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Abstract: In the here presented research, we investigate Wolfe and
Mond-Weir duality models applied to a specific category of generalized
convex functions known ggs-invex functions. We establish various duali-
ties between the primal MPVC and its Wolfe type dual, as well as between
the primal MPVC (mathematical program with vanishing constraints) and
its Mond-Weir type dual undgp- invexity assumptions. To illustrate these
theorems, we will include some examples.
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1. Introduction

Mathematical program with vanishing constraints (MPVC) was first introduced by
Achtziger and Kanzow (2008). This is a special class of optimization problems, which
is a unified framework for some applications in topology and structural optimization.
Subsequent to the works by Achtziger and Kanzow, there were published a couple
of collaborative works such as Hoheisel and Kanzow (2007, 2008, 2009), surveying
constraint qualifications and optimality conditions for MPVC.

Usually, vanishing constraints violate standard constraint qualifications, like Manga-
sarian-Fromovitz and linear independence constraint qualifications, but Abadie con-
straint qualifications are a strong assumption for the MPVC (Achtziger and Kanzow,
2008). In many cases, Guignard constraint qualifications (GCQ) (Achtziger and Kan-
zow, 2008) can be applied, but checking whether an MPVC satisfies GCQ is not easy
and not sufficient to demonstrate a good algorithm convergence result. MPVC is often
used in the economic dispatch problems (Jabr, 2012) and the non-linear integer optimal
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control problems (Michael, Kirches and Sager, 2013). Sonmeatical approaches and
theoretical properties regarding MPVC can be found in Aigetizand Kanzow (2008),
Dussault, Mounir and Tangi (2019), Hoheisel and Kanzow {206lu et al. (2014,
2017), Kazemi and Kanzi (2018), Tung (2020), as well as Turdyam (2021).

Duality theory is important in optimization, see Antczakla@ingh (2009), Bot and
Grad (2010), Chinchuluun, Yuan and Pardalos (2007), J@§i1), and Saglam and
Mahmoudov (2022), for instance, because the lower boundh@mbjective function
value of the primal problem is given by weak duality. The sieal Wolfe duality was
introduced by Wolfe (1961), while the Mond-Weir duality wasroduced in Mond and
Weir (1981) for differentiable scalar functions.

Over the past decades, the results from the study of the dahlgm have been
used as a tool to solve various optimization problems iredft fields, like variational
inequality problems, complex minimax problems, fractiomeogramming problems,
semi-infinite programming problems, fractional subsegpaoming problems, mini-
max fractional programming problems, bi-level infinite aguilibrium programming
problems see, e.g., Antczak (2010), Antczak and Singh (2@ and Grad (2010),
Joshi (2021a,b), Joshi, Mishra and Kumar (2020), or MishchShukla (2010).

Generalized convex functions, as discussed in variousest¢dbshi, 2021a,b; Joshi,
Mishra and Kumar, 2020), have been introduced to relax tivegsint requirements of
convexity in order to derive results pertinent to optimiaattheory. A notable gen-
eralization in this context is thep,r)-invex function, Antczak (2001). This class of
invex functions preserves many properties of convex fonstiand has proven to be
highly useful in a wide range of applications. To the bestwflmowledge, there have
been no existing results available for the duality modekebaonp—invex functions,
Antczak (2001), under mathematical program with vanistdagstraints. This gives
us a motivation to utilize these concepts to develop dutiigprems for the Wolfe and
Mond-Weir type duality models in our paper.

This paper is structured as follows: In Section 2 we give spnediminary defi-
nitions and results. In Section 3, we investigate dualisuls under the assumptions
of p-invex and strictlyp-invex objective function ang-invex constraints. We also
derive duality results under the assumption of psepdiavexity and strictly pseudo-
p-invex objective function and quagHnvex constraints. Section 4 is devoted to the
conclusions from the results of this article.



Duality in mathematical programs with vanishing constraints 353

2. Preliminaries and definitions
Mathematical program with vanishing constraints (MPVGitisictured as follows:

min f(a)
subjecttogy () <0, a =1,2,...,v,
hy(a)=0,y=1,2,....q,
Zu(@)=0,a=12,..1,
Qu(@)Z(a) <0, a=1,2,..,1,

wheref :R" 5 R, g:R" > RY, h:R"— RY, Q,.Z:R" — R' are all continuously
differentiable functions. In the present pap€mvill denote the feasible set of MPVC
and will be defined as

X:={aeR":ge(a) <0, a=1,2..,y,
hV a) = Oa y= 1727"'aqa
Zu(@)=20,0=12,..,1,
Qu(a)Z(a) <0, a=12,..1}.

A pointb* € X is referred to as a local minimum of the MPVC, if and only iftae
exists an open baB(b*, ) aroundb* with radiusd > 0, such that

f(b*) < f(a), vae XNB(b", d).

and if f(b*) < f(a),Va € X, then the poinb* € X is said to be a global minimum of
the MPVC.

Let b* € X be any feasible point of the MPVC; then, the index sets araeefas
follows:

Tg(b") = {a|ga (b") = 0},

h(b*) ={1,2,...,q},

T, (b%) = {a]Za(b") > 0},

To(b") = {a|Z (b*) = 0},

T0(b") = {a]|-Za(b") > 0,Qq4(b") = 0},
7. (b") = {a]|ZL(b") > 0,Q4(b*) < 0},
To+ (b") = {a| %, (b") = 0,Qq(b") > 0},
Too(b*) = {0]-Zu (b*) = 0,Qq (b*) = 0},
70— (b*) = {a]|-Za(b") = 0,Qq(b") < 0}.
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Now, we provide Lagrangian function and gradient of Lagrandunction:
r(y.8.@.8%, %)

Y, q | |
= f(y)+ a; SaQa (y) + y; wyhy(y) — a; B ZLuly)+ a; BEQa(y)

and
Or (y, 8, w,B%, B9)

v q | |
=0fW)+ 3 8lge(y)+ 3 wyEhyly) - Zlﬁf OZa(y) + 21BSDQa v)-
a= y= a= a=

Fora € X, we define the following index sets:
Ty (a) ={a €{1,2,...,v}|dx > O},
Ty (@) = {y € Tn(a)|w, > O},
T, (8) ={y € (a)|wy <0},

15, (a) = {a € 10, (a)[B5 > O},

T, (@) = {a € 0. (3)|B5” <0},

T50(a) = {a € T00(a)|B7” > O},

Tio(a) ={a¢e T+0(a)|/3&zj > 0},

() ={a et (a)Bs >0},

1, (8) ={a €10 (a)|Bs >0},

/5 (@) = {a € T40(a)| B3 > 0},

Tt (@) ={a et (a)BF >0} €y

DEFINITION 1 (ACHTZIGER AND KANZOW, 2008) Let b* € X be a feasible point of
the MPVC. The Abadie constraint qualification (ACQ), is daitiold at Iy, if T (b*) =
I (b*), where

K
T(b") = {Ae R": 3{¢} CX,3{t} L 0¥ — b and™ tkb —>A}

is known to be a standard tangent cone of MPVC*atand
M(b*) = {AcR":0gq(b")TA<0, a € 1¢(b*),
Ohy(b")TA=0, y=1,2,...,q,
0.Zx(0")TA=0, a € 1o, (b"),
0%,(0°)TA>0, a € Too(b*) Ut (b*),
0Qa(b")TA<0, a € To(b*)}
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is called corresponding linearized cone of the MPVC-at b

DEFINITION 2 (ACHTZIGER AND KANZOW, 2008) Let b € X be a feasible point of
the MPVC. The VC-ACQ (vanishing constraints-Abadie cairgtrqualification) is
said to hold at b, iff V<(b*) C T(b*), where
VC(b*) = {AcR":0gq(b*)TA< 0, a € 14(b"),

Ohy(b)TA=0, y=12,...,q,

0%(b)TA=0, a € 10, (b"),

0%4(0°)TA>0, a € Too(b*) UTo_ (%),

0Qq (b")TA< 0, a € Too(b*) UT40(b*)}

represents the corresponding VC-linearized cone of the GIBM5".

THEOREM 1 (ACHTZIGER AND KANZOW, 2008) Let b € X be a local minimum of
the MPVC such that VC-ACQ holds &t brhen,3 Lagrange multipliersd, € R(a =
1,2,...V),0y e R(ye 1), BZ, B3 € R(a = 1,2,...,1), such that

0r(b*,8,w,8%,8°) =0 2)
and
hy(b") =0 (y € Tn(b")),
% >0, ga(b*) <0,
009q(b")=0(a=12,...,v),
By =0(a et (b)),
Bi >0 (a € Too(b") UTo- (b")),
B is free(a € 1o (bY)),
Q=0 (a e (b")Uto (b)UT, (b)),
Q>0 (a € 1o0(b*) UT;0(b%)). (3)

Note: Throughout the paper “with respect to” will be denoted byr:4.

The following definition ofp-invex function is taken from [Antczak (2001); Definition
1, Case 3].

DEFINITION 3 Let SC R" be any nonempty set and let R" — R be continuously
differentiable function. Then, f is said to be p-invex‘atks w.r.t. the kernel function

£ :SxS— R"on Sifforany ac S, we get
fla)— F(b) > (6.0 ~1).p 20
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If p =0, the definition reduces to
f(a)—f(b") = (Of(b%),&(a,b7)).

Based on the definition gi-invex function, we are introducing the definition of pseudo
p-invex and quasp-invex functions.

DEFINITION 4 Let S## @ C R" and let f: R" — R be a continuously differentiable
function. Then, f is said to be pseudo-p-invex atbS w.r.t. the kernel function
£ :SxS— R"on Sifforany ac S, we get

%(Df(b*),epf(a*b*) ~1)>0 = f(a)> f(b"),p#0.

If p =0, then the definition reduces to
(Of(b*),&(a,b*)) >0 = f(a) > f(b").

DEFINITION 5 Let SC R" be any nonempty set and let R" — R be a continuously
differentiable function. Then, f is said to be quasi-p-ine¢ b € S w.r.t. the kernel
functioné : Sx S— R" on S if for any ac S, we get

f(a) < f(b) — S(OFE).) -1 <0pro

If p =0, then the definition reduces to
f(a) < f(b") = (Of(b"),&(a,b")) <O.
Now, we provide the duality models and establish varioudigutheorems. These

duality models are taken from Mishra, Singh and Laha (20h6é)Hu, Wang and Chen
(2020).

3. Duality models

This section gives two duality models, namely the Wolfe tyjuml model and the
Mond-Weir type dual model, respectively.

3.1. Wolfe type dual model

Forae X, VC-WD(a) denotes the Wolfe type dual of the MPVC, which is as follows:
max [(y,5,w,B%,B)
subject todr (y, 3, w, BZ, B°) =0,
O >0, Va=12 .., (4)
BS = kaZu(@), kg >0,Ya =1,2,...1,
By = pa—KaQa(@), pa >0, Va =1,2,...,1.
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Let Sy(a) C R" x RY x R4 x R! x R' denote the feasible set, i.e.,

Su(@) = {(v,8.w,B%, B, p.k) : O (y,8,w,8%,B2) =0,
O >0, Va=12 .., (5)
BS =kaZLu(@), kKe >0, a=12,..,1,

B =pa —KaQu(a), pa >0, a=1,2,...,1}.
We denote the projection of the s&f(a) onR", as follows
prow(@) = {y e R": (y,8,@,87,B%,p,K) € Su(a)}-

Another dual problem, which is denoted VC-WD, and which isipehdent of the
MPVC, is defined as follows:

maxr (y, 5, w, 87, B9)
S't'(y75awaB$7BQapaK) emaEXSN(a)' (6)

The setSy = NacxSw(a) represents the set of all feasible points of the VC-WD and
prSy represents the projection of the SgtonR".

Now we provide the weak duality theorem.

THEOREM?2 Let ac X be a feasible point for the MPVC aifd 5, w, 3%, 82, p,K) €
Sw be a feasible point for the VC-WD. If one of the following dtinds holds:
(1) T(.,3,w,B%,B9) is p-invex aty € XU prS, w.r.t. the kernel functiorf ,
(2) f, ga(a € 14 (), hy(y € 17 (a)), —hy(y € T, (a)),
— Za(a € Tio(@) U T, (8) UToo(@) UTo- () U TG, (a)), —Zala € Ty, (a),
—Qu (0 € 104 (), Qu(a € Too(a) UT40(a) UTo-(8) UT;—(a))
arep-invex aty € X U prSy for the same real numbgr+£ 0
and w.r.t. the common kernel functidn

Then f(a) > (y,8,w,5%,B9).

PROOF (1) Let f(a) < I'(y,8,w,B%,B9),i.e.,

\% q | |
fl@) < fW)+ 3 0aly)+ 3 ayhyly) - Zlﬁag’ Zaly)+ ZlﬁSQa(y). (7)
a= y= a= a=
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Sincea € X and using 4), it follows that
Oa(a) <0,04 >0, a ¢ 14(a),
ga(@) =0,04 >0, a € 1g4(a),
hy(@a)=0,w, eR, ye 1,

~ %a() < 0,87 >0, ac1(a),

— Za(a)=0,B7 €R, a € 1o(a),

Qqu(a) > 0,88 =0, a e 10, (a),

Qq(a) =0,9 >0, a € Too(a) UT4o0(a),

Qu(a) < 0,88 >0, ac1 (AUt (a),

that is,
\Y |
S Suba(a) + z wyhy(@ z Bi Za(@)+ 5 BRQua(@) <0. (8)
a=1 a=1

By combining {7) and @), we get
a)+ Z 0aYa (@) + Z wyhy(a) Z B a)+ Z Ba Qu(a

+Z5crga +Zwyhy Zﬁgffg +zB

)
ie.,
Mad,w BB < r(y,8,w B, BY). (10)
By the p-invexity of '(.,5,w, 3~ ,B8°) w.r.t. the kernel functio , we obtain
r(.8.0.6%.8%) + (O (1.8,0.67. 6.1 1) < T(2.6.0.7.9).
Using first equation of4), we obtain
M@ d,wp”.B% = rys,wp” B (11)

which contradictsX0) and this is the required proof.

(2) By thep-invexity of g (a € 14 (a)),hy(y € 77/ (a)),—h,(y € T;, (a)),
—Za(a € T0(a) UT;—(a) UToo(8) UTo- (8) U Ty, (), —Za(a € Tp, (a)),
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—Qu(a € 10+(8)),Qqa(a € Too(a) UT40(a) UTo-(8) UT4— (), aty € XU prSy,
acX,(y,0,w,B%,B° p, k) € Sy, w.r.t. the common kernel functiof, we get

Ga(y) + %mga(y),epf(avy) 1) <ge(a) <0, & >0, a € T (a),
hy(y) + %@hy(y), 5@V 1) < hy(a) = 0, w, > 0, y€ 1 (a),

1
hy(y) + —p(Dhy(y),ep‘f(""’y> ~1)>hy(a)=0, @, <0, ye 1, (a),

~ Laly) - %mza (), %@ 1) <~ Z,(a) <0, B >0, a € T.0(a)
Uty (a) UToo(a) UTo-(a) UTg, (a),
1 P
~Za(y) - (0% (), e%@) —1) < — Z(a) =0, By <0, a € 1y, (a),

Qu(y) + ;ma( ). €@ 1) > Qu(a) > 0, B =0, a € 1o, (a),

Qu(y) + imQa()epfay 1) < Qa(a) = 0, B9 >0, a € T 0(a) UToo(a),

Qal(y) + l<DQ.::()eP‘fay 1) <Qq(a) <0, B >0, aet (A)UT, (a),

which shows that

\ I
S dala(y)+ Z wyhy(y) Z B Za(y)+ 2 PeQaly)
a=1 —

1< 2 0aliga(y) + Z wyOhy(y) - Z B 0Lu(y)+ Z BROIQ (y), 5 (@Y) — 1>
a=1 y=1 a=1
<0. (12)

Using p-invexity of f aty € XU prSy, w.r.t. the kernel functioi, we get

fy)+ %<Df<y>,epf<a=y> _1)<f(a). (13)

By combining (12) andX3), we get

1

r(y,d,w,8%,B9) + 50 r(y,8,w,B%,B9),eM@) 1) < f(a).

In view of the first equation ind), we get

r(y,6,0,%,8% < f(a)
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and this ends the required proof. ]
Now we provide the strong duality theorem, which provides ¢bndition, under
which the Wolfe type dual problem is solvable and the globaimum can be attained.

THEOREM3 Let b € X be a local minimum of the MPVC, such that the VC-ACQ
holds at 5. Then, there exist Lagrange multiplieds= RY, w € RQ, <. B9, p,k e R,
such that(b*, 5, @, B<, B2, p, k) is a feasible point of the VC-Wb*) and

v q I _ I
S dada(b)+ Y ohy(b)— 5 By Za(b')+ ¥ BFQa(b)=0.  (14)
a=1 y=1 a=1 a=1

Moreover, if one of the following condition holds:

(i) T(.,8,w,B%,BR) is p-invex aty € X U prSy(b*) w.r.t. the kernel functior ;
(i) f, ga(a € 14 (b)), hy(y € 17 (b)), —hy(y € Ty (b")),

— La(a € Tho(b") U T, (b°) UToo(b") UTo- (b) U Ty, (b7)),

—~Za(a € 15, (b)), —Qa(a € To4 (b)),

Qu(a € Too(b*) U T o(b*)UTo- (b )UT_(bY))

arep-invex aty € XU prSy(b*) for the same real number=£ 0 and

w.r.t. the common kernel functiof;

then, (b*, 5, @, B, B, p, k) is a global maximum of the VC-WB), i.e.,
r(6*,8,0,B%.B) > T(y,8,w,B7,B2),v(y,8,w B%,B2) € Sy(b")
and L
f(b*) = r'(b*,3,@,8%,B9).

PROOF Sinceb* is a local minimum of the MPVC and the VC-ACQ condition is sa-
tisfied atb*, by Theoreml, one can see that there exist Lagrange multipl&rs
RY,@w € RQ, B4 B9 p.k € R', such that the condition®) and @) [from Theorem

2] hold and hencéb*, 8, @, B~ ,B°, p,K) is a feasible point of the VC-W[b*). By
Theorenm?, we get

f(b") > T(y,8,0,87,89), V(y,0,0,8%,8%,p,K) € Sw(b"). (15)
By combining (4) and (L5), we get
r(b*757 w7B$’BQ) Z r(y755waB$7BQ)> V(y, 5a O\),BK,BQ,[),K) S SN(b*)v

that is, (b*, 5,0,8%,B2,p, K) is a global maximum of the VC-W(D*). n
Next, we provide the converse duality theorem.
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THEOREM4 Let ac X be any feasible solution of the MPVC and let
(v',8,0,8%,B2,p,K)
be a feasible point of the VC-WD such that
gaga(yk) Z 07 a= 17 27"',\/7
@hy(Yk) = 07 y: 17 27 "'7q7
_B&yga(yk) > 07 a= 1727"'a|7
5Qu(y*) >0, a=12,..1.
In addition, if one of the following conditions holds:
(1) T (.,8,0,B7,B9) is p-invex aty* € X U prSy w.r.t. the kernel functior ;
(2) f. ga(a € 14 (a)), hy(v € 17 (8)), —hy(y € 1, (a)),
~Za(a e T/ H(QUT! (a)UTg(a) Uty (a)UTg, (a)),
~Za(a €14,(a),Qa(a e T/ (Q)UT ()
are p-invex aty* € XU prS,for the same real numbeg£ 0
and w.r.t. the common kernel functign

Then, y will be a global minimum of the MPVC.

PrROOFAssume thay* is not a global minimum of the MPVC, i.e., there exiats X
such that

f(&) < f(y"). (16)

(1) Sinceaand (y*, 5,,8%,B2,p, K) constitute the feasible point for the MPVC and
the VC-WD, respectively. Now, using the hypothesis of thethe, we obtain

<

I I
a9a (8) + S wyhy(8) - Zlﬁaffa(é)‘i‘ ZlBo?Qa(é)

a=1

.
M

v q [ |
< a;éaga(m + zlcﬁyhy(y*) —G;Bfga(w) +a; CQu (y").

y:

17)
By combining (6) and (L7), we get
r(&6,0,8”.B9) < I(y,8,0,87,89.
Using p-invexity of T'(.,8,w,B<,B°) w.rt. the common kernel functiod, aty* ¢
XU prSy; we get

%<D r(y.5,0,8%,B9), e @) 1) <0,
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and this contradicts the dual constraint of the VC-W&D which completes the proof.

(2) Sinceaand(y*, 8, @, B, B2, p, k) constitute the feasible point for the MPVC and
the VC-WD, respectively, then it follows that

ga(ﬁ) < ga(y*), ac Tar(é>7

hy(&) = hy(y"), ye 1y (8) U, (8),

— Za(8) < —Zuly"), a e T/,(AUT] (B)UTge(8) Uty (8)UTg, (&),
—%a(8) > —Zu(y'), a €14, (8),

Qu(8) < Qa(y"), a € Tfg (A)UTT(A).

By the p-invexity of the functions, considered in the hypothesishaf theorem, w.r.t.
the common kernel functio&, we get

(Dga(y"), @) —1) <0, & >0, a € 1 (4),

(Ohy(y"),e® @) —1) <0, @, >0, ye 1} (&),

SlroTlkroTlEk

(Thy(y"),e® &) —1) >0, @, <0, ye 1, (&),

- S0 (). W) -1y <0, 57 20
a et (AUt (AUTH(E)UTy (8)UTy, (8),

- %)(Dga(y*),epf(é,y*) - 1> Z 07 E&%S Oac Tio(a)7

<DQa<w> @) _1) <0, B >0, a e T{g (A)UTI(A),
which |mpI|es that
[

v q _
;< Y Ba09a(y')+ > BN~ 5 B OLaly )+

Z BLOQq(y"), P @) — 1> <o

By connecting the above inequality ant),(we get

%<Df<y*>,epf<ﬁ~y*> “1>0.

By the p-invexity of f, w.r.t. the kernel functiorg , the above implies that

f@ > fy"),
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which contradicts our hypothesis and hence the requireaf js@omplete. ]
We now give the restricted converse duality theorem.
THEOREM5 Let b € X be any feasible solution of the MPVC and(igt, &, w, 87,
B9, p, k) be a feasible point of the VC-WD, such thab*) = ' (y*,d,w, <, B9).
Moreover, if one of the following conditions holds:
(1) T(.,0.0,87,B°
(2) f. ga(a €14 (b%)

is p-invex aty* € XU prS, w.r.t. the kernel functior,
, hy(y € 1y (b)), —hy(y € 1, (b%)),

—Za(a eti(b" )Y ut! (b")UTHH(b*) Uty (b*)UTS, (b)),

— Za(a € 1y, (b%)), Qa(a € UT] g (B )UTH(b"))

arep-invex aty* € XU prS, for the same real numbgr=£ 0

and w.r.t. the common kernel functidn

~—

—_ — —

Then, B is a global minimum of the MPVC.

PROOF Assume thab* € X is not a global minimum of the MPVC, then there exists

ac X such that
f(8) < f(b").

Now, using the assumptions of the theorem, we deducd tha} < I (y*, 5, w, 5‘77 [?Q).
This is a contradiction to Theoreth This completes the proof. ]

Now, we provide the strict converse duality theorem.

THEOREMG6 Let b* € X be a local minimum for the MPVC, such that the VC-ACQ

holds at 5. Assume that the conditions of Theor@tmold and(y*, 8, &, <, B<, p, k)
is a global maximum of the VC-WD). If one of the following conditions holds:

(1) T(.,8,0,87,B9) is strictly p-invex aty* € XU prSy w.r.t. the kernel functior ;
(2) f is strictly p-invex andgq (a € 14 (b")), hy(y € 1,/ (b)), —hy(y € 1, (b")),
—Za(a € Tro(b) U T, (5°) UToo(b") UTo (b) U g, (7)), —Za(ar € 1o, (b)),
—Qq(a € 101 (0")), Qa(a € Too(b") U T40(b") UTo- (b") U T, (D7)
arep-invex aty* € XU prS, for the same real numbgr=£ 0
and w.r.t. the common kernel functidn thenb* = y*.

PROOF (1) Assume thab* # y*. By Theorem3, there exist Lagrange multiplieée
RY,w e RO, BZ, B2, p,k € R', such thaty*, 5, @, B, B2, p, k) is a global maximum
of theVC—WD(b*). Hence,

f(b*) = (b*,8,@,8%,B2) =T (y",8,&,%,59). (18)
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Using the feasibility ob* for MPVC and the feasibility ofy*, &, &, 3%, 8%, p, k) for
the VC-WD(b*), we obtain

0o (b%) <0, 5% >0, a ¢ 19(b*),

da(b*) =0, 5 >0, a¢€ Tg(b"),
hy(b*) 0,0y € R, ye 1h(b*),
— Za(0") < 0.8 > 0,0 € 1,(b"),
— Z4(b") =0, €R, a € 1o(b"),
Qu(b*) > 0,88 =0, a € 1o, (b"),
Qu(b") =0,88 >0, a € Too(b*) UT,0(b"),
Qu(b) < 0,88 >0, a € 1o (b*)UT,_(b*),

S daba(b") + z Gyhy(b") — Z By Za(b%)+ z BEQa(b") < (19)

a=1 y=1
By combining (L8) and (9), we get
r(b,8,0,8%,89 < r(y,8,ap% B9 (20)

By the strictp-invexity of I'(.,8,&,3%,39), w.r.t. the common kernel functiof it
follows that

p(m r(y*,d8,0,8%,89),eP™Y) _1) <o

This contradicts the first equation i)(and this ends the required proof.
(2) Using the stricip-invexity of f aty*, w.r.t. the kernel functior, we get

f(b") = f(y") > %<Df(>ﬁ)7ep5(b*w—l>~ (21)

By the p-invexity of go (a € 74 (b%)), hy(y € 75/ (b%)),hy(y € T, (b%)),

— Za(a € Tro(b") UTo— (b") UToo(b*) UTo (b) U TS, (b)),

—Za(a €1, (b%)), —Qa(a € 104 (b%)),

Qq (0 € Too(b*) UTo(b*) Ut (b*)UT,_(b*)), aty* € XU prSy(b*),b* € X, w.r.t.
the common kernel functioé and
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(y*,8,0,B%,B2,p,R) € Su(b*), we get
Ja(Y") + %<Dga(>ﬁ), ey 1) <gqo(b") <0, 8 >0, a € 5 (b*),
hy(y*) + %(Dhy(y*), eP®Y) 1) <h,(b*) =0, & >0, ye 1, (b"),

hy(y') + %<Dhy<w>, PEB'Y) 1) > hy(b%) =0, &y <0, ye 1 (b°),
1

~Zaly) - $(0Zaly), PO 1) < — 7, (b") <0, B¥ >0,
a € Tio(b)) UT,— (b") UToo(b*) UTo- (b*) UTg, (b),
—Za(y') - %<Dza<y*)7 ePtY) 1) < — %y (b") =0,

BZ <0, a ey, (bY),
Qa(W)+%<DQa(W), 5BV 1) > Qq(b7) >0, fR=0, @ € To. ("),
Qu(y) + %<Doa<w>, ePEBY) 1) < Qq(b') = O,
B2 >0, a € To(b") UToo(b"),
Qu(y) + %<DQa<y*>, ePEBY) 1) < Q(b*) <0,

BR >0, a 1o (b)UT,_(b),

which implies that

a=1 y=1 a=1 a=1
v q |
+1< z o 90 (V") + z @y Ohy(y*) — Z 3&?D$a()ﬁ)
p a=1 y=1 a=1
* IZ B0Qq (y), () —1> <o. (22)
a=1

By combining 1) and @.1), we get
r(y",8,0,8%,B9) < f(b").

This contradicts18) and this ends the required proof. ]
Now, we provide an example in order to validate the theorems.
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ExamMPLE 1 Consider the optimization problem
min f(a) = a3+ 3a3

st.%(a) = % >0,

aa
Qu(a)-%(a) = % <0, (23)
withn=2 m=q=0, | =1 The feasible set X is given by
. 2, . A2 aiap
= = >0,—=<
X {(al,azeR) 3 >0, 3 _0}

For any feasible point & X, the Wolfe dual model VC-W@) to the MPVC(23) is
given by

max [ (y, B, B2) = y2 + 3y3 — B$y2+[31y

st. O r(yaﬁl Bj_ ) (2yl+B1Qva2_ Bl) = (070)7 (24)
BS = Klaj_,Kl >0,

B *P1*K1 ,P1>0

(1) To show that any feasible point B X is a global minimum of the MPVC using
Theorenb, we have to show that(b*) = F(y*,Bf”,BS) for some(y*,Bff,Bf) € Sy
such that the hypothesis of Theor&iholds at y on XU prg.Sy.

The feasible setypof the VC-WD is given by

Svi= {(y1,Y2, B2, B, p1,K1) :22y1+ B2 =0,

YZ*%—Q

B =Ki1Z1(8) 1 k1 >0,
B = p1—KkiQu(a) : p1 > O}.
Also

(BZ)?  (BY)?

<0.
108 4 <0

f(a17a2) = r(y17y27B]b.gaB](_g) =
This is only possible {87 =0, BS =0,and b = (0,0). That is

b* = (0,007 € X, (y, B2, B, p1,k1) = (0,0,0,0,0) € Sy(b*),
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and so, we get

f(b*) = 0= r(0,0,0).

It can be verified that the hypothesis of Theofeholds. That is, bis a global mini-
mum of(23). So, Theorerb is verified.

Be B
(2) We can gety= —-3-, y» = g by(24) and

Z\2 Q)2
rype.0) =Bl B <o

Since fa) = a2 +3a > 0, we can get fa) > T(y,B;Z,B52). Hence, Theorera is

verified.

(3) Since0.#1 = (0,1/3)7,0Q; = (1,0)T. So, we obtain tha{23) satisfies VC-
ACQ. By Theoreni, there exist Lagrange muItipIierBf",BP,pl, v1 € R such that
(0, Bi%’,ﬁf, p1,Vv1) is a feasible point of the VC-WD(0), and

—BZ £1(0) + B2Q1(0) =0.

Hence, (0, Bf/”,Bf,pl,vl) is a global maximum of the VC-WD(0) and0j = 0 =
r(0,B,B2). TheorenB s verified.

3.2.  Mond-Weir type dual model

Now, we shall be discussing the Mond-Weir type dual for MPW0Gr a € X, the
Mond-Weir type dual of the MPVC, VC-MW[) for short, is as follows:

max f (y)
st.Or(y,d,w,8%,89) =0,
Oq >0,0494(y) >0, a=1,2 ..y,
kyhy(y) =0, y=1,2,.,q,
BSQuly) >0, a =121,
BS = KogZLu(a),kq >0, a=1,2,.,1,
— B Za(y) >0, a =121,
Bi}g = Pa —KaQa(a),pq >0, a =121 (25)
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Let Syw(a) C R"x RY x RYx R! x R' denote the feasible set, i.e.
SVIW(a) = {(yvéawaﬁzvﬁQapaK) 0 r(ya67w73$> BQ) = 07

6(3( 2 0) 5090{()/) Z Ova = 1727"'7\/7
Kyhy(Y) = 07 y: 17 27 'aqa
B(?Qa(y) 207 azlaza'vla
ﬁ(? = Kaga(a)a KG 2 07 a= 1727'7|7
_Ba(/ga(y) Zov a:1,2,.,|,
Bi =Pa—KaQa(@), pa 20, a =121} (26)

We denote

prS\/IW(a) = {yE R": (y,6,0),B$,BQ,p,K) € SVIW(a)}

as the projection of the s&y(a) onR".
Similar to the Wolfe dual, there is another dual problem thaiconsider, which is
denoted by VC-MWD, and is defined as follows:

maxf (y)
S't'(y7 67w7B$1BQ7p7 K) € maEXSWW(a)~

The set of all feasible points of the VC-MWD is denoted®yy = Nacx Suw (@) and
the projection of the se&w onR" is denoted byprSuw.

THEOREM7 (Weak duality) Let & X and(y, &, w, <, B2, p,k) € Suw be feasible
points for the MPVC and the VC-MWD, respectively. Moredtene of the following
conditions holds:

(1) f(.) is pseudop-invex and
\ q | |
z 0aal(.) + z wyhy(.) — Z B&gga(~)+ Z BSQG(-)
a=1 y=1 a=1 a=1
is quasip-invex aty € X U prSuw, w.r.t. the common kernel functio;
(2) f(.) is pseudop-invex andgq (a € 14 (a)), hy(y € 1, (a)), —hy(y € T, (a)),
—Za(a € TH(Q)UT] (3) UTgo(a) UTy_(a) U T, (a)),
—Za(a €15,.(8),Qu(a € T/§ (@) UT* (a)) are quasip-invex aty € X U prSuw
for the same real numbgr+# 0 and w.r.t. the common kernel functign

then, f(a) > f(y).



Duality in mathematical programs with vanishing constraints 369

PROOFSincea € X and(y, 8, w, 3%, B2, p,k) € Suw it follows that

0a(a)<0,06, >0, 0=12,...,v,

hy(a) =0, wy € R, ye 1y,

~ %) <0, B >0, act.(a),

— Za(a)=0, B €R, a € 1o(a),

Qa(a) >0, B =0, a € T+ (a),

Qu(@) =0, B >0, a € 100(a) UT 0(a),
Qu(@) <0, B8>0,act (AUT, (a).

By (25), this implies that

| |
- Z B&ipga(a)“‘ Z BaQQa(a)

M=e
£

\"
z 0a9a (@) +
a=1

If
.

%
\Y |

gz&xga +20Jyhy Zﬁ&gga )+2B3Qa
a=1 a=1

Combining the quasp-invexity of

|
5orga + Z wyhy(.) z B&Z)gu )+ Z BaQa

ﬁM<

w.r.t. the common kernel functiod, we get
1 \% q | &
B Z 0g0ga (Y) + z wyOhy(y) — Z By O0Za(y)
= y= a=1
+ z BROQq (y), e @) — 1> <0.

By connecting the above inequality and the first equatior26f, (ve get

%mf(y),epf(awy) —1)>0.

Application of pseudgs-invexity of f w.r.t. the kernel functio leads us to

f(a) > f(y)

and this is the required proof.
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(2) Byae X, and(y,5,w, 8%, B2, p,k) € Suw. it follows that
9a(@) < galy), a € 14 (a),
hy(a) = hy(y), ye 17 (@ U1 (a),
—Za(a) < —Zuly), a e T (a)UT] (a)UTgH(a) Uty (a)UTy, (a),
_ga(a) > _ga(y)7 ac T6+(a)7
Qu(a) < Qu(y), a e T/ (8)UT(a).
By the quasip-invexity of gq (a € 14 (@), hy(y € 17 (@), hy(y e 1, (a)),

~Za(a eTH@UT! ()UTgh(@)UTy (a)UTg, (a), ZLa(a € T3, (),

Qu(a € i (a)ut{*(a)) for the same real numbgy # 0 and w.r.t. the common
kernel functioné, we get

(Oga(y), €@ _1)<0,6, >0, a € 14 (a),
(Ohy(y), e®@) —1) <0,d@, >0, ye 17 (a),

<DhV(Y)a epé(a!y) - 1> Z 0703)/ < 07 ye TI‘T (a)a

' Slrolkrolk
H

~(0Zaly), ) —1)

—%@% (y), @ 1)

IN

0, B >0, acth(aUT!_(a)UTgh(@) Uty (a)UTH, (a),

| \/

0,87 <0, a € 1;5(a),
<DQa( y), @) _1y <0, BR>0, a e i (a)UT*(a).

Using the above inequalities an?) (we get

1/ 2 d
p< z Oaga (Y) + Z ayLhy(y) z B DLa(y)+ Z BR0Qq (y), e @) — 1> <0
a=1 y=1
By combining the above inequality an2), we obtain
SOt -1y >0

By the pseudag-invexity of f, w.r.t. the kernel functio, we get

f(a) = f(y)
and this ends the required proof.

We now provide the strong duality theorem.
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THEOREMS8 Let b € X be a local minimum of the MPVC, such that the VC-ACQ
holds at . Then, there exist Lagrange multipliedse RY, @ € RP,3<,B°,p,k €

R', such that(b*, 8, w, B, B9, p, k) is a feasible point of the VC-MWD*), that is,
(b*,8,@,B%,B2,p,K) € Suw(b*). Moreover, Theorerfiholds, and thetb*, 8, co, BZ,
BQ) is a global maximum of the VC-MWD).

PROOF Sinceb* € X is a local minimum of the MPVC and the VC-ACQ condition
is satisfied ab*, by Theorem, it follows that there exist Lagrange multipliedse
RY,@w € RP,B< B9, p,k € R', such that the condition®) and @) hold and hence
(b*,8,w,B%,B2,p,K) is a feasible point of VC-MWDb*). By Theorent, it follows
that

f(b*) Z f(y)av(yaéaw7B$aBQap7K) € S\ﬂW(b*)

and hencéb*, 8, @, 3%, B2, p,K) € Suw(b*) is a global maximum of the VC-MWD.
n

THEOREMO (Converse duality) Let & X and(y*, 8, @, %, B2, p,K) € Suw be fea-
sible points for the MPVC and the VC-MWD, respectively. Iditaon, if one of the
following conditions holds:

(1) f(.)is seudop-lnvex and
v o _ [
Z 6 Jr z (")VhV z ﬁ&fza z B
is quasip-invex aty € X U prSuw, W.r.t. the common kernel functiof ;
(2) f is pseudop-invex andgq (a € 14 (a)), hy(y € T/ (a)), —hy(y € T, (a)),
~Za(a etiH(@UT (a)UTgh(@)UTy (a)UTg, (a)),

~Za(a €1y, (a),Qu(ar € T/§ (@) UT] " (a)) are quasip-invex at
y € XU prSuw for the same real numbgr+# 0 and w.r.t. the common kernel functidn

then ¥ is a global minimum of the MPVC.

PROOF Assume that/* is not a global minimum of the MPVC, that is, there exists
a e X, such thatf (&) < f(y").
(1) By the pseudg-invexity of f(.) w.r.t. the kernel functiorf, we get

%mf(y*),epf(m _1<o. 27)
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Sincea’e X and(y*,g,a_),ﬁf,ﬁQ,ﬁ, E) € Suw, we get
gflga(é‘) S gfxga(yk)v a= 172a "'7V7
@r]_)’(é) = (Byhy(w_)v y: 17 2a "'7q7
: &gga(é)_g _B&?ZIX(V*% a:1727"'7|a
B(?Qa(é> S BSQG(W)7 a= 172a"'7|,
which implies that
Voo a - _
BaGa(@) + Y Ahy(&)— Y B Za(@+ Y BIQu(d)
d=1 y=1 d=1 d=1
v o q [ [
<Y &Galy)+ Y O ) = S B Laly)+ S BEQu(Y)
d=1 y=1 d=1 da=1
By the quasip-invexity of
v a I I
BaGa()+ Y Ahy() = Y B Za()+ Y BRQa(),
a=1 y=1 a=1 a=1
w.r.t. the common kernel functiof, we get
1 vV — a — ! e
< > Gal0ga(y)+ Y @Ohy(y)— 5 B DZaly’)
p a=1 y=1 a=1
|
+ 3 BFOQa(y), e @) —1> <0 (28)

By combining the inequalitie®{) and @.2), we get

l - — py A \p*

B<D r(y*75a w, Bf’BQ%epE(a,y ) - 1> < 07
which contradictsZ5) and this is the required proof.
(2) Sincea’e X and(y*, 8, @, 8%, B, p. k) € Suw, We get

0a0a(8) < BaGaly’), a=1.2,....v,
Wyhy (&) = ohy(y), y=1.2,....,

—BL La(8) < —BL Laly), a=1,2,...,],
BRQa(8) < BRQa(y), a =1.2,....I.
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Using the above inequalities an?) (we conclude that

9a(8) < ga(y"), a € 14 (8),
YY), YET (@)UT, (4
_ga(yk)v ac TIO(N

T (@) UTH(E) U Te (&) Uy, (a),
&) > —Zu(y'), aety (8),
Qa(8) < Qa(y"), a € tig (AUTIL(E),
and by the quasp-invexity of gu (a € 74 (a)), hy(y € T,/ (a)),hy(y € T, (a)),
~Za(aeTH(@QUT (a)UTgh(@)UTy (a)UTg, (), Zu(a € Tg, (1)),
Qu(a € /5 (@) UT " (a)), w.r.t. the common kernel functiaf, this implies that

1

=

(Dga(y"), @) 1) <0,5, >0, a € 1 (4),
(Ohy(y"), e®¥@&) _1) <0,@,> 0, ye 1,7 (8),

<Dhy(yk), epé(&y*) - 1> Z 070'_))/ < Oa VE Th_(é)a

B >0, aet(AUT] (U@ Uty (AU, (),
1 5 pyy

- B(D.,%(y*), et @) 1) >0,B7,<0, a € T,,(4&),

1 5 < ~ ~

—p(DQa(y*), @) 1) < 0,82 >0, a e T (A UTH(E).

From the above inequalities an?) (we get

% q |
:)< Y 3alga(y)+ Y @Oy~ Y B OLaly)
d=1 y=1 a=1

|
+ 3 BROQu(y"), e @) 1> <0
a=1

By combining the above inequality an2H), we get

SO, 1) 20

By the pseudgs-invexity of f, w.r.t. the kernel functior§, this implies that

f(@) > f(y")
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and this ends the required proof. ]
Now, we provide a restricted converse duality theorem.
THEOREM 10 Letb* € X and(y*, 5,0, ﬁf, EQ,E, K) € Suw be feasible points for the

MPVC and the VC-MWD, respectively, such th&db*) = f(y*) . If the hypothesis of
Theoreni/ holds aty € X U prSuw, then B is a global minimum of the MPVC.

PrROOF Assume thab* € X is not a global minimum of the MPVC, then there exists
a € X such that

f(&) < f(b").

Using the assumptions of the theorem, we get

f(&) < f(y"),
this contradicts Theorefand hence this constitutes the required proof. ]

THEOREM 11 (Strict converse duality) Let'be X be a local minimum for the MPVC
such that the VC-ACQ holds at bAssume that the conditions of Theorgimold and
(y*,0,@,B8%,B9,p,K) is a global maximum of the VC-WD). If one of the following
conditions holds:

(i) f(.) is strictly pseudop-invex and

\Y q | |

Z %aal(.) + Z wyhy(.) — Z B&gfa(’) + Z Bc?Qa(-)

a=1 y=1 a=1 a=1

is quasip-invex aty € XU prSuw, w.r.t. the common kernel functiof;
(i) f(.) is strictly pseudop-invex and

da(a € 1g (a)), hy(y € 17 (@), —hy(y € 1, (3)),

~Za(aeti@UT! (a)UTg(@)UTy (a)UTq, (), —Za(a € Ty, (),

Qu(a € Tl (a)UT{*(a)) are strictly quasp-invex aty € X U prSuw
for the same real number+£ 0 and w.r.t. the common kernel functidn

then b = y*.

PROOF (1) Assume_thab* # y*. By Theorem8, there exist Lagrange multipliers
SRV, weRP,BZ,BR,p,k €R!, such thaty*, 5, w, B<, B2, p,K) is the global max-
imum of the VC-MWD(b*). Hence,

f(b*) = f(y"). (29)
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Sinceb* € X and(y*, 8, ®, 3%, B2, p, &) € Suw, it follows that
9a(b) < 0,8, >0 a=12,
hy(b*)=0, & R, y=12,..,q,
— Za(0") <0, B >0, a e, (b),
— Za(b) =0, BZ €R, a € 1o(b"),
Qu(b*) >0, B =0, a € 10, (b*),
Qu(b*) =0, B >0, a € Too(b*) UT.o(b*),
Qu(b*) <0, B >0, a € To_(b*)UT,_(b").

By (25), this implies that

v q [ [
2, 300a(0)+ 3 y(0)— 5 Bl Za(b)+ 5 BEQa (o)

<

~ I ~ 0 I ~
Oaa (y) + z ayhy(y)— S B Za(y)+ Y BRQu(y’)
a=1 a=1 a=1
Using the quasp-invexity of
v | ~ L.
Y 0aa()+ z ()= 3 B Za()+ 3 BPQa()
a=1 a=1 a=1
w.r.t. the common kernel functiof, we get
1 \ q B | ~
Y 8ada(y) + Y &Ohy(y)— Y B DL(y)
p a=1 y=1 a=1
+ Y BROQa(y), ey —1> <0.
Using the above inequality and the first equation28)( we get
Sy OV -1 >0

By the strict pseudgs-invexity of f w.r.t. the kernel functior§, we conclude that

f(b*) > f(y").

This is a contradiction to29) and so we get the required proof.
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(2) Usingb* € X and(y*, 8, &, 3%, BR,p, k) € Suw(b*), we arrive at

9a(b%) < ga(y’), a € 14 (b"),
hy(b") = hy(y"), y € 7y (b") Uy, (b7),
—Za(b*) < —ZLa(y"), a e T (b)) UT!_(b") UTge(b*) U Ty (b*) UTg, (b%),
—Za(b") 2 =Za(y"), a € 1o, (b°),
Qa(b") <Qa(y"), a € Tig (b")UT T (b7).
By the quasip-invexity of g« (a € 14 (a)), hy(y € 75/ (a)), —hy(y € T, (a)),

~Za(a eTh(@QUT! (a)UTgh(@)UTy (a)UTg, (a),ZLa(a € Ty, (),
Qu(a € 15 (@) UT{ " (a)) w.r.t. the common kernel functioh, we get

L (ga(y),€%E'Y) ~1) <0, 8 > 0, a € 1§ (b"),
(Ohy(y"),e®®Y) —1) <0, @y, > 0, ye 1/ (b"),

(Ohy(y"),eP®Y) —1y >0, @, <0, ye 1, (b"),

STl ol

- S(0Z(y). O -1) <0
BZ > 0a € T5o(b)UT] (b)) Utge(b") Ut (b") UTg, (bY),
- %<D$a(>f*),ep5<w’ ~1)>0, B, <0a € 1,(b"),
(DQa(y*) i) 1y <0, BR >0, a e Tif (b)UTH (bY).

From the above inequalities ang) (we obtain
1 v q B | -
p< > SaDf()+ 5 By~ 5 B DZa(y)
= y= a=1

+ Z BROQq(y"), ™ y*>—1> <0.
By combining the above inequality an#), we get
SOt 1 20

By the pseudgs-invexity of f, w.r.t. the kernel functio, we obtain

F(0%) > f(y").

This is a contradiction to29) and this ends the required proof. ]
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ExampPLE 2 Consider the MPVC of Example 1. For any feasible poiat’é,the VC-
MWD (a) to the MPVC is given by

max f (y) =y§+3y%
Rz
st.Or(y,BR,B7) = (2y1+Bf’,6yz— %) =(0,0),

BLQu(Y) = By1 >0,
BlQ = K1%7 K1 >0,

B Aily) = B % >0,

B’ = p1—kKiay, p1 > 0. (30)

(2) It is easy to verify tha(y*,BlQ,Bf”,pl,Kl) =(0,0,0,0,0) € Syw(b*), and hence
y*:=(0,0) € prrzSuw. Also, we get

f(b") = 0= f(y"),

that is, the hypothesis of Theorénholds. Hence, bis a global minimum o{30). So,
Theoren® is verified.

B> [
(2) We can gety= —-3-,y> = g by (30). One also has

(BZ)?  (BY)?

<0.
108 4 <0

r(y,B7.B2) = -

Using (30), we get (fy) < 0. Since {a) = &+ 3a3 > 0, we can get fa) > f(y).
Theoren is verified.

(3) Sinced.#1 = (0,1/3)T,0Q1 = (1,0)T. So we obtain tha30) satisfies VC-ACQ. By
Theorem, there exist Lagrange multiplief$ , B2, p1, k1 € R such that(0, 37, B2,
p1,K1) is a feasible point of the VC-WD(0). Taking into account #et that f(y) >
0, (0, Bff,ﬁlQ, p1,K1) is a global maximum of the VC-MWD(0). Hence, Theogis
verified.

4. Conclusions

In the present article, we have established the weak, stiomyerse and restricted
converse duality results under the assumptiong-mivexity, strict p-invexity, pseudo-
p-invexity, strict pseudg-invexity and quask-invexity. Also, the validity of the re-
sults is verified by an example.
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