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Abstract: In the here presented research, we investigate Wolfe and
Mond-Weir duality models applied to a specific category of generalized
convex functions known asp-invex functions. We establish various duali-
ties between the primal MPVC and its Wolfe type dual, as well as between
the primal MPVC (mathematical program with vanishing constraints) and
its Mond-Weir type dual underp- invexity assumptions. To illustrate these
theorems, we will include some examples.
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1. Introduction

Mathematical program with vanishing constraints (MPVC) was first introduced by
Achtziger and Kanzow (2008). This is a special class of optimization problems, which
is a unified framework for some applications in topology and structural optimization.
Subsequent to the works by Achtziger and Kanzow, there were published a couple
of collaborative works such as Hoheisel and Kanzow (2007, 2008, 2009), surveying
constraint qualifications and optimality conditions for MPVC.

Usually, vanishing constraints violate standard constraint qualifications, like Manga-
sarian-Fromovitz and linear independence constraint qualifications, but Abadie con-
straint qualifications are a strong assumption for the MPVC (Achtziger and Kanzow,
2008). In many cases, Guignard constraint qualifications (GCQ) (Achtziger and Kan-
zow, 2008) can be applied, but checking whether an MPVC satisfies GCQ is not easy
and not sufficient to demonstrate a good algorithm convergence result. MPVC is often
used in the economic dispatch problems (Jabr, 2012) and the non-linear integer optimal
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control problems (Michael, Kirches and Sager, 2013). Some numerical approaches and
theoretical properties regarding MPVC can be found in Achtziger and Kanzow (2008),
Dussault, Mounir and Tangi (2019), Hoheisel and Kanzow (2007), Hu et al. (2014,
2017), Kazemi and Kanzi (2018), Tung (2020), as well as Tung and Tam (2021).

Duality theory is important in optimization, see Antczak and Singh (2009), Bot and
Grad (2010), Chinchuluun, Yuan and Pardalos (2007), Joshi (2021), and Saglam and
Mahmoudov (2022), for instance, because the lower bound on the objective function
value of the primal problem is given by weak duality. The classical Wolfe duality was
introduced by Wolfe (1961), while the Mond-Weir duality wasintroduced in Mond and
Weir (1981) for differentiable scalar functions.

Over the past decades, the results from the study of the dual problem have been
used as a tool to solve various optimization problems in different fields, like variational
inequality problems, complex minimax problems, fractional programming problems,
semi-infinite programming problems, fractional subset programming problems, mini-
max fractional programming problems, bi-level infinite andequilibrium programming
problems see, e.g., Antczak (2010), Antczak and Singh (2009), Bot and Grad (2010),
Joshi (2021a,b), Joshi, Mishra and Kumar (2020), or Mishra and Shukla (2010).

Generalized convex functions, as discussed in various studies (Joshi, 2021a,b; Joshi,
Mishra and Kumar, 2020), have been introduced to relax the stringent requirements of
convexity in order to derive results pertinent to optimization theory. A notable gen-
eralization in this context is the(p, r)-invex function, Antczak (2001). This class of
invex functions preserves many properties of convex functions and has proven to be
highly useful in a wide range of applications. To the best of our knowledge, there have
been no existing results available for the duality models based onp−invex functions,
Antczak (2001), under mathematical program with vanishingconstraints. This gives
us a motivation to utilize these concepts to develop dualitytheorems for the Wolfe and
Mond-Weir type duality models in our paper.

This paper is structured as follows: In Section 2 we give somepreliminary defi-
nitions and results. In Section 3, we investigate duality results under the assumptions
of p-invex and strictlyp-invex objective function andp-invex constraints. We also
derive duality results under the assumption of pseudo-p-invexity and strictly pseudo-
p-invex objective function and quasi-p-invex constraints. Section 4 is devoted to the
conclusions from the results of this article.
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2. Preliminaries and definitions

Mathematical program with vanishing constraints (MPVC) isstructured as follows:

min f (a)

subject togα(a)6 0, α = 1,2, ...,v,

hγ(a) = 0, γ = 1,2, ...,q,

Lα(a)> 0, α = 1,2, ..., l ,

Qα(a)Lα(a)6 0, α = 1,2, ..., l ,

where f : Rn → R, g : Rn → R
v, h : Rn → R

q, Q,L : Rn → R
l are all continuously

differentiable functions. In the present paper,X will denote the feasible set of MPVC
and will be defined as

X := {a∈ R
n :gα(a)6 0, α = 1,2, ...,v,

hγ(a) = 0, γ = 1,2, ...,q,

Lα(a)> 0, α = 1,2, ..., l ,

Qα(a)Lα(a)6 0, α = 1,2, ..., l}.

A point b∗ ∈ X is referred to as a local minimum of the MPVC, if and only if there
exists an open ballB(b∗,δ ) aroundb∗ with radiusδ > 0, such that

f (b∗)≤ f (a), ∀a∈ X∩B(b∗,δ ).

and if f (b∗) ≤ f (a),∀a∈ X, then the pointb∗ ∈ X is said to be a global minimum of
the MPVC.

Let b∗ ∈ X be any feasible point of the MPVC; then, the index sets are defined as
follows:

τg(b
∗) = {α|gα(b

∗) = 0},

τh(b
∗) = {1,2, . . . ,q},

τ+(b∗) = {α|Lα(b
∗)> 0},

τ0(b
∗) = {α|Lα(b

∗) = 0},

τ+0(b
∗) = {α|Lα(b

∗)> 0,Qα(b
∗) = 0},

τ+−(b
∗) = {α|Lα(b

∗)> 0,Qα(b
∗)< 0},

τ0+(b
∗) = {α|Lα(b

∗) = 0,Qα(b
∗)> 0},

τ00(b
∗) = {α|Lα(b

∗) = 0,Qα(b
∗) = 0},

τ0−(b
∗) = {α|Lα(b

∗) = 0,Qα(b
∗)< 0}.
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Now, we provide Lagrangian function and gradient of Lagrangian function:

Γ(y,δ ,ω,βL ,β Q)

= f (y)+
v

∑
α=1

δαgα(y)+
q

∑
γ=1

ωγhγ(y)−
l

∑
α=1

βL
α Lα(y)+

l

∑
α=1

β Q
α Qα(y)

and

∇Γ(y,δ ,ω,βL ,β Q)

= ∇ f (y)+
v

∑
α=1

δα ∇gα(y)+
q

∑
γ=1

ωγ ∇hγ(y)−
l

∑
α=1

βL
α ∇Lα(y)+

l

∑
α=1

β Q
α ∇Qα(y).

For a∈ X, we define the following index sets:

τ+g (a) = {α ∈ {1,2, ...,v}|δα > 0},

τ+h (a) = {γ ∈ τh(a)|ωγ > 0},

τ−h (a) = {γ ∈ τh(a)|ωγ < 0},

τ+0+(a) = {α ∈ τ0+(a)|βL
α > 0},

τ−0+(a) = {α ∈ τ0+(a)|βL
α < 0},

τ+00(a) = {α ∈ τ00(a)|βL
α > 0},

τ++0(a) = {α ∈ τ+0(a)|βL
α > 0},

τ++−(a) = {α ∈ τ+−(a)|βL
α > 0},

τ+0−(a) = {α ∈ τ0−(a)|βL
α > 0},

τ++
+0 (a) = {α ∈ τ+0(a)|β Q

α > 0},

τ++
+− (a) = {α ∈ τ+−(a)|β Q

α > 0}. (1)

DEFINITION 1 (ACHTZIGER AND KANZOW, 2008) Let b∗ ∈ X be a feasible point of
the MPVC. The Abadie constraint qualification (ACQ), is saidto hold at b∗, if T(b∗) =
Γ(b∗), where

T(b∗) =

{

A∈ R
n : ∃{xk} ⊆ X,∃{tk} ↓ 0,xk → b∗ and

xk−b∗

tk
→ A

}

is known to be a standard tangent cone of MPVC at b∗, and

Γ(b∗) = {A∈ R
n :∇gα(b

∗)TA≤ 0, α ∈ τg(b
∗),

∇hγ(b
∗)TA= 0, γ = 1,2, ...,q,

∇Lα(b
∗)TA= 0, α ∈ τ0+(b

∗),

∇Lα(b
∗)TA≥ 0, α ∈ τ00(b

∗)∪ τ0−(b
∗),

∇Qα(b
∗)TA≤ 0, α ∈ τ+0(b

∗)}
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is called corresponding linearized cone of the MPVC at b∗.

DEFINITION 2 (ACHTZIGER AND KANZOW, 2008) Let b∗ ∈ X be a feasible point of
the MPVC. The VC-ACQ (vanishing constraints-Abadie constraint qualification) is
said to hold at b∗, iff ΓVC(b∗)⊆ T(b∗), where

ΓVC(b∗) = {A∈ R
n :∇gα(b

∗)TA≤ 0, α ∈ τg(b
∗),

∇hγ(b
∗)TA= 0, γ = 1,2, ...,q,

∇Lα(b
∗)TA= 0, α ∈ τ0+(b

∗),

∇Lα(b
∗)TA≥ 0, α ∈ τ00(b

∗)∪ τ0−(b
∗),

∇Qα(b
∗)TA≤ 0, α ∈ τ00(b

∗)∪ τ+0(b
∗)}

represents the corresponding VC-linearized cone of the MPVC at b∗.

THEOREM 1 (ACHTZIGER AND KANZOW, 2008) Let b∗ ∈ X be a local minimum of
the MPVC such that VC-ACQ holds at b∗. Then,∃ Lagrange multipliersδα ∈ R(α =

1,2, ...,v),ωγ ∈ R(γ ∈ τh),βL
α ,β Q

α ∈ R(α = 1,2, ..., l), such that

∇Γ(b∗,δ ,ω,βL ,β Q) = 0 (2)

and

hγ(b
∗) = 0 (γ ∈ τh(b

∗)),

δα ≥ 0, gα(b
∗)≤ 0,

δαgα(b
∗) = 0 (α = 1,2, ...,v),

βL
α = 0 (α ∈ τ+(b∗)),

βL
α ≥ 0 (α ∈ τ00(b

∗)∪ τ0−(b
∗)),

βL
α is free(α ∈ τ0+(b

∗)),

β Q
α = 0 (α ∈ τ0+(b

∗)∪ τ0−(b
∗)∪ τ+−(b

∗)),

β Q
α ≥ 0 (α ∈ τ00(b

∗)∪ τ+0(b
∗)). (3)

Note: Throughout the paper “with respect to” will be denoted by “w.r.t.”.

The following definition ofp-invex function is taken from [Antczak (2001); Definition
1, Case 3].

DEFINITION 3 Let S⊆ R
n be any nonempty set and let f: Rn → R be continuously

differentiable function. Then, f is said to be p-invex at b∗ ∈ S w.r.t. the kernel function
ξ : S×S→ R

n on S, if for any a∈ S, we get

f (a)− f (b∗)≥
1
p
〈∇ f (b∗),epξ (a,b∗)−1〉, p 6= 0.
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If p = 0, the definition reduces to

f (a)− f (b∗)≥ 〈∇ f (b∗),ξ (a,b∗)〉.

Based on the definition ofp-invex function, we are introducing the definition of pseudo-
p-invex and quasi-p-invex functions.

DEFINITION 4 Let S6= φ ⊆ R
n and let f : Rn → R be a continuously differentiable

function. Then, f is said to be pseudo-p-invex at b∗ ∈ S w.r.t. the kernel function
ξ : S×S→ R

n on S, if for any a∈ S, we get

1
p
〈∇ f (b∗),epξ (a,b∗)−1〉 ≥ 0 =⇒ f (a)≥ f (b∗), p 6= 0.

If p = 0, then the definition reduces to

〈∇ f (b∗),ξ (a,b∗)〉 ≥ 0 =⇒ f (a)≥ f (b∗).

DEFINITION 5 Let S⊆ R
n be any nonempty set and let f: Rn → R be a continuously

differentiable function. Then, f is said to be quasi-p-invex at b∗ ∈ S w.r.t. the kernel
functionξ : S×S→ R

n on S, if for any a∈ S, we get

f (a)≤ f (b∗) =⇒
1
p
〈∇ f (b∗),epξ (a,b∗)−1〉 ≤ 0, p 6= 0.

If p = 0, then the definition reduces to

f (a)≤ f (b∗) =⇒ 〈∇ f (b∗),ξ (a,b∗)〉 ≤ 0.

Now, we provide the duality models and establish various duality theorems. These
duality models are taken from Mishra, Singh and Laha (2016) and Hu, Wang and Chen
(2020).

3. Duality models

This section gives two duality models, namely the Wolfe typedual model and the
Mond-Weir type dual model, respectively.

3.1. Wolfe type dual model

Fora∈ X, VC-WD(a) denotes the Wolfe type dual of the MPVC, which is as follows:

max Γ(y,δ ,ω,βL ,β Q)

subject to∇Γ(y,δ ,ω,βL ,β Q) = 0,

δα ≥ 0, ∀α = 1,2, ...,v, (4)

β Q
α = καLα(a), κα ≥ 0, ∀α = 1,2, ..., l ,

βL
α = ρα −καQα(a), ρα ≥ 0, ∀α = 1,2, ..., l .
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Let Sw(a)⊆ R
n×R

v×R
q×R

l ×R
l denote the feasible set, i.e.,

Sw(a) = {(y,δ ,ω,βL ,β Q,ρ ,κ) : ∇Γ(y,δ ,ω,βL ,β Q) = 0,

δα ≥ 0, ∀α = 1,2, ...,v, (5)

β Q
α = καLα(a), κα ≥ 0, α = 1,2, ..., l ,

βL
α = ρα −καQα(a), ρα ≥ 0, α = 1,2, ..., l}.

We denote the projection of the setSw(a) onR
n, as follows

prSw(a) = {y∈ R
n : (y,δ ,ω,βL ,β Q,ρ ,κ) ∈ Sw(a)}.

Another dual problem, which is denoted VC-WD, and which is independent of the
MPVC, is defined as follows:

maxΓ(y,δ ,ω,βL ,β Q)

s.t.(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ ∩a∈XSw(a). (6)

The setSw = ∩a∈XSw(a) represents the set of all feasible points of the VC-WD and
prSw represents the projection of the setSw onR

n.

Now we provide the weak duality theorem.

THEOREM 2 Let a∈ X be a feasible point for the MPVC and(y,δ ,ω,βL ,β Q,ρ ,κ) ∈
Sw be a feasible point for the VC-WD. If one of the following conditions holds:

(1) Γ(.,δ ,ω,βL ,β Q) is p-invex aty∈ X∪ prSw w.r.t. the kernel functionξ ,
(2) f , gα(α ∈ τ+g (a)), hγ(γ ∈ τ+h (a)), −hγ(γ ∈ τ−h (a)),

−Lα(α ∈ τ+0(a)∪ τ+−(a)∪ τ00(a)∪ τ0−(a)∪ τ+0+(a)), −Lα(α ∈ τ−0+(a)),
−Qα(α ∈ τ0+(a)), Qα(α ∈ τ00(a)∪ τ+0(a)∪ τ0−(a)∪ τ+−(a))

arep-invex aty∈ X∪ prSw for the same real numberp 6= 0

and w.r.t. the common kernel functionξ ;

Then f(a)≥ Γ(y,δ ,ω,βL ,β Q).

PROOF(1) Let f (a)< Γ(y,δ ,ω,βL ,β Q), i.e.,

f (a)< f (y)+
v

∑
α=1

δαgα(y)+
q

∑
γ=1

ωγhγ(y)−
l

∑
α=1

βL
α Lα(y)+

l

∑
α=1

β Q
α Qα(y). (7)
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Sincea∈ X and using (4), it follows that

gα(a)< 0,δα ≥ 0, α /∈ τg(a),

gα(a) = 0,δα ≥ 0, α ∈ τg(a),

hγ(a) = 0,ωγ ∈ R, γ ∈ τh,

−Lα(a)< 0,βL
α ≥ 0, α ∈ τ+(a),

−Lα(a) = 0,βL
α ∈ R, α ∈ τ0(a),

Qα(a)> 0,β Q
α = 0, α ∈ τ0+(a),

Qα(a) = 0,β Q
α ≥ 0, α ∈ τ00(a)∪ τ+0(a),

Qα(a)< 0,β Q
α ≥ 0, α ∈ τ0−(a)∪ τ+−(a),

that is,

v

∑
α=1

δαgα(a)+
q

∑
γ=1

ωγhγ(a)−
l

∑
α=1

βL
α Lα(a)+

l

∑
α=1

β Q
α Qα(a)≤ 0. (8)

By combining (7) and (8), we get

f (a)+
v

∑
α=1

δαgα(a)+
q

∑
γ=1

ωγhγ(a)−
l

∑
α=1

βL
α Lα(a)+

l

∑
α=1

β Q
α Qα(a)

< f (y)+
v

∑
α=1

δαgα(y)+
q

∑
γ=1

ωγhγ(y)−
l

∑
α=1

βL
α Lα(y)+

l

∑
α=1

β Q
α Qα(y)

(9)

i.e.,

Γ(a,δ ,ω,βL ,β Q)< Γ(y,δ ,ω,βL ,β Q). (10)

By the p-invexity of Γ(.,δ ,ω,βL ,β Q) w.r.t. the kernel functionξ , we obtain

Γ(y,δ ,ω,βL ,β Q)+
1
p
〈∇ Γ(y,δ ,ω,βL ,β Q),epξ (a,y)−1〉 ≤ Γ(a,δ ,ω,βL ,β Q).

Using first equation of (4), we obtain

Γ(a,δ ,ω,βL ,β Q)≥ Γ(y,δ ,ω,βL ,β Q). (11)

which contradicts (10) and this is the required proof.

(2) By thep-invexity of gα(α ∈ τ+g (a)),hγ(γ ∈ τ+h (a)),−hγ(γ ∈ τ−h (a)),
−Lα(α ∈ τ+0(a)∪ τ+−(a)∪ τ00(a)∪ τ0−(a)∪ τ+0+(a)),−Lα(α ∈ τ−0+(a)),
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−Qα(α ∈ τ0+(a)),Qα(α ∈ τ00(a)∪ τ+0(a)∪ τ0−(a)∪ τ+−(a)), aty∈ X∪ prSw,
a∈ X,(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ Sw, w.r.t. the common kernel functionξ , we get

gα(y)+
1
p
〈∇gα(y),e

pξ (a,y)−1〉 ≤ gα(a)≤ 0, δα > 0, α ∈ τ+g (a),

hγ(y)+
1
p
〈∇hγ(y),e

pξ (a,y)−1〉 ≤ hγ(a) = 0, ωγ > 0, γ ∈ τ+h (a),

hγ(y)+
1
p
〈∇hγ(y),e

pξ (a,y)−1〉 ≥ hγ(a) = 0, ωγ < 0, γ ∈ τ−h (a),

−Lα(y)−
1
p
〈∇Lα(y),e

pξ (a,y)−1〉 ≤ −Lα(a)≤ 0, βL
α ≥ 0, α ∈ τ+0(a)

∪ τ+−(a)∪ τ00(a)∪ τ0−(a)∪ τ+0+(a),

−Lα(y)−
1
p
〈∇Lα(y),e

pξ (a,y)−1〉 ≤ −Lα(a) = 0, βL
α < 0, α ∈ τ−0+(a),

Qα(y)+
1
p
〈∇Qα(y),e

pξ (a,y)−1〉 ≥ Qα(a)> 0, β Q
α = 0, α ∈ τ0+(a),

Qα(y)+
1
p
〈∇Qα(y),e

pξ (a,y)−1〉 ≤ Qα(a) = 0, β Q
α ≥ 0, α ∈ τ+0(a)∪ τ00(a),

Qα(y)+
1
p
〈∇Qα(y),e

pξ (a,y)−1〉 ≤ Qα(a)< 0, β Q
α ≥ 0, α ∈ τ0−(a)∪ τ+−(a),

which shows that

v

∑
α=1

δαgα(y)+
q

∑
γ=1

ωγhγ(y)−
l

∑
α=1

βL
α Lα(y)+

l

∑
α=1

β Q
α Qα(y)

+
1
p

〈

v

∑
α=1

δα ∇gα(y)+
q

∑
γ=1

ωγ ∇hγ(y)−
l

∑
α=1

βL
α ∇Lα(y)+

l

∑
α=1

β Q
α ∇Qα(y),e

pξ (a,y)−1

〉

≤ 0. (12)

Using p-invexity of f aty∈ X∪ prSw, w.r.t. the kernel functionξ , we get

f (y)+
1
p
〈∇ f (y),epξ (a,y)−1〉 ≤ f (a). (13)

By combining (12) and (13), we get

Γ(y,δ ,ω,βL ,β Q)+
1
p
〈∇ Γ(y,δ ,ω,βL ,β Q),epξ (a,y)−1〉 ≤ f (a).

In view of the first equation in (4), we get

Γ(y,δ ,ω,βL ,β Q)≤ f (a)
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and this ends the required proof.

Now we provide the strong duality theorem, which provides the condition, under
which the Wolfe type dual problem is solvable and the global maximum can be attained.

THEOREM 3 Let b∗ ∈ X be a local minimum of the MPVC, such that the VC-ACQ
holds at b∗. Then, there exist Lagrange multipliers̄δ ∈R

v, ω̄ ∈R
Q, β̄L , β̄ Q, ρ̄, κ̄ ∈R

l ,
such that(b∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) is a feasible point of the VC-WD(b∗) and

v

∑
α=1

δ̄αgα(b
∗)+

q

∑
γ=1

ω̄γhγ(b
∗)−

l

∑
α=1

β̄L
α Lα(b

∗)+
l

∑
α=1

β̄ Q
α Qα(b

∗) = 0. (14)

Moreover, if one of the following condition holds:

(i) Γ(.,δ ,ω,βL ,β Q) is p-invex aty∈ X∪ prSw(b
∗) w.r.t. the kernel functionξ ;

(ii) f , gα(α ∈ τ+g (b∗)), hγ(γ ∈ τ+h (b∗)), −hγ(γ ∈ τ−h (b∗)),

−Lα(α ∈ τ+0(b
∗)∪ τ+−(b

∗)∪ τ00(b
∗)∪ τ0−(b

∗)∪ τ+0+(b
∗)),

−Lα(α ∈ τ−0+(b
∗)), −Qα(α ∈ τ0+(b

∗)),

Qα(α ∈ τ00(b
∗)∪ τ+0(b

∗)∪ τ0−(b
∗)∪ τ+−(b

∗))

arep-invex aty∈ X∪ prSw(b
∗) for the same real numberp 6= 0 and

w.r.t. the common kernel functionξ ;

then,(b∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄ , κ̄) is a global maximum of the VC-WD(b∗), i.e.,

Γ(b∗, δ̄ , ω̄, β̄L , β̄ Q)≥ Γ(y,δ ,ω,βL ,β Q),∀(y,δ ,ω,βL ,β Q) ∈ Sw(b
∗)

and
f (b∗) = Γ(b∗, δ̄ , ω̄, β̄L , β̄ Q).

PROOF Sinceb∗ is a local minimum of the MPVC and the VC-ACQ condition is sa-
tisfied atb∗, by Theorem1, one can see that there exist Lagrange multipliersδ̄ ∈
R

v, ω̄ ∈ R
Q, β̄L , β̄ Q, ρ̄ , κ̄ ∈ R

l , such that the conditions (2) and (3) [from Theorem
2] hold and hence(b∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) is a feasible point of the VC-WD(b∗). By
Theorem2, we get

f (b∗)≥ Γ(y,δ ,ω,βL ,β Q), ∀(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ Sw(b
∗). (15)

By combining (14) and (15), we get

Γ(b∗,δ ,ω,βL ,β Q)≥ Γ(y,δ ,ω,βL ,β Q), ∀(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ Sw(b
∗),

that is,(b∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) is a global maximum of the VC-WD(b∗).

Next, we provide the converse duality theorem.
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THEOREM 4 Let a∈ X be any feasible solution of the MPVC and let

(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄)

be a feasible point of the VC-WD such that

δ̄αgα(y
∗)≥ 0, α = 1,2, ...,v,

ω̄γhγ(y
∗) = 0, γ = 1,2, ...,q,

− β̄L
α Lα(y

∗)≥ 0, α = 1,2, ..., l ,

δ̄ Q
α Qα(y

∗)≥ 0, α = 1,2, ..., l .

In addition, if one of the following conditions holds:

(1) Γ(.,δ ,ω,βL ,β Q) is p-invex aty∗ ∈ X∪ prSw w.r.t. the kernel functionξ ;

(2) f , gα(α ∈ τ+g (a)), hγ(γ ∈ τ+h (a)), −hγ(γ ∈ τ−h (a)),

−Lα(α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a)),
−Lα(α ∈ τ−0+(a)),Qα(α ∈ τ++

+0 (a)∪ τ++
+− (a))

arep-invex aty∗ ∈ X∪ prSwfor the same real numberp 6= 0

and w.r.t. the common kernel functionξ ;

Then, y∗ will be a global minimum of the MPVC.

PROOFAssume thaty∗ is not a global minimum of the MPVC, i.e., there exists ˜a∈ X
such that

f (ã)< f (y∗). (16)

(1) Since ˜a and(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄ , κ̄) constitute the feasible point for the MPVC and
the VC-WD, respectively. Now, using the hypothesis of the theorem, we obtain

v

∑
α=1

δ̄αgα(ã)+
q

∑
γ=1

ω̄γhγ(ã)−
l

∑
α=1

β̄L
α Lα(ã)+

l

∑
α=1

β̄ Q
α Qα(ã)

≤
v

∑
α=1

δ̄αgα(y
∗)+

q

∑
γ=1

ω̄γhγ(y
∗)−

l

∑
α=1

β̄L
α Lα(y

∗)+
l

∑
α=1

β̄ Q
α Qα(y

∗).

(17)

By combining (16) and (17), we get

Γ(ã, δ̄ , ω̄, β̄L , β̄ Q)< Γ(y∗, δ̄ , ω̄, β̄L , β̄ Q).

Using p-invexity of Γ(.,δ ,ω,βL ,β Q) w.r.t. the common kernel functionξ , at y∗ ∈
X∪ prSw; we get

1
p
〈∇ Γ(y∗, δ̄ , ω̄, β̄L , β̄ Q),epξ (ã,y∗)−1〉< 0,
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and this contradicts the dual constraint of the VC-WD(a), which completes the proof.

(2) Since ˜a and(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄ , κ̄) constitute the feasible point for the MPVC and
the VC-WD, respectively, then it follows that

gα(ã)≤ gα(y
∗), α ∈ τ+g (ã),

hγ(ã) = hγ(y
∗), γ ∈ τ+h (ã)∪ τ−h (ã),

−Lα(ã)≤−Lα(y
∗), α ∈ τ++0(ã)∪ τ++−(ã)∪ τ+00(ã)∪ τ+0−(ã)∪ τ+0+(ã),

−Lα(ã)≥−Lα(y
∗), α ∈ τ−0+(ã),

Qα(ã)≤ Qα(y
∗), α ∈ τ++

+0 (ã)∪ τ++
+− (ã).

By the p-invexity of the functions, considered in the hypothesis ofthe theorem, w.r.t.
the common kernel functionξ , we get

1
p
〈∇gα(y

∗),epξ (ã,y∗)−1〉 ≤ 0, δ̄α > 0, α ∈ τ+g (ã),

1
p
〈∇hγ(y

∗),epξ (ã,y∗)−1〉 ≤ 0, ω̄γ > 0, γ ∈ τ+h (ã),

1
p
〈∇hγ(y

∗),epξ (ã,y∗)−1〉 ≥ 0, ω̄γ < 0, γ ∈ τ−h (ã),

−
1
p
〈∇Lα(y

∗),epξ (ã,y∗)−1〉 ≤ 0, β̄L
α ≥ 0,

α ∈ τ++0(ã)∪ τ++−(ã)∪ τ+00(ã)∪ τ+0−(ã)∪ τ+0+(ã),

−
1
p
〈∇Lα(y

∗),epξ (ã,y∗)−1〉 ≥ 0, β̄L
α ,≤ 0 α ∈ τ++0(ã),

1
p
〈∇Qα(y

∗),epξ (ã,y∗)−1〉 ≤ 0, β̄ Q
α ≥ 0, α ∈ τ++

+0 (ã)∪ τ++
+− (ã),

which implies that

1
p

〈

v

∑
α=1

δ̄α ∇gα(y
∗)+

q

∑
γ=1

ω̄γ ∇hγ(y
∗)−

l

∑
α=1

β̄L
α ∇Lα(y

∗)+

l

∑
α=1

β̄ Q
α ∇Qα(y

∗),epξ (ã,y∗)−1

〉

≤ 0.

By connecting the above inequality and (4), we get

1
p
〈∇ f (y∗),epξ (ã,y∗)−1〉 ≥ 0.

By the p-invexity of f , w.r.t. the kernel functionξ , the above implies that

f (ã)≥ f (y∗),
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which contradicts our hypothesis and hence the required proof is complete.

We now give the restricted converse duality theorem.

THEOREM 5 Let b∗ ∈ X be any feasible solution of the MPVC and let(y∗, δ̄ , ω̄, β̄L ,
β̄ Q, ρ̄ , κ̄) be a feasible point of the VC-WD, such that f(b∗) = Γ(y∗, δ̄ , ω̄, β̄L , β̄ Q).
Moreover, if one of the following conditions holds:

(1) Γ(., δ̄ , ω̄, β̄L , β̄ Q) is p-invex aty∗ ∈ X∪ prSw w.r.t. the kernel functionξ ,
(2) f , gα(α ∈ τ+g (b∗)), hγ(γ ∈ τ+h (b∗)),−hγ(γ ∈ τ−h (b∗)),

−Lα(α ∈ τ++0(b
∗)∪ τ++−(b

∗)∪ τ+00(b
∗)∪ τ+0−(b

∗)∪ τ+0+(b
∗)),

−Lα(α ∈ τ−0+(b
∗)), Qα(α ∈ ∪τ++

+0 (b∗)∪ τ++
+− (b

∗))

arep-invex aty∗ ∈ X∪ prSw for the same real numberp 6= 0

and w.r.t. the common kernel functionξ ;

Then, b∗ is a global minimum of the MPVC.

PROOF Assume thatb∗ ∈ X is not a global minimum of the MPVC, then there exists
ã∈ X such that

f (ã)< f (b∗).

Now, using the assumptions of the theorem, we deduce thatf (b∗)< Γ(y∗, δ̄ , ω̄, β̄L , β̄ Q).
This is a contradiction to Theorem2. This completes the proof.

Now, we provide the strict converse duality theorem.

THEOREM 6 Let b∗ ∈ X be a local minimum for the MPVC, such that the VC-ACQ
holds at b∗. Assume that the conditions of Theorem3 hold and(y∗, δ̃ , ω̃, β̃L , β̃ Q, ρ̃, κ̃)
is a global maximum of the VC-WD(b∗). If one of the following conditions holds:

(1) Γ(., δ̃ , ω̃, β̃L , β̃ Q) is strictly p-invex aty∗ ∈ X∪ prSw w.r.t. the kernel functionξ ;

(2) f is strictly p-invex andgα(α ∈ τ+g (b∗)), hγ(γ ∈ τ+h (b∗)), −hγ(γ ∈ τ−h (b∗)),

−Lα(α ∈ τ+0(b
∗)∪ τ+−(b

∗)∪ τ00(b
∗)∪ τ0−(b

∗)∪ τ+0+(b
∗)),−Lα(α ∈ τ−0+(b

∗)),

−Qα(α ∈ τ0+(b
∗)), Qα(α ∈ τ00(b

∗)∪ τ+0(b
∗)∪ τ0−(b

∗)∪ τ+−(b
∗))

arep-invex aty∗ ∈ X∪ prSw for the same real numberp 6= 0

and w.r.t. the common kernel functionξ ; thenb∗ = y∗.

PROOF (1) Assume thatb∗ 6= y∗. By Theorem3, there exist Lagrange multipliers̄δ ∈
R

v, ω̄ ∈R
Q, β̄L , β̄ Q, ρ̄, κ̄ ∈R

l , such that(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) is a global maximum
of theVC−WD(b∗). Hence,

f (b∗) = Γ(b∗, δ̄ , ω̄, β̄L , β̄ Q) = Γ(y∗, δ̃ , ω̃, β̃L , β̃ Q). (18)
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Using the feasibility ofb∗ for MPVC and the feasibility of(y∗, δ̃ , ω̃, β̃L , β̃ Q, ρ̃, κ̃) for
the VC-WD(b∗), we obtain

gα(b
∗)< 0, δ̃α ≥ 0, α /∈ τg(b

∗),

gα(b
∗) = 0, δ̃α ≥ 0, α ∈ τg(b

∗),

hγ(b
∗) = 0, ω̃γ ∈ R, γ ∈ τh(b

∗),

−Lα(b
∗)< 0, β̃L

α ≥ 0,α ∈ τ+(b∗),

−Lα(b
∗) = 0, β̃L

α ∈ R, α ∈ τ0(b
∗),

Qα(b
∗)> 0, β̃ Q

α = 0, α ∈ τ0+(b
∗),

Qα(b
∗) = 0, β̃ Q

α ≥ 0, α ∈ τ00(b
∗)∪ τ+0(b

∗),

Qα(b
∗)< 0, β̃ Q

α ≥ 0, α ∈ τ0−(b
∗)∪ τ+−(b

∗),

that is,

v

∑
α=1

δ̃αgα(b
∗)+

q

∑
γ=1

ω̃γhγ(b
∗)−

l

∑
α=1

β̃L
α Lα(b

∗)+
l

∑
α=1

β̃ Q
α Qα(b

∗)≤ 0. (19)

By combining (18) and (19), we get

Γ(b∗, δ̃ , ω̃, β̃L , β̃ Q)≤ Γ(y∗, δ̃ , ω̃, β̃L , β̃ Q). (20)

By the strictp-invexity of Γ(., δ̃ , ω̃, β̃L , β̃ Q), w.r.t. the common kernel functionξ it
follows that

1
p
〈∇ Γ(y∗, δ̃ , ω̃, β̃L , β̃ Q),epξ (b∗,y∗)−1〉< 0.

This contradicts the first equation in (4) and this ends the required proof.

(2) Using the strictp-invexity of f aty∗, w.r.t. the kernel functionξ , we get

f (b∗)− f (y∗)>
1
p
〈∇ f (y∗),epξ (b∗,y∗)−1〉. (21)

By the p-invexity of gα(α ∈ τ+g (b∗)), hγ(γ ∈ τ+h (b∗)),hγ(γ ∈ τ−h (b∗)),
−Lα(α ∈ τ+0(b∗)∪ τ+−(b∗)∪ τ00(b∗)∪ τ0−(b∗)∪ τ+0+(b

∗)),

−Lα(α ∈ τ−0+(b
∗)), −Qα(α ∈ τ0+(b∗)),

Qα(α ∈ τ00(b∗)∪ τ+0(b∗)∪ τ0−(b∗)∪ τ+−(b∗)), at y∗ ∈ X ∪ prSw(b∗),b∗ ∈ X, w.r.t.
the common kernel functionξ and
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(y∗, δ̃ , ω̃, β̃L , β̃ Q, ρ̃, κ̃) ∈ Sw(b∗), we get

gα(y
∗)+

1
p
〈∇gα(y

∗), epξ (b∗,y∗)−1〉 ≤ gα(b
∗)≤ 0, δ̃α > 0, α ∈ τ+g (b∗),

hγ(y
∗)+

1
p
〈∇hγ(y

∗), epξ (b∗,y∗)−1〉 ≤ hγ(b
∗) = 0, ω̃γ > 0, γ ∈ τ+h (b∗),

hγ(y
∗)+

1
p
〈∇hγ(y

∗), epξ (b∗,y∗)−1〉 ≥ hγ(b
∗) = 0, ω̃γ < 0, γ ∈ τ−h (b∗),

−Lα(y
∗)−

1
p
〈∇Lα(y

∗), epξ (b∗,y∗)−1〉 ≤ −Lα(b
∗)≤ 0, β̃L

α ≥ 0,

α ∈ τ+0(b
∗)∪ τ+−(b

∗)∪ τ00(b
∗)∪ τ0−(b

∗)∪ τ+0+(b
∗),

−Lα(y
∗)−

1
p
〈∇Lα(y

∗), epξ (b∗,y∗)−1〉 ≤ −Lα(b
∗) = 0,

β̃L
α < 0, α ∈ τ−0+(b

∗),

Qα(y
∗)+

1
p
〈∇Qα(y

∗), epξ (b∗,y∗)−1〉 ≥ Qα(b
∗)> 0, β̃ Q

α = 0, α ∈ τ0+(b
∗),

Qα(y
∗)+

1
p
〈∇Qα(y

∗), epξ (b∗,y∗)−1〉 ≤ Qα(b
∗) = 0,

β̃ Q
α ≥ 0, α ∈ τ+0(b

∗)∪ τ00(b
∗),

Qα(y
∗)+

1
p
〈∇Qα(y

∗), epξ (b∗,y∗)−1〉 ≤ Qα(b
∗)< 0,

β̃ Q
α ≥ 0, α ∈ τ0−(b

∗)∪ τ+−(b
∗),

which implies that

v

∑
α=1

δ̃αgα(y
∗)+

q

∑
γ=1

ω̃γhγ(y
∗)−

l

∑
α=1

β̃L
α Lα(y

∗)+
l

∑
α=1

β̃ Q
α Qα(y

∗)

+
1
p

〈

v

∑
α=1

δ̃α ∇gα(y
∗)+

q

∑
γ=1

ω̃γ ∇hγ(y
∗)−

l

∑
α=1

β̃L
α ∇Lα(y

∗)

+
l

∑
α=1

β̃ Q
α ∇Qα(y

∗),epξ (b∗,y∗)−1

〉

≤ 0. (22)

By combining (21) and (3.1), we get

Γ(y∗, δ̃ , ω̃, β̃L , β̃ Q)< f (b∗).

This contradicts (18) and this ends the required proof.

Now, we provide an example in order to validate the theorems.
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EXAMPLE 1 Consider the optimization problem

min f (a) = a2
1+3a2

2

s.t.L1(a) =
a2

3
≥ 0,

Q1(a)L1(a) =
a1a2

3
≤ 0, (23)

with n= 2, m= q= 0, l = 1. The feasible set X is given by

X :=
{

(a1,a2 ∈ R
2) :

a2

3
≥ 0,

a1a2

3
≤ 0

}

.

For any feasible point a∈ X, the Wolfe dual model VC-WD(a) to the MPVC(23) is
given by

max Γ(y,βL
1 ,β Q

1 ) = y2
1+3y2

2−βL
1

y2

3
+β Q

1 y1

s.t. ∇ Γ(y,βL
1 ,β Q

1 ) =

(

2y1+β Q
1 ,6y2−

βL
1

3

)

= (0,0), (24)

β Q
1 = κ1a1,κ1 ≥ 0,

βL
1 = ρ1−κ1

a2

3
,ρ1 ≥ 0.

(1) To show that any feasible point b∗ ∈ X is a global minimum of the MPVC using
Theorem5, we have to show that f(b∗) = Γ(y∗, β̄L

1 , β̄ Q
1 ) for some(y∗, β̄L

1 , β̄ Q
1 ) ∈ Sw

such that the hypothesis of Theorem5 holds at y∗ on X∪ prR2Sw.

The feasible set SW of the VC-WD is given by

Sw := {(y1,y2,β Q
1 ,βL

1 ,ρ1,κ1) :2y1+β Q
1 = 0,

6y2−
βL

1

3
= 0,

β Q
1 = κ1L1(a) : κ1 ≥ 0,

βL
1 = ρ1−κ1Q1(a) : ρ1 ≥ 0}.

Also

f (a1,a2) = Γ(y1,y2,βL
1 ,β Q

1 ) =−
(βL

1 )2

108
−

(β Q
1 )2

4
≤ 0.

This is only possible ifβL
1 = 0,β Q

1 = 0, and b∗ = (0,0). That is

b∗ = (0,0)T ∈ X,(y,β Q
1 ,βL

1 ,ρ1,κ1) = (0,0,0,0,0) ∈ Sw(b
∗),
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and so, we get

f (b∗) = 0= Γ(0,0,0).

It can be verified that the hypothesis of Theorem5 holds. That is, b∗ is a global mini-
mum of(23). So, Theorem5 is verified.

(2) We can get y1 =−
β Q

1
2 , y2 =

βL
1
18 by (24) and

Γ(y,βL
1 ,β Q

1 ) =−
(βL

1 )2

108
−

(β Q
1 )2

4
≤ 0.

Since f(a) = a2
1 + 3a2

2 ≥ 0, we can get f(a) ≥ Γ(y,βL
1 ,β Q

1 ). Hence, Theorem2 is
verified.

(3) Since∇L1 = (0,1/3)T ,∇Q1 = (1,0)T . So, we obtain that(23) satisfies VC-
ACQ. By Theorem1, there exist Lagrange multipliersβL

1 ,β Q
1 ,ρ1,ν1 ∈ R such that

(0,βL
1 ,β Q

1 , ρ1,ν1) is a feasible point of the VC-WD(0), and

−βL
1 L1(0)+β Q

1 Q1(0) = 0.

Hence,(0,βL
1 ,β Q

1 ,ρ1,ν1) is a global maximum of the VC-WD(0) and f(0) = 0 =

Γ(0,βL
1 ,β Q

1 ). Theorem3 is verified.

3.2. Mond–Weir type dual model

Now, we shall be discussing the Mond–Weir type dual for MPVC.For a ∈ X, the
Mond–Weir type dual of the MPVC, VC-MWD(a) for short, is as follows:

max f (y)

s.t.∇ Γ(y,δ ,ω,βL ,β Q) = 0,

δα ≥ 0,δαgα(y)≥ 0, α = 1,2, ...,v,

κγhγ(y) = 0, γ = 1,2, .,q,

β Q
α Qα(y)≥ 0, α = 1,2, ., l ,

β Q
α = καLα(a),κα ≥ 0, α = 1,2, ., l ,

−βL
α Lα(y)≥ 0, α = 1,2, ., l ,

βL
α = ρα −καQα(a),ρα ≥ 0, α = 1,2, ., l . (25)
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Let SMW(a)⊆ R
n×R

v×R
q×R

l ×R
l denote the feasible set, i.e.

SMW(a) = {(y,δ ,ω,βL ,β Q,ρ ,κ) : ∇ Γ(y,δ ,ω,βL , β Q) = 0,

δα ≥ 0,δαgα(y)≥ 0,α = 1,2, ...,v,

κγhγ(y) = 0, γ = 1,2, .,q,

β Q
α Qα(y)≥ 0, α = 1,2, ., l ,

β Q
α = καLα(a), κα ≥ 0, α = 1,2, ., l ,

−βL
α Lα(y)≥ 0, α = 1,2, ., l ,

βL
α = ρα −καQα(a), ρα ≥ 0, α = 1,2, ., l}. (26)

We denote

prSMW(a) = {y∈ R
n : (y,δ ,ω,βL ,β Q,ρ ,κ) ∈ SMW(a)}

as the projection of the setSMW(a) onRn.

Similar to the Wolfe dual, there is another dual problem thatwe consider, which is
denoted by VC-MWD, and is defined as follows:

maxf (y)

s.t.(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ ∩a∈XSMW(a).

The set of all feasible points of the VC-MWD is denoted bySMW = ∩a∈XSMW(a) and
the projection of the setSMW onR

n is denoted byprSMW.

THEOREM 7 (Weak duality) Let a∈ X and(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ SMW be feasible
points for the MPVC and the VC-MWD, respectively. Moreover,if one of the following
conditions holds:

(1) f (.) is pseudo-p-invex and
v

∑
α=1

δαgα(.)+
q

∑
γ=1

ωγhγ(.)−
l

∑
α=1

βL
α Lα(.)+

l

∑
α=1

β Q
α Qα(.)

is quasi-p-invex aty∈ X∪ prSMW,w.r.t. the common kernel functionξ ;

(2) f (.) is pseudo-p-invex andgα(α ∈ τ+g (a)), hγ(γ ∈ τ+h (a)), −hγ(γ ∈ τ−h (a)),

−Lα(α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a)),
−Lα(α ∈ τ−0+(a)),Qα(α ∈ τ++

+0 (a)∪ τ++
+− (a)) are quasi-p-invex aty∈ X∪ prSMW

for the same real numberp 6= 0 and w.r.t. the common kernel functionξ ;

then, f(a)≥ f (y).



Duality in mathematical programs with vanishing constraints 369

PROOFSincea∈ X and(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ SMW it follows that

gα(a)≤ 0, δα ≥ 0, α = 1,2, ...,v,

hγ(a) = 0, ωγ ∈ R, γ ∈ τh,

−Lα(a)< 0, βL
α ≥ 0, α ∈ τ+(a),

−Lα(a) = 0, βL
α ∈ R, α ∈ τ0(a),

Qα(a)> 0, β Q
α = 0, α ∈ τ0+(a),

Qα(a) = 0, β Q
α ≥ 0, α ∈ τ00(a)∪ τ+0(a),

Qα(a)< 0, β Q
α ≥ 0, α ∈ τ0−(a)∪ τ+−(a).

By (25), this implies that

v

∑
α=1

δαgα(a)+
q

∑
γ=1

ωγhγ(a)−
l

∑
α=1

βL
α Lα(a)+

l

∑
α=1

β Q
α Qα(a)

≤
v

∑
α=1

δαgα(y)+
q

∑
γ=1

ωγhγ(y)−
l

∑
α=1

βL
α Lα(y)+

l

∑
α=1

β Q
α Qα(y).

Combining the quasi-p-invexity of

v

∑
α=1

δαgα(.)+
q

∑
γ=1

ωγhγ(.)−
l

∑
α=1

βL
α Lα(.)+

l

∑
α=1

β Q
α Qα(.)

w.r.t. the common kernel functionξ , we get

1
p

〈

v

∑
α=1

δα ∇gα(y)+
q

∑
γ=1

ωγ ∇hγ(y)−
l

∑
α=1

βL
α ∇Lα(y)

+
l

∑
α=1

β Q
α ∇Qα(y),e

pξ (a,y)−1

〉

≤ 0.

By connecting the above inequality and the first equation of (25), we get

1
p
〈∇ f (y),epξ (a,y)−1〉 ≥ 0.

Application of pseudo-p-invexity of f w.r.t. the kernel functionξ leads us to

f (a)≥ f (y)

and this is the required proof.
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(2) By a∈ X, and(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ SMW, it follows that

gα(a)≤ gα(y), α ∈ τ+g (a),

hγ(a) = hγ(y), γ ∈ τ+h (a)∪ τ−h (a),

−Lα(a)≤−Lα(y), α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a),
−Lα(a)≥−Lα(y), α ∈ τ−0+(a),
Qα(a)≤ Qα(y), α ∈ τ++

+0 (a)∪ τ++
+− (a).

By the quasi-p-invexity of gα(α ∈ τ+g (a)), hγ(γ ∈ τ+h (a)),hγ(γ ∈ τ−h (a)),
−Lα(α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a)), Lα(α ∈ τ−0+(a)),
Qα(α ∈ τ++

+0 (a)∪ τ++
+− (a)) for the same real numberp 6= 0 and w.r.t. the common

kernel functionξ , we get

1
p
〈∇gα(y), epξ (a,y)−1〉 ≤ 0, δ̄α > 0, α ∈ τ+g (a),

1
p
〈∇hγ(y), epξ (a,y)−1〉 ≤ 0, ω̄γ > 0, γ ∈ τ+h (a),

1
p
〈∇hγ(y), epξ (a,y)−1〉 ≥ 0, ω̄γ < 0, γ ∈ τ−h (a),

−
1
p
〈∇Lα(y), epξ (a,y)−1〉 ≤ 0, β̄L

α ≥ 0, α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a),

−
1
p
〈∇Lα(y), epξ (a,y)−1〉 ≥ 0, β̄L

α ≤ 0, α ∈ τ−+0(a),

1
p
〈∇Qα(y), epξ (a,y)−1〉 ≤ 0, β̄ Q

α ≥ 0, α ∈ τ++
+0 (a)∪ τ++

+− (a).

Using the above inequalities and (2), we get

1
p

〈

v

∑
α=1

δα ∇gα(y)+
q

∑
γ=1

ωγ ∇hγ(y)−
l

∑
α=1

βL
α ∇Lα(y)+

l

∑
α=1

β Q
α ∇Qα(y),e

pξ (a,y)−1

〉

≤ 0.

By combining the above inequality and (25), we obtain

1
p
〈∇ f (y),epξ (a,y)−1〉 ≥ 0.

By the pseudo-p-invexity of f , w.r.t. the kernel functionξ , we get

f (a)≥ f (y)

and this ends the required proof.

We now provide the strong duality theorem.
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THEOREM 8 Let b∗ ∈ X be a local minimum of the MPVC, such that the VC-ACQ
holds at b∗. Then, there exist Lagrange multipliers̄δ ∈ R

v, ω̄ ∈ R
p, β̄L , β̄ Q, ρ̄, κ̄ ∈

R
l , such that(b∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) is a feasible point of the VC-MWD(b∗), that is,

(b∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄)∈SMW(b∗). Moreover, Theorem7holds, and then(b∗, δ̄ , ω̄, β̄L ,
β̄ Q) is a global maximum of the VC-MWD(b∗).

PROOF Sinceb∗ ∈ X is a local minimum of the MPVC and the VC-ACQ condition
is satisfied atb∗, by Theorem1, it follows that there exist Lagrange multipliers̄δ ∈
R

v, ω̄ ∈ R
p, β̄L , β̄ Q, ρ̄ , κ̄ ∈ R

l , such that the conditions (2) and (3) hold and hence
(b∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) is a feasible point of VC-MWD(b∗). By Theorem7, it follows
that

f (b∗)≥ f (y),∀(y,δ ,ω,βL ,β Q,ρ ,κ) ∈ SMW(b∗)

and hence(b∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) ∈ SMW(b∗) is a global maximum of the VC-MWD.

THEOREM 9 (Converse duality) Let a∈ X and(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) ∈ SMW be fea-
sible points for the MPVC and the VC-MWD, respectively. In addition, if one of the
following conditions holds:

(1) f (.) is pseudo-p-invex and
v

∑
α=1

δ̄αgα(.)+
q

∑
γ=1

ω̄γhγ(.)−
l

∑
α=1

β̄L
α Lα(.)+

l

∑
α=1

β̄ Q
α Qα(.)

is quasi-p-invex aty∈ X∪ prSMW, w.r.t. the common kernel functionξ ;

(2) f is pseudo-p-invex andgα(α ∈ τ+g (a)), hγ(γ ∈ τ+h (a)), −hγ(γ ∈ τ−h (a)),

−Lα(α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a)),
−Lα(α ∈ τ−0+(a)),Qα(α ∈ τ++

+0 (a)∪ τ++
+− (a)) are quasi-p-invex at

y∈ X∪ prSMW for the same real numberp 6= 0 and w.r.t. the common kernel functionξ ;

then y∗ is a global minimum of the MPVC.

PROOF Assume thaty∗ is not a global minimum of the MPVC, that is, there exists
ã∈ X, such thatf (ã)< f (y∗).

(1) By the pseudo-p-invexity of f (.) w.r.t. the kernel functionξ , we get

1
p
〈∇ f (y∗),epξ (ã,y∗)−1〉< 0. (27)
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Sinceã∈ X and(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) ∈ SMW, we get

δ̄αgα(ã)≤ δ̄αgα(y
∗), α = 1,2, ...,v,

ω̄γhγ(ã) = ω̄γhγ(y
∗), γ = 1,2, ...,q,

− β̄L
α Lα(ã)≤−β̄L

α Lα(y
∗), α = 1,2, ..., l ,

β̄ Q
α Qα(ã)≤ β̄ Q

α Qα(y
∗), α = 1,2, ..., l ,

which implies that

v

∑
α=1

δ̄αgα(ã)+
q

∑
γ=1

ω̄γhγ(ã)−
l

∑
α=1

β̄L
α Lα(ã)+

l

∑
α=1

β̄ Q
α Qα(ã)

≤
v

∑
α=1

δ̄αgα(y
∗)+

q

∑
γ=1

ω̄γhγ(y
∗)−

l

∑
α=1

β̄L
α Lα(y

∗)+
l

∑
α=1

β̄ Q
α Qα(y

∗).

By the quasi-p-invexity of

v

∑
α=1

δ̄αgα(.)+
q

∑
γ=1

ω̄γhγ(.)−
l

∑
α=1

β̄L
α Lα(.)+

l

∑
α=1

β̄ Q
α Qα(.),

w.r.t. the common kernel functionξ , we get

1
p

〈

v

∑
α=1

δ̄α ∇gα(y
∗)+

q

∑
γ=1

ω̄γ ∇hγ(y
∗)−

l

∑
α=1

β̄L
α ∇Lα(y

∗)

+
l

∑
α=1

β̄ Q
α ∇Qα(y

∗),epξ (ã,y∗)−1

〉

≤ 0. (28)

By combining the inequalities (27) and (3.2), we get

1
p
〈∇ Γ(y∗, δ̄ , ω̄, β̄L , β̄ Q),epξ (ã,y∗)−1〉< 0,

which contradicts (25) and this is the required proof.

(2) Since ˜a∈ X and(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) ∈ SMW, we get

δ̄αgα(ã)≤ δ̄αgα(y
∗), α = 1,2, ...,v,

ω̄γhγ(ã) = ω̄γhγ(y
∗), γ = 1,2, ...,q,

− β̄L
α Lα(ã)≤−β̄L

α Lα(y
∗), α = 1,2, ..., l ,

β̄ Q
α Qα(ã)≤ β̄ Q

α Qα(y
∗), α = 1,2, ..., l .
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Using the above inequalities and (2), we conclude that

gα(ã)≤ gα(y
∗), α ∈ τ+g (ã),

hγ(ã) = hγ(y
∗), γ ∈ τ+h (ã)∪ τ−h (ã),

−Lα(ã)≤−Lα(y
∗), α ∈ τ++0(ã)∪ τ++−(ã)∪ τ+00(ã)∪ τ+0−(ã)∪ τ+0+(ã),

−Lα(ã)≥−Lα(y
∗), α ∈ τ−0+(ã),

Qα(ã)≤ Qα(y
∗), α ∈ τ++

+0 (ã)∪ τ++
+− (ã),

and by the quasi-p-invexity of gα(α ∈ τ+g (a)), hγ(γ ∈ τ+h (a)),hγ(γ ∈ τ−h (a)),
−Lα(α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a)), Lα(α ∈ τ−0+(a)),
Qα(α ∈ τ++

+0 (a)∪ τ++
+− (a)), w.r.t. the common kernel functionξ , this implies that

1
p
〈∇gα(y

∗), epξ (ã,y∗)−1〉 ≤ 0, δ̄α > 0, α ∈ τ+g (ã),

1
p
〈∇hγ(y

∗), epξ (ã,y∗)−1〉 ≤ 0, ω̄γ > 0, γ ∈ τ+h (ã),

1
p
〈∇hγ(y

∗), epξ (ã,y∗)−1〉 ≥ 0, ω̄γ < 0, γ ∈ τ−h (ã),

−
1
p
〈∇Lα(y

∗), epξ (ã,y∗)−1〉 ≤ 0,

β̄L
α ,≥ 0, α ∈ τ++0(ã)∪ τ++−(ã)∪ τ+00(ã)∪ τ+0−(ã)∪ τ+0+(ã),

−
1
p
〈∇Lα(y

∗), epξ (ã,y∗)−1〉 ≥ 0, β̄L
α ,≤ 0, α ∈ τ−+0(ã),

1
p
〈∇Qα(y

∗), epξ (ã,y∗)−1〉 ≤ 0, β̄ Q
α ≥ 0, α ∈ τ++

+0 (ã)∪ τ++
+− (ã).

From the above inequalities and (2), we get

1
p

〈

v

∑
α=1

δα ∇gα(y
∗)+

q

∑
γ=1

ωγ ∇hγ(y
∗)−

l

∑
α=1

βL
α ∇Lα(y

∗)

+
l

∑
α=1

β Q
α ∇Qα(y

∗),epξ (ã,y∗)−1

〉

≤ 0.

By combining the above inequality and (25), we get

1
p
〈∇ f (y∗),epξ (ã,y∗)−1〉 ≥ 0.

By the pseudo-p-invexity of f , w.r.t. the kernel functionξ , this implies that

f (ã)≥ f (y∗)
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and this ends the required proof.

Now, we provide a restricted converse duality theorem.

THEOREM 10 Let b∗ ∈X and(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄)∈SMW be feasible points for the
MPVC and the VC-MWD, respectively, such that f(b∗) = f (y∗) . If the hypothesis of
Theorem7 holds at y∗ ∈ X∪ prSMW, then b∗ is a global minimum of the MPVC.

PROOF Assume thatb∗ ∈ X is not a global minimum of the MPVC, then there exists
ã∈ X such that

f (ã)≤ f (b∗).

Using the assumptions of the theorem, we get

f (ã)≤ f (y∗),

this contradicts Theorem7 and hence this constitutes the required proof.

THEOREM 11 (Strict converse duality) Let b∗ ∈ X be a local minimum for the MPVC
such that the VC-ACQ holds at b∗. Assume that the conditions of Theorem8 hold and
(y∗, δ̃ , ω̃, β̃L , β̃ Q, ρ̃, κ̃) is a global maximum of the VC-WD(b∗). If one of the following
conditions holds:

(i) f (.) is strictly pseudo-p-invex and
v

∑
α=1

δαgα(.)+
q

∑
γ=1

ωγhγ(.)−
l

∑
α=1

βL
α Lα(.)+

l

∑
α=1

β Q
α Qα(.)

is quasi-p-invex aty∈ X∪ prSMW, w.r.t. the common kernel functionξ ;

(ii) f (.) is strictly pseudo-p-invex and

gα(α ∈ τ+g (a)), hγ(γ ∈ τ+h (a)), −hγ(γ ∈ τ−h (a)),

−Lα(α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a)), −Lα(α ∈ τ−0+(a)),
Qα(α ∈ τ++

+0 (a)∪ τ++
+− (a)) are strictly quasi-p-invex aty∈ X∪ prSMW

for the same real numberp 6= 0 and w.r.t. the common kernel functionξ ;

then b∗ = y∗.

PROOF (1) Assume thatb∗ 6= y∗. By Theorem8, there exist Lagrange multipliers
δ̄ ∈R

v, ω̄ ∈R
p, β̄L , β̄ Q, ρ̄, κ̄ ∈R

l , such that(y∗, δ̄ , ω̄, β̄L , β̄ Q, ρ̄, κ̄) is the global max-
imum of the VC-MWD(b∗). Hence,

f (b∗) = f (y∗). (29)
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Sinceb∗ ∈ X and(y∗, δ̃ , ω̃, β̃L , β̃ Q, ρ̃, κ̃) ∈ SMW, it follows that

gα(b
∗)≤ 0, δ̃α ≥ 0, α = 1,2, ...,v,

hγ(b
∗) = 0, ω̃γ ∈ R, γ = 1,2, ...,q,

−Lα(b
∗)< 0, β̃L

α ≥ 0, α ∈ τ+(b∗),

−Lα(b
∗) = 0, β̃L

α ∈ R, α ∈ τ0(b
∗),

Qα(b
∗)> 0, β̃ Q

α = 0, α ∈ τ0+(b
∗),

Qα(b
∗) = 0, β̃ Q

α ≥ 0, α ∈ τ00(b
∗)∪ τ+0(b

∗),

Qα(b
∗)< 0, β̃ Q

α ≥ 0, α ∈ τ0−(b
∗)∪ τ+−(b

∗).

By (25), this implies that

v

∑
α=1

δ̃αgα(b
∗)+

q

∑
γ=1

ω̃γhγ(b
∗)−

l

∑
α=1

β̃L
α Lα(b

∗)+
l

∑
α=1

β̃ Q
α Qα(b

∗)

≤
v

∑
α=1

δ̃αgα(y
∗)+

q

∑
γ=1

ω̃γhγ(y
∗)−

l

∑
α=1

β̃L
α Lα(y

∗)+
l

∑
α=1

β̃ Q
α Qα(y

∗).

Using the quasi-p-invexity of

v

∑
α=1

δ̃αgα(.)+
q

∑
γ=1

ω̃γhγ(.)−
l

∑
α=1

β̃L
α Lα(.)+

l

∑
α=1

β̃ Q
α Qα(.)

w.r.t. the common kernel functionξ , we get

1
p

〈

v

∑
α=1

δ̃α ∇gα(y
∗)+

q

∑
γ=1

ω̃γ ∇hγ(y
∗)−

l

∑
α=1

β̃L
α ∇Lα(y

∗)

+
l

∑
α=1

β̃ Q
α ∇Qα(y

∗),epξ (b∗,y∗)−1

〉

≤ 0.

Using the above inequality and the first equation in (25), we get

1
p
〈∇ f (y∗),epξ (b∗,y∗)−1〉 ≥ 0.

By the strict pseudo-p-invexity of f w.r.t. the kernel functionξ , we conclude that

f (b∗)> f (y∗).

This is a contradiction to (29) and so we get the required proof.
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(2) Usingb∗ ∈ X and(y∗, δ̃ , ω̃, β̃L , β̃ Q, ρ̃ , κ̃) ∈ SMW(b∗), we arrive at

gα(b
∗)≤ gα(y

∗), α ∈ τ+g (b∗),

hγ(b
∗) = hγ(y

∗), γ ∈ τ+h (b∗)∪ τ−h (b∗),

−Lα(b
∗)≤−Lα(y

∗), α ∈ τ++0(b
∗)∪ τ++−(b

∗)∪ τ+00(b
∗)∪ τ+0−(b

∗)∪ τ+0+(b
∗),

−Lα(b
∗)≥−Lα(y

∗), α ∈ τ−0+(b
∗),

Qα(b
∗)≤ Qα(y

∗), α ∈ τ++
+0 (b∗)∪ τ++

+− (b
∗).

By the quasi-p-invexity of gα(α ∈ τ+g (a)), hγ(γ ∈ τ+h (a)), −hγ(γ ∈ τ−h (a)),
−Lα(α ∈ τ++0(a)∪ τ++−(a)∪ τ+00(a)∪ τ+0−(a)∪ τ+0+(a)),Lα(α ∈ τ−0+(a)),
Qα(α ∈ τ++

+0 (a)∪ τ++
+− (a)) w.r.t. the common kernel functionξ , we get

1
p
〈∇gα(y

∗),epξ (b∗,y∗)−1〉 ≤ 0, δ̄α > 0, α ∈ τ+g (b∗),

1
p
〈∇hγ(y

∗),epξ (b∗,y∗)−1〉 ≤ 0, ω̄γ > 0, γ ∈ τ+h (b∗),

1
p
〈∇hγ(y

∗),epξ (b∗,y∗)−1〉 ≥ 0, ω̄γ < 0, γ ∈ τ−h (b∗),

−
1
p
〈∇Lα(y

∗),epξ (b∗,y∗)−1〉 ≤ 0,

β̄L
α ,≥ 0α ∈ τ++0(b

∗)∪ τ++−(b
∗)∪ τ+00(b

∗)∪ τ+0−(b
∗)∪ τ+0+(b

∗),

−
1
p
〈∇Lα(y

∗),epξ (b∗,y∗)−1〉 ≥ 0, β̄L
α ,≤ 0 α ∈ τ++0(b

∗),

1
p
〈∇Qα(y

∗),epξ (b∗,y∗)−1〉 ≤ 0, β̄ Q
α ≥ 0, α ∈ τ++

+0 (b∗)∪ τ++
+− (b

∗).

From the above inequalities and (2), we obtain

1
p

〈

v

∑
α=1

δ̃α ∇ f (y∗)+
q

∑
γ=1

ω̃γ ∇hγ(y
∗)−

l

∑
α=1

β̃L
α ∇Lα(y

∗)

+
l

∑
α=1

β̃ Q
α ∇Qα(y

∗),epξ (b∗,y∗)−1

〉

≤ 0.

By combining the above inequality and (25), we get

1
p
〈∇ f (y∗),epξ (b∗,y∗)−1〉 ≥ 0.

By the pseudo-p-invexity of f , w.r.t. the kernel functionξ , we obtain

f (b∗)≥ f (y∗).

This is a contradiction to (29) and this ends the required proof.



Duality in mathematical programs with vanishing constraints 377

EXAMPLE 2 Consider the MPVC of Example 1. For any feasible point a∈ X,the VC-
MWD (a) to the MPVC is given by

max f (y) = y2
1+3y2

2

s.t.∇ Γ(y,β Q
1 ,βL

1 ) =

(

2y1+β Q
1 ,6y2−

βL
1

3

)

= (0,0),

β Q
1 Q1(y) = β Q

1 y1 ≥ 0,

β Q
1 = κ1

a2

3
, κ1 ≥ 0,

−βL
1 L1(y) =−βL

1
y2

3
≥ 0,

βL
1 = ρ1−κ1a1, ρ1 ≥ 0. (30)

(1) It is easy to verify that(y∗,β Q
1 ,βL

1 ,ρ1,κ1) = (0,0,0,0,0) ∈ SMW(b∗), and hence
y∗ := (0,0) ∈ pr

R2SMW. Also, we get

f (b∗) = 0= f (y∗),

that is, the hypothesis of Theorem9 holds. Hence, b∗ is a global minimum of(30). So,
Theorem9 is verified.

(2) We can get y1 =−
β Q

1
2 ,y2 =

βL
1
18 by (30). One also has

Γ(y,βL
1 ,β Q

1 ) =−
(βL

1 )2

108
−

(β Q
1 )2

4
≤ 0.

Using (30), we get f(y) ≤ 0. Since f(a) = a2
1 + 3a2

2 ≥ 0, we can get f(a) ≥ f (y).
Theorem7 is verified.

(3) Since∇L1 =(0,1/3)T ,∇Q1 =(1,0)T . So we obtain that(30) satisfies VC-ACQ. By
Theorem1, there exist Lagrange multipliersβL

1 ,β Q
1 ,ρ1,κ1 ∈ R such that(0,βL

1 ,β Q
1 ,

ρ1,κ1) is a feasible point of the VC-WD(0). Taking into account the fact that f(y) ≥
0,(0,βL

1 ,β Q
1 , ρ1,κ1) is a global maximum of the VC-MWD(0). Hence, Theorem8 is

verified.

4. Conclusions

In the present article, we have established the weak, strong, converse and restricted
converse duality results under the assumptions ofp-invexity, strictp-invexity, pseudo-
p-invexity, strict pseudo-p-invexity and quasi-p-invexity. Also, the validity of the re-
sults is verified by an example.



378 B. CH. JOSHI

References

ACHTZIGER,W. and KANZOW, C. (2008) Mathematical programs with vanishing
constraints: Optimality conditions and constraints qualifications.Mathematical
Programming,114(1), 69–99.

ANTCZAK, T. (2001) On (p, r)-invexity-type nonlinear programming problems.Jour-
nal of Mathematical Analysis and Applications,264(2), 382–397.

ANTCZAK, T. (2010) G-saddle point criteria and G-Wolfe duality in differentiate
mathematical programming.Journal of Information and Optimization Sciences,
31 (1), 63–85.

ANTCZAK, T. and SINGH, V. (2009) First-order optimality conditions and dual-
ity results for multi-objective optimization problems.Annals of Operations Re-
search,172(1), 277–289.

ANTCZAK, T. and SINGH, V. (2013) Optimality and duality for minimax fractional
programming with support functions under B-(p, r)- Type I assumptions.Math-
ematical and Computer Modelling,57 (5-6), 1083 – 1100.

BOT, R. I. and GRAD, S.-M. (2010) Wolfe duality and Mond–Weirduality via per-
turbations.Nonlinear Analysis: Theory, Methods and Applications,73 (2), 374–
384.

CHINCHULUUN, A., YUAN, D. and PARDALOS, P. M. (2007) Optimality con-
ditions and duality for nondifferentiable multiobjectivefractional programming
with generalized convexity.Annals of Operations Research,154(1), 133–147.

DUSSAULT, J.-P., MOUNIR H. and TANGI M. (2019) Mathematicalprograms with
vanishing constraints: constraint qualifications, their applications, and a new reg-
ularization method.Optimization,68 (2-3), 509–538.

HOHEISEL T. and KANZOW C. (2007) First and second-order optimality conditions
for mathematical programs with vanishing constraints.Applications of Mathe-
matics,52, 495–514

HOHEISEL T. and KANZOW C. (2008) Stationary conditions for mathematical pro-
grams with vanishing constraints using weak constraint qualifications. Journal
of Mathematical Analysis and Applications,337, 292–310.

HOHEISEL T. and KANZOW C. (2009) On the Abadie and Guignard constraint qual-
ification for mathematical progams with vanishing constraints.Optimization,58,
431–448.

HU, Q. J., CHEN, Y., ZHU, Z. B. and ZHANG, B. S. (2014) Notes on some conver-
gence properties for a smoothing regularization approach to mathematical pro-
grams with vanishing constraints.Abstract and Applied Analysis,2014 (1), 1–7.
https://doi.org/10.1155/2014/715015

HU, Q. J., WANG, J. G., CHEN, Y. and ZHU, Z. B. (2017) On anl1 exact penalty re-
sult for mathematical programs with vanishing constraints. Optimization Letters,
11 (3), 641–653.

HU, Q., WANG, J. and CHEN, Y. (2020) New dualities for mathematical programs
with vanishing constraints.Annals of Operations Research,287(1), 233–255.



Duality in mathematical programs with vanishing constraints 379

JABR, R. A. (2012) Solution to economic dispatching with disjoint feasible regions
via semidefinite programming.IEEE Transactions on Power Systems,27 (1),
572–573.

JOSHI, B. C. (2021a) Optimality and duality for nonsmooth semi-infinite mathemati-
cal program with equilibrium constraints involving generalized invexity of order
α > 0. RAIRO - Operations Research,55, 2221–2240.

JOSHI, B. C. (2021b) On generalized approximate convex functions and variational
inequalities.RAIRO-Operations Research,55, S2999–S3008.

JOSHI, B. C., MISHRA, S. K. and KUMAR, P. (2020) On Semi-infinite Mathematical
Programming Problems with Equilibrium Constraints Using Generalized Con-
vexity. Journal of the Operations Research Society of China,8 (4), 619–636.

KAZEMI, S. and KANZI, N. (2018) Constraint qualifications and stationary con-
ditions for mathematical programming with non-differentiable vanishing con-
straints.Journal of Optimization Theory and Applications,179(3), 800–819.

MISHRA, S. K. and SHUKLA, K. (2010) Nonsmooth minimax programming prob-
lems with V -r-invex functions.Optimization,59 (1), 95–103.

MISHRA, S. K., SINGH, V. and LAHA, V. (2016) On duality for mathematical pro-
grams with vanishing constraints.Annals of Operations Research,243(1), 249–
272.

MICHAEL, N. J., KIRCHES, C. and SAGER, S. (2013) On perspective functions and
vanishing constraints in mixedinteger nonlinear optimal control. In: M. J̈unger
and G. Reinelt, eds.,Facets of Combinatorial Optimization,387–417. Berlin:
Springer.

MOND, B. and WEIR, T. (1981) Generalized concavity and duality. In: S. Schaible
and W. T. Ziemba, eds.,Generalized Concavity in Optimization and Economics,
263–279. New York: Academic Press.

SAGLAM, S. D. and MAHMUDOV, E. (2022) On Duality in Convex Optimiza-
tion of Second-Order Differential Inclusions with Periodic Boundary Conditions.
Hacettepe Journal of Mathematics and Statistics,51 (6), 1588–1599.

TUNG, L. T. (2020) Karush–Kuhn–Tucker optimality conditions and duality for mul-
tiobjective semi-infinite programming with vanishing constraints.Annals of Op-
erations Research,311, 1307–1334.

TUNG, L. T. and TAM, D. H. (2021) Optimality Conditions and Duality for Multi-
objective Semi-infinite Programming on Hadamard Manifolds. Bulletin of the
Iranian Mathematical Society,48, 2191–2219.

WOLFE, P. (1961) A duality theorem for nonlinear programming. Quarterly of Ap-
plied Mathematics,19, 239–244.


	Introduction
	Preliminaries and definitions
	Duality models
	Wolfe type dual model
	Mond–Weir type dual model

	Conclusions

