 + 2λ)u(x1, tj)− λu(x2, tj) = λu(x0, tj) + u(x1, tj−1) + R̂1,j, (9)

i = 1, j = 1, 2, . . . ,m,

(1 + 2λ)u(xi, tj)− λu(xi−1, tj)− λu(xi+1, tj) = u(xi, tj−1) + R̂i,j , (10)

i = 2, 3, . . . , n− 2, j = 1, 2, . . . ,m,

(1 + 2λ)u(xn−1, tj)− λu(xn−2, tj) = λu(xn, tj) + u(xn−1, tj−1) + R̂n−1,j,

i = n− 1, j = 1, 2, . . . ,m,(11)

where

R̂i,j = −k2

2

∂2u

∂t2
(xi, ηj)− α2 kh

2

12

∂4u

∂x4
(ξi, tj) . (12)

Note that the formulas (9)-(11) with (12) can be transformed to the following
matrix representation

Cu(j) = u(j−1) + Ê
(j)
C + Ê

(j)
L , j = 1, 2, . . . ,m, (13)

where

u(j) = [u (x1, tj) , u (x2, tj) , . . . , u (xn−1, tj)]
T
, (14)

Ê
(j)
C = [λu(x0, tj), 0, . . . , 0, λu(xn, tj)]

T,

Ê
(j)
L =

[
R̂1,j , R̂2,j , . . . , R̂n−1,j

]T
,
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C =




1 + 2λ −λ 0
... 0 0 0

−λ 1 + 2λ −λ
... 0 0 0

0 −λ 1 + 2λ
... 0 0 0

· · · · · · · · · . . . · · · · · · · · ·
0 0 0

... 1 + 2λ −λ 0

0 0 0
... −λ 1 + 2λ −λ

0 0 0
... 0 −λ 1 + 2λ




. (15)

Note that dimC = (n− 1) × (n− 1) and dimu(j) = dim Ê
(j)
C = dim ÊL(j) =

(n− 1) × 1. The matrix C is tridiagonal and symmetric. It is also positive
definite and strictly diagonally dominant, due to the fact that λ > 0. The vectors
of coefficients ÊC

(j), j = 1, 2, . . . ,m, in the formulas (14) depend on the stepsizes
h, k, the parameter α, and the values of the functions ϕ1, ϕ2. They are different
for each j = 1, 2, . . . ,m. On the other hand, the vectors ÊL

(j), j = 1, 2, . . . ,m,
depend on the stepsizes h, k, and the values of the appropriate derivatives of u
at the midpoints considered. What is most important, the components of ÊL

(j)

represent the local truncation error terms of the conventional finite difference
method at each mesh point.

Remark 1 Consider the exact formulas (9)-(11) with (12) and the correspond-
ing matrix representation (13) with (14)-(15). Let ui,j approximate u (xi, tj). If

we also neglect the error terms R̂i,j, given in the equations (9)-(11) and in the

components of the vectors ÊL
(j), then we get the conventional backward finite

difference method (see also Anderson et al., 1984; Press et al., 2007) with the
local truncation error O(h2 + k).

Subsequently, we propose an interval backward finite difference method. It
is formulated on the basis of the equations (9)-(11) with (12), or the appropri-
ate matrix representation (13) with (14)-(15). Before that, we introduce some
assumptions about the values of the derivatives of u at some midpoints consid-
ered. Hence, for the interval approach, we suppose that there exist the intervals
Si,j , Qi,j , i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m, such that the following relations
hold:

∂2u

∂t2
(xi, ηj) ∈ Si,j ,

∂4u

∂x4
(ξi, tj) ∈ Qi,j . (16)

Hence, by applying (16) to (12), we have that R̂i,j ∈ Ri,j , where

Ri,j = −k2

2
Si,j − α2 kh

2

12
Qi,j . (17)

Then, we can formulate the interval backward finite difference method, related
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to the equations (9)-(11) with (12), as follows

(1 + 2λ)U1,j − λU2,j = λU0,j + U1,j−1 +R1,j , (18)

i = 1, j = 1, 2, . . . ,m,

(1 + 2λ)Ui,j − λUi−1,j − λUi+1,j = Ui,j−1 +Ri,j , (19)

i = 2, 3, . . . , n− 2, j = 1, 2, . . . ,m,

(1 + 2λ)Un−1,j − λUn−2,j = λUn,j + Un−1,j−1 +Rn−1,j, (20)

i = n− 1, j = 1, 2, . . . ,m,

where

Ui,0 = F (Xi) , i = 0, 1, . . . , n, (21)

U0,j = Φ1 (Tj) , Un,j = Φ2 (Tj) , j = 1, 2, . . . ,m. (22)

Note that Xi, i = 0, 1, . . . , n, Tj, j = 0, 1, . . . ,m, are the intervals such that
xi ∈ Xi and tj ∈ Tj . Furthermore, F = F (X), Φ1 = Φ1 (T ), Φ2 = Φ2 (T )
denote the interval extensions of the functions f = f (x), ϕ1 = ϕ1 (t) and
ϕ2 = ϕ2 (t), respectively.

Similarly, the matrix representation of (18)-(20) with (17) is given as follows:

CU (j) = U (j−1) + E
(j)
C + E

(j)
L , j = 1, 2, . . . ,m, (23)

where

U (j) = [U1,j , U2,j, . . . , Un−1,j]
T , (24)

E
(j)
C = [λU0,j , 0, . . . , 0, λUn,j]

T, E
(j)
L = [R1,j, R2,j , . . . , Rn−1,j]

T
.

Theorem 1 Let us assume that the local truncation error of the backward fi-
nite difference scheme can be bounded by the appropriate intervals at each step.
Moreover, let F = F (X), Φ1 = Φ1 (T ), Φ2 = Φ2 (T ) denote interval extensions
of the functions f = f (x), ϕ1 = ϕ1 (t), ϕ2 = ϕ2 (t), given in the initial and
boundary conditions of the heat conduction problem (1)-(3). If u (xi, 0) ∈ Ui,0,
i = 0, 1, . . . , n, u(0, tj) ∈ Φ1 (Tj), u(L, tj) ∈ Φ2 (Tj), j = 1, 2, . . . ,m, and the
interval linear system of equations (23) with (24) can be solved with an interval
realization of some direct method, then for the interval solutions considered we
have u (xi, tj) ∈ Ui,j, i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m.

Remark 2 Taking into consideration the formulas (9)-(11) and (18)-(20), with
their appropriate matrix representations (13) and (23), we conclude that the
proof of the above theorem is a natural consequence of the thesis of Theorem 2.

Consider a finite system of linear algebraic equations of the form Ax = b,
where A is an n-by-n matrix, b is an n-dimensional vector, and the coefficients
of A and b are real or interval values. The existence of the solution to Ax = b
is provided by Theorem 2 (see Moore et al., 2009).
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Theorem 2 If we can carry out all the steps of a direct method for solving
Ax = b in the interval arithmetic (if no attempted division by an interval con-
taining zero occurs, nor any overflow or underflow), then the system has a
unique solution for every real matrix in A and every real vector in b, and the
solution is contained in the resulting interval vector X.

2.3. Approximation of the endpoints of the error terms intervals

Before we apply the interval method considered, we have to compute the com-

ponents of the vectors E
(j)
L . Consequently, the interval values of Si,j , Qi,j are

required (see (24) with (17)) for each mesh point (xi, tj), i = 1, 2, . . . , n − 1,
j = 1, 2, . . . ,m. Note that determination of the exact values of the endpoints of
the error term intervals Si,j , Qi,j is possible only for some selected examples of
the heat conduction problem (1)-(3). Generally, for any other case, such issue
is still an open problem that deserves further investigation. Subsequently, we
propose the method of approximation of the endpoints considered. It is based
on the finite difference schemes.

Assumptions and preliminary steps

We establish the maximum time Tmax. For given values of n and m, we have the
stepsizes h = L/n and k = Tmax/m. Hence, the grid points are (xi, tj), where
xi = ih, tj = jk, i = 0, 1, . . . , n, j = 0, 1, . . . ,m. The indexes (i, j) are further
used to indicate the interval solutions Ui,j , obtained by the interval backward
finite difference method (18)-(20) (or (23)-(24)).

Due to the initial and boundary conditions, the interval values Ui,j for i =
0, i = n, j = 1, . . . ,m, and i = 0, 1, 2, . . . , n− 1, j = 0, can be computed from
the interval extensions Φ1 = Φ1 (T ), Φ2 = Φ2 (T ), F = F (X) of the functions
ϕ1 = ϕ1 (t), ϕ2 = ϕ2 (t), f = f (x), respectively. The unknown values of the
solution, i.e. the components of the vectors U (j), where j = 1, 2, . . . ,m, can be
computed successively, when we apply, e.g., an interval realization of some di-
rect method for solving the interval linear system of equations (23)-(24). Before
that, we have to compute the endpoints of the error term intervals Si,j , Qi,j ,
i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m. An appropriate algorithm of the approxima-
tion of the endpoints of these intervals can be given in the way given below:

ALGORITHM

Step 1. Take iter = −1. Set ñ = n, m̃ = m and h̃ = h, k̃ = k. Based
on that, the grid points are (xs, tq), where xs = sh̃, tq = qk̃, s = 0, 1, . . . , ñ,
q = 0, 1, . . . , m̃.

Step 2. Take iter = iter + 1.

If iter = 0, then take mul = 1.
Else, if iter ≥ 1, then take mul = 2 ·mul.
EndIf.
Then, take ñ = mul · n, m̃ = mul ·m and h̃ = h/mul, k̃ = k/mul.

Step 3. Solve the initial-boundary value problem (1)-(3) with the interval re-



470 M.A.Jankowska, A.Marciniak, T.Hoffmann

alization of the conventional backward finite difference scheme. Such interval
realization can be understood as the interval backward finite difference method
(18)-(20) (or (23)-(24)) with the components of E

(q)
L that represent the local

truncation error terms all equal to zero, i.e., we have Rs,q = 0. The interval
solutions, obtained in this way, are further denoted by U IA

s,q , where IA is the
abbreviation for the interval arithmetic that allows us to consider in the in-
terval solution the inexact initial data, uncertain values of parameters and the
errors caused by the floating-point arithmetic (i.e. representation and rounding
errors) in the proper way. Note that the indexes (s, q) are further used to indi-
cate the mesh points, at which the interval solutions U IA

s,q are being computed.
Nevertheless, because of the way, in which the denser grid is established, we can
always find a pair of indexes (s, q) such that (xi, tj) = (xs, tq).

Step 4. Check, if U IA
s,q can be further used for the approximation of the end-

points of the error term intervals.

If iter = 0, then go back to Step 2.
Else, if iter ≥ 1, then

(a) Compute the maximum distance qmax between U
IA (iter−1)
i,j and U

IA (iter)
i,j ,

i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m. Note that a distance between such two
intervals is defined as

qi,j = max
{
|U IA (iter−1)

i,j − U
IA (iter)
i,j |, |UIA (iter−1)

i,j − U
IA (iter)

i,j |
}
. (25)

(b) Choose a tolerance value TOL. If qmax ≤ TOL, then stop the iteration
process and go further to Step 5. Else, go back to Step 2.

EndIf.

Step 5. Compute the endpoints of Si,j , Qi,j , i = 1, 2, . . . , n−1, j = 1, 2, . . . ,m.
We assumed (see Section 2.2) that these intervals are such that for ηj ∈ (tj−1, tj),
ξi ∈ (xi−1, xi+1), we have

∂2u

∂t2
(xi, ηj) ∈ Si,j =

[
Si,j , Si,j

]
,

∂4u

∂x4
(ξi, tj) ∈ Qi,j =

[
Q

i,j
, Qi,j

]
.

For an approximation of the partial derivatives ∂2u/∂t2 and ∂4u/∂x4 at a given
point, we can use some finite difference schemes. Subsequently, we choose the
sixth order ones for the partial derivatives with respect to time t and the fourth
order ones for the partial derivatives with respect to space x (see also Fornberg,
1998). In general, for the point (xs, tq), we have

∂2u

∂t2
(xs, tq) = ✸

F,k̃
u(xs, tq) +O

(
k̃6
)
,

∂2u

∂t2
(xs, tq) = ✸

C,k̃
u(xs, tq) +O

(
k̃6
)
, (26)

∂2u

∂t2
(xs, tq) = ✸

B,k̃
u(xs, tq) +O

(
k̃6
)
,
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∂4u

∂x4
(xs, tq) = ✸

F,h̃
u(xs, tq) +O

(
h̃4

)
,

∂4u

∂x4
(xs, tq) = ✸

C,h̃
u(xs, tq) +O

(
h̃4

)
, (27)

∂4u

∂x4
(xs, tq) = ✸

B,h̃
u(xs, tq) + O

(
h̃4

)
,

where the operators ✸
F,k̃

, ✸
C,k̃

, ✸
B,k̃

and ✸
F,h̃

, ✸
C,h̃

, ✸
B,h̃

are defined as

✸
F,k̃

u(xs, tq) =
1

180k̃2
[938 u(xs, tq)− 4014 u(xs, tq+1) + 7911 u(xs, tq+2)

−9490 u(xs, tq+3) + 7380 u(xs, tq+4)

−3618 u(xs, tq+5) + 1019 u(xs, tq+6)− 126 u(xs, tq+7)] ,

✸
C,k̃

u(xs, tq) =
1

180k̃2
[2 u(xs, tq−3)− 27 u(xs, tq−2)

+270 u(xs, tq−1)− 490 u(xs, tq) + 270 u(xs, tq+1) (28)

−27 u(xs, tq+2) + 2 u(xs, tq+3)] ,

✸
B,k̃

u(xs, tq) =
1

180k̃2
[938 u(xs, tq)− 4014 u(xs, tq−1) + 7911 u(xs, tq−2)

−9490 u(xs, tq−3) + 7380 u(xs, tq−4)

−3618 u(xs, tq−5) + 1019 u(xs, tq−6)− 126 u(xs, tq−7)] ,

✸
F,h̃

u(xs, tq) =
1

6h̃4
[56 u(xs, tq)− 333 u(xs+1, tq) + 852 u(xs+2, tq)

−1219 u(xs+3, tq) + 1056 u(xs+4, tq)

−555 u(xs+5, tq) + 164 u(xs+6, tq)− 21 u(xs+7, tq)] ,

✸
C,h̃

u(xs, tq) =
1

6h̃4
[−u(xs−3, tq) + 12 u(xs−2, tq)− 39 u(xs−1, tq)

+56 u(xs, tq)− 39 u(xs+1, tq) + 12 u(xs+2, tq)

−u(xs+3, tq)] , (29)

✸
B,h̃

u(xs, tq) =
1

6h̃4
[56 u(xs, tq)− 333 u(xs−1, tq) + 852 u(xs−2, tq)

−1219 u(xs−3, tq) + 1056 u(xs−4, tq)

−555 u(xs−5, tq) + 164 u(xs−6, tq)− 21 u(xs−7, tq)] .

As we know, ηj ∈ (tj−1, tj) and ξi ∈ (xi−1, xi+1). Hence, we propose to utilize
the idea of finite differences for the approximation of the endpoints of the error
term intervals, taking the intervals U IA

s,q instead of u(xs, tq) in (28)-(29). Since
for a given pair of indexes (i, j), we can always find the indexes (s, q) such that
(xi, tj) = (xs, tq), then based on the operators defined above, we can easily
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compute the following intervals

S∗

i,j−1 = ✸
◦,k̃

U IA
i,j−1, S∗

i,j = ✸
◦,k̃

U IA
i,j , (30)

Q∗

i−1,j = ✸
◦,h̃

U IA
i−1,j , Q∗

i,j = ✸
◦,h̃

U IA
i,j , Q∗

i+1,j = ✸
◦,h̃

U IA
i+1,j ,

where ◦ ∈ {F,C,B} and is used to specify a forward, central and backward
finite difference, respectively. We used to apply the central finite differences in
the case of most mesh points. Nevertheless, the forward and backward finite
differences are necessary for the points that are located near the boundary.

Finally, we compute the interval hulls of the intervals S∗

i,j−1, S
∗

i,j and Q∗

i−1,j ,
Q∗

i,j , Q
∗

i+1,j , respectively. Then, we take the endpoints of the results obtained
as the approximations for the endpoints of Si,j and Qi,j . We have

Si,j ≈ min
{
S∗

i,j−1, S
∗

i,j

}
, Si,j ≈ max

{
S
∗

i,j−1, S
∗

i,j

}
, (31)

Q
i,j

≈ min
{
Q∗

i−1,j
, Q∗

i,j
, Q∗

i+1,j

}
, Qi,j ≈ max

{
Q

∗

i−1,j , Q
∗

i,j , Q
∗

i+1,j

}
.

Step 6. Use the error term intervals Si,j , Qi,j to compute the components of

the interval vectors E
(j)
L , j = 1, 2, . . . ,m.

3. Numerical results

Consider the heat conduction problem given by the governing equation

∂u

∂t
(x, t)− 1

π2

∂2u

∂x2
(x, t) = 0, 0 < x < 1, t > 0, (32)

and the initial and boundary conditions

u (x, 0) = 1− 0.8x+ sinπx, 0 ≤ x ≤ 1, (33)

u (0, t) = 1, u (1, t) = 0.2, t > 0. (34)

The analytical solution of the problem (32)-(34) and the partial derivatives of
u, present in the error terms are known and given as follows

u (x, t) = 1− 0.8x+ e−t sin(πx), (35)

∂2u/∂t2 (x, t) = e−t sin(πx), ∂4u/∂x4 (x, t) = π4e−t sin(πx). (36)

We choose Tmax = 1, and then we use the exact solution (35) to obtain the
temperature distribution, described by the problem (32)-(34), as presented in
Figs. 1 (a)-(b). The partial derivatives (36) of the function u (present in the
error term (12)) are given in Figs. 2 (a)-(b).

We carry out a number of numerical experiments to investigate the inter-
val method considered. The computations were performed with the C++ li-
braries (dedicated for the Intel C++ compiler) for the floating-point conver-
sions and interval arithmetic using the double extended precision format (see
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also Jankowska, 2010). For a given grid of points (xi, tj) defined by the con-
stants n and m, we choose a denser grid of points (xs, tq), generated with the
constants ñ and m̃ that are further used for an approximation of the endpoints
of the error term intervals (see the Algorithm). For most experiments we set
n = m, ñ = m̃, where ñ, m̃ are chosen such that their values are greater or equal
to 520 and less or equal to 1000. In this way we have qmax ≤ TOL = 3E-4.
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(b)

Figure 1: Temperature distribution described by the heat conduction problem for:
(a) selected values of t; (b) t ∈ [0, 1]

First, we examine how a decrease of the stepsizes h and k (i.e. an increase
of n and m) affects the widths of the interval solutions obtained. We use the
interval method considered for the equally spaced grid points in relation to x
and t, i.e. we have n = m (see Fig. 3(a)). Then, the grid points are such
that the stepsize k is much smaller than the stepsize h (see Fig. 3(b)). In
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Figure 2: Partial derivatives of the function u that are present in the error terms:
(a) ∂2u/∂t2(x, t); (b) ∂4u/∂x4(x, t)
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the second case we apply the stability criterion required for the conventional
backward finite difference scheme, formulated for the heat conduction problem
of the form (1)-(3) with the coefficient α2 given as a function dependent on the
position x. Such condition (see e.g. Press et al., 2007) states that the stepsize
k should satisfy the relation k ≤ h2/(2α2). It is not required in the case of the
conventional and interval methods considered. Nevertheless, if we compare the
results presented in Figs 3(a)-(b), then we can see that a decrease of the stepsize
k with respect to the stepsize h causes a decrease of the interval solution widths.
Such a behavior is desired and understandable (e.g. if n = 20, h = 0.05, then
we take m = 160, k = 0.00625, so that the condition required was satisfied in
the example problem considered). On the other hand, the decreasing tendency
observed in Fig. 3(b) is not so regular as we can see in Fig. 3(a). This is caused
by a number of factors. Note that in the case when n 6= m, the condition
imposed on ñ is the same as when n = m, i.e. 520 ≤ ñ ≤ 1000. Simultaneously,
m̃ is many times greater than ñ. Furthermore, for the selected subsequent grids
(e.g. n = 120 and n = 140), the values of m̃ differ significantly one from the

other. If we take into account also the fact that too small values of k̃ can, as
a result, lead to an increase of widths of the error term intervals, then some
irregularities in Fig. 3(b) become understandable.

Secondly, we compare the widths of the interval solutions U(x = 0.5, t),
U IA(x = 0.5, t), obtained with the interval method considered, and the appro-
priate component EL(x = 0.5, t) of the vector EL(t) that contains all the error
term intervals (see Fig.4). We consider two cases that correspond to t = 0.1
and t = 1. The widths of U IA(x = 0.5, t) are very small in comparison to
U(x = 0.5, t). Nevertheless, since in the interval realization of the conventional
method the local truncation error of the conventional scheme is neglected, then
the exact solution is usually not included in U IA(x, t) (see Table 1). This is in
contrast to the interval solution U(x, t) such that the exact solution belongs to
it (see Table 2).

Finally, we analyze the widths of the error term intervals S(x = 0.5, t),
Q(x = 0.5, t), together with the interval EL(x = 0.5, t) that depends on both
of them as defined in the equation (17) (see Fig.5). Note that EL(x = 0.5, t) is
an interval such that it should include (see the remarks given in the Algorithm
proposed in Section 2.3) the local truncation error terms of the conventional
scheme (always neglected in the conventional approach).

4. Conclusions

The interval method proposed is formulated on the basis of finite differences.
It constitutes another approach in the area of verified computing related to the
heat conduction problems. In its theoretical formulation it can be shown that
the exact solution of the problem belongs to the interval solution. Nevertheless,
in general, the endpoints of the error term intervals have to be approximated
with some possibly high order finite difference schemes. One of our aims was
to present an appropriate algorithm that can be used for this task. Then, the
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(a) (b)

Figure 3: Widths of the interval solution U(x = 0.5, t) obtained with the interval
method considered and different values of n, where: (a) m = n; (b) m is such that

k ≤ h2/(2α2)

(a) (b)

Figure 4: Widths of the interval solutions U(x = 0.5, t), UIA(x = 0.5, t) and the
appropriate component EL(x = 0.5, t) of the vector EL(t) that contains the error

term intervals for: (a) t = 0.1; (b) t = 1
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x u (x, t = 1) U IA (x, t = 1) width

0.1 1.033E+0 [1.034256351106114E+0,1.034256351106115E+0] 1.15E-15
0.2 1.056E+0 [1.057328494495153E+0,1.057328494495155E+0] 1.98E-15
0.3 1.057E+0 [1.059127010626348E+0,1.059127010626351E+0] 2.52E-15
0.4 1.029E+0 [1.031644890817003E+0,1.031644890817006E+0] 2.78E-15
0.5 9.678E-1 [9.697413190404690E-1,9.697413190404718E-1] 2.79E-15
0.6 8.698E-1 [8.716448908170034E-1,8.716448908170060E-1] 2.57E-15
0.7 7.376E-1 [7.391270106263488E-1,7.391270106263509E-1] 2.15E-15
0.8 5.762E-1 [5.773284944951539E-1,5.773284944951554E-1] 1.56E-15
0.9 3.936E-1 [3.942563511061142E-1,3.942563511061151E-1] 8.30E-16

Table 1: Values of the exact solution u(x, t = 1) and the interval solution
UIA(x, t = 1) obtained with the interval realization of the conventional method,

where h = k = 0.01.

x u (x, t = 1) U (x, t = 1) width

0.1 1.0336809E+0 [1.0336773603200E+0,1.0336837965741E+0] 6.43E-06
0.2 1.0562341E+0 [1.0562272678769E+0,1.0562393576005E+0] 1.20E-05
0.3 1.0576207E+0 [1.0576113907519E+0,1.0576278583704E+0] 1.64E-05
0.4 1.0298741E+0 [1.0298632472572E+0,1.0298824601789E+0] 1.92E-05
0.5 9.6787944E-1 [9.6786802368765E-1,9.6788815492366E-1] 2.01E-05
0.6 8.6987413E-1 [8.6986326277521E-1,8.6988244382515E-1] 1.91E-05
0.7 7.3762071E-1 [7.3761141697840E-1,7.3762783154001E-1] 1.64E-05
0.8 5.7623411E-1 [5.7622729572120E-1,5.7623933001132E-1] 1.20E-05
0.9 3.9368099E-1 [3.9367737891274E-1,3.9368377898258E-1] 6.40E-06

Table 2: Values of the exact solution u(x, t = 1) and the interval solution U(x, t = 1)
obtained with the interval method, where h = k = 0.01.
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(a) (b)

Figure 5: Widths of the error term interval EL(x = 0.5, t) and the intervals
S(x = 0.5, t), Q(x = 0.5, t), which are all taken into account when the interval

solution is produced with the interval method considered, where: (a) t = 0.1; (b)
t = 1

analysis of the widths of the interval solution as well as the error term intervals
was carried out. Since the analytical solution of the problem is known, we were
able to check if the exact solution belongs to the interval solution. Furthermore,
the similar tests were performed with respect to the interval values of the partial
derivatives present in the error terms in each iteration step of the algorithm.
The interval method considered just validates the conventional one. However,
as the numerical experiments show, the exact solution is included in the interval
solutions obtained.

Acknowledgments The study, reported in the paper, was supported by the
Poznan University of Technology (Poland) through Grants No. 21-381/2012
DSPB, 02/21/DSPB/3463.

References

ANDERSON, D.A., TANNEHILL, J.C., PLETCHER, R.H. (1984) Computa-
tional Fluid Mechanics and Heat Transfer. Hemisphere Publishing, New
York, NY.

BORAWSKI, M. (2012) Vector space of increments. Control and Cybernetics
41 (1), 145–170.

BURCZYNSKI, T., SKRZYPCZYK, J. (1997) Fuzzy aspects of the boundary
element method. Engineering Analysis with Boundary Elements 19 (3),
209–216.

FORNBERG, B. (1998) A Practical Guide to Pseudospectral Methods (Cam-
bridge Monographs on Applied and Computational Mathematics). Cam-
bridge University Press.

GAJDA, K., JANKOWSKA, M., MARCINIAK, A., SZYSZKA, B. (2008) A



On an application of an interval method for solving the heat conduction problem 479

Survey of Interval Runge-Kutta and Multistep Methods for Solving the
Initial Value Problem. Lecture Notes in Computer Science 4967, 1361–
1371.

HAMMER, R., HOCKs, M., KULISCH, U., RATZ, D. (1993) Numerical Tool-
box for Verified Computing I. Basic Numerical Problems. Springer-Verlag,
Berlin.

HOFFMANN, T., MARCINIAK, A. (2013) Solving the Poisson Equations
by an Interval Method of the Second Order. Computational Methods in
Science and Technology 19 (1), 13–21.

JANKOWSKA, M.A. (2010) Remarks on Algorithms Implemented in Some
C++ Libraries for Floating-Point Conversions and Interval Arithmetic.
Lecture Notes in Computer Science 6068, 436–445.

JANKOWSKA, M.A. (2012) An Interval Backward Finite Difference Method
for Solving the Diffusion Equation with the Position Dependent Diffusion
Coefficient. Lecture Notes in Computer Science 7204, 447–456.

JANKOWSKA, M.A. (2014) Interval Finite Difference Method for Solving the
Problem of Bioheat Transfer between Blood Vessel and Tissue. Lecture
Notes in Computer Science 8385, 644–655.

JANKOWSKA, M.A., SYPNIEWSKA-KAMINSKA, G. (2012) An Interval
Finite Difference Method for the Bioheat Transfer Problem Described by
the Pennes Equation with Uncertain Parameters. Mechanics and Control
31 (2), 77–84.

JANKOWSKA,M.A., SYPNIEWSKA-KAMINSKA, G. (2013) Interval Finite-
Difference Method for Solving the One-Dimensional Heat Conduction Prob-
lem with Heat Sources. Lecture Notes in Computer Science 7782, 473–
488.

JAULIN, L., KIEFFER, M., DIDRIT, O., WALTER, E. (2001) Applied Inter-
val Analysis. Springer-Verlag, London.

KOSINSKI, W., PROKOPOWICZ, P. (2004) Algebra of fuzzy numbers (in
Polish). Matematyka stosowana 5, 37–63.

KULISCH, U. (2013) Computer Arithmetic and Validity. Theory, Implemen-
tation, and Applications, 2nd Edition. De Gruyter, Berlin.

MAJCHRZAK, E., MOCHNACKI, B., DZIEWONSKI, M., JASINSKI, M.
(2011) Numerical modelling of hyperthermia and hypothermia processes.
Computational Materials Science, PTS 1-3 Book Series: Advanced Mate-
rials Research 268–270 (3), 257–262.

MARCINIAK, A. (2009) Selected Interval Methods for Solving the Initial Value
Problem. Publishing House of Poznan University of Technology.

MARCINIAK, A. (2012) An Interval Version of the Crank-Nicolson Method
the First Approach. Lecture Notes in Computer Science 7134, 120–126.

MOCHNACKI, B., PIASECKA-BELKHAYAT, A. (2013) Numerical Modeling
of Skin Tissue Heating Using the Interval Finite Difference Method. MCB:
Molecular & Cellular Biomechanics 10(3), 233–244.

MOORE, R.E., KEARFOTT, R.B., CLOUD, M.J. (2009) Introduction to In-
terval Analysis. SIAM Philadelphia.



480 M.A.Jankowska, A.Marciniak, T.Hoffmann

NAKAO, M. (2001) Numerical verification methods for solutions of ordinary
and partial differential equations. Numerical Functional Analysis and Op-
timization 22 (3–4), 321–356.

NAKAO, M., KIMURA, T., KINOSHITA, K. (2013) Constructive A Priori
Error Estimates fora Full Discrete Approximation of the Heat Equation.
SIAM Journal on Numerical Analysis 51 (3), 1525–1541.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., FLANNERY, B. (2007)
Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cam-
bridge University Press.

SUNAGA, T. (1958) Theory of interval algebra and its application to numerical
analysis. Research Association of Applied Geometry (RAAG) Memoirs 2,
29–46.

SZYSZKA, B. (2012) The Central Difference Interval Method for Solving the
Wave Equation. Lecture Notes in Computer Science 7204, 523–532.

SZYSZKA, B. (2015) An Interval Version of Cauchy’s Problem for the Wave
Equation. In: Th. E. Simos and Ch. Tsitouras, eds., AIP Conference
Proceedings: International Conference on Numerical Analysis and Applied
Mathematics 2014 (ICNAAM–2014), 1648, 800006-1–800006-4.


