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Abstract: The mean-variance approach to portfolio investment
exploits the fact that the diversification of investments by combi-
nation of different assets in one portfolio allows for reducing the
financial risks significantly. The mean-variance model is formulated
as a bi-objective optimization problem with linear (expected return)
and quadratic (variance) objective functions. Given a set of avail-
able assets, the investor searches for a portfolio yielding the most
preferred combination of these objectives. Naturally, the search is
limited to the set of non-dominated combinations, referred to as the
Pareto front. Due to the globalization of financial markets, investors
nowadays have access to large numbers of assets. We examine the
possibility of reducing the problem size by identifying those assets,
whose removal does not affect the resulting Pareto front, thereby
not deteriorating the quality of the solution from the investor’s per-
spective.

We found a sufficient condition for asset redundancy, which can
be verified before solving the problem. This condition is based on
the possibility of reallocating the share of one asset in a portfolio
to another asset without deteriorating the objective function values.
We also proposed a parametric relaxation of this condition, making it
possible to remove more assets for a price of a negligible deterioration
of the Pareto front. Computational experiments conducted on five
real-world problems have demonstrated that the problem size can
be reduced significantly using the proposed approach
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1. Introduction and problem formulation

The mean-variance model of portfolio investment has been formulated and first
studied by Harry Markowitz in the 1950s (see Markowitz, 1952). He was later
awarded a Nobel Prize in economics for that achievement, and the mean-variance
model became the basis of the modern portfolio theory (Francis and Kim, 2013;
Kolm, Tütüncü and Fabozzi, 2014). This model describes the situation, in which
an investor constructs a portfolio of financial assets, aiming at maximizing the
expected return of investment while minimizing risk. The latter is defined as
the standard deviation or variance of portfolio return.

The mean-variance model is formulated as a problem of bi-objective opti-
mization with linear (expected return) and quadratic (variance) objective func-
tions. Given a set of assets available for the investor, the feasible solutions
are portfolios represented by vectors of asset shares, which satisfy basic linear
constraints and, optionally, additional constraints reflecting problem-specific re-
quirements. The investor searches for a portfolio yielding the most preferred
combination the two objectives. Naturally, the search is limited to the set of
non-dominated combinations, referred to as the Pareto front. Various meth-
ods are proposed in the literature for assisting investors in this task (Anagnos-
topoulos and Mamanis, 2011; Kolm, Tütüncü and Fabozzi, 2014; Merton, 1972;
Steuer, Hirschberger and Deb, 2016).

Deriving Pareto optimal portfolios may be computationally complex in the
case of a large number of assets. If mixed-integer (Steuer, Hirschberger and Deb,
2016) or nonlinear (Lejeune, 2013) constraints are present, the problem com-
plexity is much higher. As a result, the computation time may be unacceptably
long. This issue is often addressed by developing approximate algorithms such as
in Anagnostopoulos and Mamanis (2011), Lejeune (2013), Steuer, Hirschberger
and Deb (2016). We approach this issue from another perspective, namely we
try to simplify the mean-variance problem by reducing the number of assets.

It is obvious that the assets, which do not appear in any Pareto optimal port-
folio are redundant and therefore can be removed from the model. We narrow
down the definition of redundancy to the case where it is possible to reallocate
the share of one asset in the portfolio by replacing it with another asset without
deteriorating the objective function values. This allows us to formulate a suffi-
cient condition for redundancy in terms of Pareto dominance relation between
vectors of problem coefficients, corresponding to individual assets. For each
asset, this vector is composed of its expected return, variance and covariances
with the rest of assets. Furthermore, relaxing this condition by widening the
Pareto domination cone allows for identifying more assets, which are likely to
be redundant. The parameter of the relaxation controls the number of assets
being removed.
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The paper is organized as follows. First, we formulate the mean-variance
problem of portfolio investment. The sufficient condition for asset redundancy
is presented in Subsection 2.1 and its parametric relaxation in Subsection 2.2. In
Section 3, we demonstrate on real-world problems that the proposed conditions
allow for significant reductions in the numbers of assets with no or a negligible
deterioration of the Pareto front. Section 4 closes the paper with the discussion
of the practical value and the possible extensions of our results.

Let n > 1 be the number of assets, which are indexed by natural numbers
1, . . . , n. A portfolio is a vector x ∈ Rn representing the shares of the cor-
responding assets (x1, x2, . . . , xn), which satisfy the conditions xi ≥ 0 for all

i ∈ {1, 2, . . . , n} and
n∑

i=1

xi = 1. By Ω we denote the set of all the vectors satis-

fying the above conditions. We assume that the following information is given:
the expected return of each asset i, denoted µi ∈ R, and for all pairs of assets
i and j, the covariance between them, denoted σij ∈ R.

The mean-variance model of portfolio investment, proposed in Markowitz
(1952) and thereafter possibly extended with additional constraints, is defined
as follows:

max f1(x) := −xTSx,

max f2(x) := µ
Tx,

s.t. x ∈ X,

where X ⊆ Ω is the set of feasible solutions, or feasible portfolios of assets;
S = (σij)n×n

is the covariance matrix; µ = (µ1, . . . , µn) is the vector of ex-
pected returns. Note that we replaced the objective of minimizing the variance
by the one of maximizing the negative variance for uniformity.

The modern portfolio theory aims at assisting the investor in solving the
following decision making problem: find a portfolio, which is most preferred
among all feasible portfolios with respect to the values of f1 and f2. It is always
assumed that such a portfolio belongs to the set of Pareto optimal portfolios
defined as follows:

P = {x ∈ X : f(x′) ≥ f(x) ⇒ f(x′) = f(x)

for all x′ ∈ X},

where f = (f1, f2), and the inequality between vectors is understood compo-
nentwise.

Taking into account that the portfolios are compared in the decision making
only based on the values of the here specified objective functions, any two port-
folios x and x′ such that f(x) = f(x′) are regarded as equivalent. Therefore,
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solving the portfolio investment problem can be understood as finding the most
preferred bi-objective vector in the set Π = {f(x) : x ∈ P}, called the Pareto
front, and identifying a corresponding portfolio in P .

2. Conditions for asset redundancy

The complexity of Pareto optimal portfolio derivation depends on the problem
size, which is the number of assets n. Large n may hamper effective tackling of
real-life portfolio investment problems, especially when mixed-integer or nonlin-
ear constraints are imposed on the feasible solution set. Therefore, eliminating
assets, whose absence does not significantly change the set Π, is of practical
interest.

2.1. The sufficient condition

Clearly, if eliminating an asset from the model does not change the Pareto front,
this asset is redundant. In order to make the definition of a redundant asset
easy to operationalize, we get rid of referring to Pareto optimality in it.

Definition 1 An asset r is called redundant, if for each portfolio x ∈ X con-
taining asset r there exists another portfolio x′ = (x′

1, x
′

2, . . . , x
′

n) ∈ X such that
x′

r = 0 and f(x′) ≥ f(x).

Given two different assets r and q in a portfolio x ∈ X , we define an alter-
native portfolio, in which the share of asset r is reallocated to asset q:

yr,q(x) = (y1, . . . , yn)

where yr = 0, yq = xr + xq and yi = xi for i 6∈ {r, q}.

The following lemma results directly from Definition 1.

Lemma 1 Let the set of feasible portfolios satisfy the following condition:

yi,j(x) ∈ X for all x ∈ X

and i, j ∈ {1, 2, . . . , n}, i 6= j.
(2.1)

An asset r is redundant, if for each portfolio x ∈ X there exists an asset q 6= r

such that f(yr,q(x)) ≥ f(x).

This lemma narrows down the definition of asset redundancy by considering
only those alternative portfolios, which are obtained by reallocating shares be-
tween two assets. It is easy to see that for the classical mean-variance problem,
where X = Ω, the condition (2.1) holds. In the concluding section we give other
examples of problems satisfying this condition.
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Now we are in a position to formulate the sufficient condition for asset re-
dundancy in a constructive way, i.e. enabling the possibility of its verification
without solving the portfolio investment problem.

Theorem 1 Let the set of feasible portfolios satisfy condition (2.1). An asset
r is redundant, if there exists another asset q 6= r such that

µq ≥ µr, σrr ≥ σqq and

σrj ≥ σqj for all j ∈ {1, . . . , n} \ {r}.
(2.2)

Proof Assume that the condition of the theorem holds for assets r and q, and
consider an arbitrary portfolio x ∈ X . According to Lemma 1, it is enough to
prove that f(yr,q(x)) − f(x) ≥ 0.

The inequality f1(y
r,q(x)) − f1(x) ≥ 0 follows directly from the evident

equality µ
Tyr,q(x)−µ

Tx = xr(µq −µr) and the inequality µq ≥ µr. It remains
to prove that

xTSx − (yr,q(x))
T
Syr,q(x) ≥ 0. (2.3)

Denote η = {1, . . . , n} \ {r, q} and Γ =
∑
i∈η

∑
j∈η

σijxixj . Keeping in mind the

symmetricity of matrix S, rewrite the components of (2.3) as follows:

xTSx = Γ + σrrx
2
r + σqqx

2
q + 2σrqxrxq + 2

∑

j∈η

σrjxrxj + 2
∑

j∈η

σqjxqxj ,

(yr,q(x))
T
Syr,q(x) = Γ + σqq(xr + xq)

2+

2
∑

j∈η

σqj(xr + xq)xj = Γ+ σqqx
2
r + σqqx

2
q + 2σqqxrxq+

2
∑

j∈η

σqjxrxj + 2
∑

j∈η

σqjxqxj .

From this we obtain:

xTSx − (yr,q(x))
T
Syr,q(x) = (σrr − σqq)x

2
r+

2(σrq − σqq)xrxq + 2
∑

j∈η

(σrj − σqj)xrxj .

Taking into account inequalities (2.2) and the non-negativity of vector x, we
conclude that all three summands of the latter expression are non-negative.
This implies inequality (2.3). �

The condition, formulated in Theorem 1, has two practical drawbacks. First,
if inequalities (2.2) for assets r and q turn into equalities, then both assets are
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redundant since Theorem 1 applies when r and q switch their roles. However,
not necessarily both of them should be removed from the problem. If the re-
dundancy of asset q follows only from the comparison with asset r and the
latter is removed, then asset q is not redundant anymore. This means that
additional check is needed before removing an asset when using the above con-
dition. Secondly, the inequalities are formulated coefficient-wise, while it would
be more convenient to formulate them vector-wise. That would enable apply-
ing algorithms of multidimensional sorting (see, e.g., Chen, Hwang and Tsai,
2012) for asset elimination. The following considerations allow for obtaining a
formulation, which is devoid of the above drawbacks.

For each asset i, we introduce the n + 1-vector of all problem parameters
associated with i, referred to as the representative vector of asset i:

vi = (−σi1,−σi2, . . . ,−σin, µi) .

Let for two different assets r and q, vector vq dominate vector vr in terms of
Pareto, i.e. vq ≥ vr and vq 6= vr. Then, taking into account σrr ≥ σqr = σrq ≥
σqq we see that inequalities (2.2) hold. Since the Pareto dominance relation
is asymmetric, vr cannot simultaneously dominate vq. Thus, we obtain the
following statement:

Theorem 2 Let the set of feasible portfolios satisfy condition (2.1). Removing
all assets, whose representative vectors are dominated by representative vectors
of other assets, does not change the Pareto front of the mean-variance problem.

This theorem reduces the problem of eliminating redundant assets to multi-
dimensional sorting of their representative vectors.

2.2. The relaxed condition for asset redundancy

The condition of Pareto dominance between representative vectors seems to
be rather strong, as it assumes that n + 1 inequalities between covariance co-
efficients simultaneously hold. Let us consider its relaxation by widening the
Pareto domination cone. We use a simple technique, proposed in Kaliszewski
and Michalowski (1997) and Kaliszewski (2000), and generalized in Podkopaev
(2007). It consists in applying a linear transformation to the vectors being com-
pared. By definition, if after the transformation one vector dominates another
vector in terms of Pareto, then we say that the relaxed dominance relation takes
place.

For a given vector z ∈ Rk, k > 1, the transformed vector is defined by Bz,
where B = (bij)k×k

is a matrix with diagonal elements equal to 1 and the rest
of elements are small non-negative numbers. Each element bij , i 6= j, can be
interpreted in terms of the lower bound on acceptable trade-off ratio between
the deterioration of the i-th component and the improvement of the j-th com-
ponent (Podkopaev, 2007). In short, even when one vector is not dominated
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by another vector in terms of Pareto, the relaxed dominance relation can take
place if the trade-off ratios between components of the vectors do not exceed
the magnitudes of the corresponding elements of B.

Concerning the representative vectors of assets, we set elements of the trans-
formation matrix B(n+1)×(n+1) as bij = β for i ≤ n, j ≤ n, i 6= j, and bij = 0
for i = n+1 or j = n+1, and i 6= j. Setting the latter elements to zero reflects
the fact that we do not accept trade-offs between the covariance coefficients
and the expected return due to different nature and scales of those values. The
value β ≥ 0 serves as the parameter of the relaxation. When β = 0, the new
dominance relation coincides with the Pareto dominance relation. The higher is
β, the wider is the domination cone, and the more assets would in consequence
be potentially removed.

It is worth noting that Theorem 2 is not valid when the Pareto dominance
relation is replaced with its relaxation. In other words, we cannot prove that
after removing redundant assets according to the relaxed condition of redun-
dancy, the Pareto front will remain the same. On the other hand, the condition
for asset redundancy in this theorem is not a necessary condition, i.e. there is
hope that some more assets can be removed without affecting the Pareto front.
The computational experiments further on demonstrate the realization of this
possibility.

3. Numerical experiments

In order to examine the practical use of the proposed approach, we did calcu-
lations for several real-life examples of the mean-variance problem. We used
problem data (expected return and covariance coefficients) from the popular
Beasley OR-Library (2018). It contains five collections of assets from the fol-
lowing stock market indexes (the numbers of assets are given in parentheses):
Hang Seng (31), DAX (85), FTSE (89), Standard & Poor’s (98), Nikkei (225).

First, for each of the mentioned sets of data, we enumerated redundant assets
in accordance with Theorem 2 by identifying dominated representative vectors.
Due to this operation it turned out that only the data set from Nikkei has re-
dundant assets (45 out of 225).

Next, we examined the effect of relaxation on the number of redundant assets
and the Pareto front. For each of the five problems and each value of β from
the set {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2}, we calculated the number
of redundant assets according to the relaxed dominance relation, and verified if
the Pareto front changed significantly after removing them.
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The difference between Pareto fronts of the original problem and the problem
with the reduced number of assets is evaluated as follows. For both problems,
we set 21 evenly distributed values of expected return by dividing the interval
of expected return over the Pareto front into 20 equal parts. Then we derive 21
corresponding Pareto optimal solutions by solving the quadratic programming
problem of minimizing variance, where the values, defined above, serve as the
lower bound of expected return one at a time. We compare the obtained Pareto
front representations of the two problems point-wise, calculating the absolute
differences between corresponding objective function values of the correspond-
ing solutions. For each of the objective functions, we take the maximum among
those differences divided by the Pareto range of the corresponding objective
function values for scaling. If both of the resulting maximum differences are not
greater than 10−4 (i.e. 0.01% of the corresponding range), we consider that the
two Pareto fronts are not significantly different.

The results are presented in Table 1. The columns correspond to the five
considered data sets. The rows correspond to the considered values of β, while
the first row contains original problem sizes. For each value of β and each
data set, the cell contains two values: the number of assets remaining in the
problem after removing the redundant assets under this β, and the percentage
of assets removed, in parentheses. For each of the data sets, we highlight the
cell corresponding to the maximal value of β, which did not result in significant
change of the Pareto front with bold font and horizontal line.

Table 1. Numbers of remaining assets after applying the relaxed condition of
redundancy for different values of β

β Hang Seng DAX FTSE S & P Nikkei
Initial 31 85 89 98 225

0 31 (0%) 85 (0%) 89 (0%) 98 (0%) 180 (20%)
0.001 31 (0%) 85 (0%) 89 (0%) 98 (0%) 143 (36%)
0.002 31 (0%) 85 (0%) 89 (0%) 98 (0%) 106 (53%)
0.005 30 (3%) 85 (0%) 89 (0%) 98 (0%) 46 (80%)
0.01 28 (10%) 82 (4%) 88 (1%) 98 (0%) 20 (91%)
0.02 22 (29%) 75 (12%) 80 (10%) 96 (2%) 14 (94%)
0.05 13 (58%) 39 (54%) 49 (45%) 71 (28%) 7 (97%)
0.1 9 (71%) 12 (86%) 19 (79%) 43 (56%) 7 (97%)
0.2 5 (84%) 5 (94%) 9 (90%) 27 (72%) 6 (97%)

As one can notice from this table, large percentages of redundant assets
can be removed without affecting the Pareto front in some of the considered
examples. This confirms the potential usefulness of our approach. In practice,
if a mean-variance problem of the portfolio investment is expected to be com-
putationally hard, then filtering out redundant assets based on the proposed
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technique before solving the problem makes practical sense. This gives a chance
of reducing the computational complexity quite significantly.

On the other hand, even among our small set of examples, we observe high
variation of effects the relaxed dominance relation has on the resulting problems.
Same values of β allow for reducing the number of assets to different extent for
different problems. Significant reduction without changing the Pareto front can-
not be always guaranteed. Additional research is needed in order to understand
the factors, which influence the number of redundant assets.

It is reasonable to assume that this number depends on the distributional
characteristics of asset returns. The paper by Hirschberger, Qi and Steuer (2007)
presents a technique of random generation of covariance matrices for mean-
variance portfolio investment models with desirable distribution characteristics.
This technique can be used for a simulation study addressing the above issue.

4. Conclusion

Theorem 1 provides a sufficient condition for asset redundancy in a mean-
variance problem of portfolio investment, which is operationalized in Theorem
2. This condition is only valid when the feasible solution set satisfies (2.2). It
is easy to see that the basic mean-variance problem (where X = Ω) satisfies
this condition, since reallocating the shares between assets does not change the
total sum of shares. Let us mention two problem modifications, well-known in
the literature (see Steuer, Hirschberger and Deb, 2016), where condition (2.2)
holds true.

The first modification consists in adding the cardinality constraint, which
binds from above the number of assets in each portfolio:

|i : xi > 0| ≤ M, where 1 ≤ M < n.

The second modification prohibits investing too little money in individual assets:

xi < L ⇒ xi = 0 for all i ∈ {1, 2, . . . , n},

where 0 < L < 1.

It is easy to see that both modification do not violate condition (2.2): when
the share of one asset is completely reallocated to another asset, the number
of assets with positive shares does not increase, and an asset with a positive
share smaller than L does not appear. Both of the mentioned modifications
lead to mixed-integer problem formulations, which makes them computation-
ally complex. On the other hand, the following problem modification, popular
in the literature violates condition (2.2): it consists in binding all asset shares
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from above, i.e. introducing the constraints xi ≤ U for i ∈ {1, 2, . . . , n}, where
U < 1. The inability to use the sufficient condition for asset redundancy in such
problems can be considered a significant limitation of our approach. Overcom-
ing this limitation is a research challenge worth taking.

Preliminary experiments demonstrate that in real-life problems, a significant
number of assets can be removed without affecting the Pareto front. If the
computational complexity of a mean-variance problem is much higher than the
complexity of a multidimensional sorting procedure (which is usually low-degree
polynomial, see, e.g., Chen, Hwang and Tsai, 2012), running this procedure
before solving the problem gives a chance of reducing the total solution time.
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Kolm, P.N., Tütüncü, R. and Fabozzi, F.J. (2014) 60 years of portfolio
optimization: Practical challenges and current trends. European Journal
of Operational Research 234, 356–371.

Konno, H. and Suzuki, K. (1992) A fast algorithm for solving large scale
mean-variance models by compact factorization of covariance matrices.
Journal of the Operations Research Society of Japan, 35(1):93–104, 1992.
10.15807/jorsj.35.93.

Lejeune, M.A. (2013) Portfolio optimization with combinatorial and down-
side return constraints. In: L.F. Zuluaga, T. Terlaky, eds., Modeling and



190 P. Juszczuk, I. Kaliszewski, J. Miroforidis and D. Podkopaev

Optimization: Theory and Applications. Springer New York, New York,
31–50.

Lo, A. W., Petrov, C. and Wierzbicki, M. (2003) It’s 11pm - do you know
where your liquidity is? The mean-variance liquidity frontier. Journal Of
Investment Management, 1(1). https://ssrn.com/abstract=495103.

Lwin, K., Qu, R. and Kendall, G. (2014) A learning-guided multi-objective
evolutionary algorithm for constrained portfolio optimization. Applied
Soft Computing, 24:757–772. 10.1016/j. asoc.2014.08.026.

Mansini, R., Ogryczak, W. and Speranza, M. G. (2014) Twenty years
of linear programming based portfolio optimization. European Journal of
Operational Research, 234(2):518–535, 2014. 10.1016/j.ejor.2013.08.035.
http://www.sciencedirect.com/science/article/pii /S0377221713007194.

Mansini, R., Ogryczak, W. and Speranza, M. G. (2015) Linear and
Mixed Integer Programming for Portfolio Optimization. EURO Advanced
Tutorials on Operational Research. Chapter ”Portfolio optimization with
other real features”, 63–72. Springer International Publishing.

Markowitz, H. (1952) Portfolio selection. Journal of Finance, 7(1):77–91.
10.2307/2975974.

Markowitz, H.M. (1959) Portfolio Selection: Efficient Diversification of In-
vestments. Yale University Press.

Mashayekhi, Z. and Omrani, H. (2016) An integrated multi-objective
Markowitz-DEA cross-efficiency model with fuzzy returns for portfolio se-
lection problem. Applied Soft Computing, 38:1–9.
http://www.sciencedirect. com/science/article/pii/S1568494615005906.

Merton, R. (1972) An analytic derivation of the efficient portfolio frontier.
Journal of Financial and Quantitative Analysis 7, 1851–1872.

OR-Library (2018) http://people.brunel.ac.uk/ mastjjb/jeb/info.html, last ac-
cessed: August 2018.

Podkopaev, D. (2007) An approach to finding trade-off solutions by a linear
transformation of objective functions. Control and Cybernetics 36, 347–
356.

Podkopaev, D. (2008) Representing partial information on preferences with
the help of linear transformation of objective space. In: T. Trzaskalik,
ed., Multiple Criteria Decision Making ’07. Karol Adamiecki University
of Economics Press, 175–194.

Pogue, G. A. (1970) An extension of the Markowitz portfolio selection model
to include variable transactions’ costs, short sales, leverage policies and
taxes. The Journal of Finance, 25(5):1005–1027. http://www.jstor.org
/stable/2325576.

Salehpoor, I. B. and Molla-Alizadeh-Zavardehi, S. (2019) A con-
strained portfolio selection model at considering risk-adjusted measure by
using hybrid meta-heuristic algorithms. Applied Soft Computing, 75:233–
253. 10.1016/j.asoc.2018.11.011. http://www.sciencedirect.com/science
/article/pii/S1568494618306434.



A condition for asset redundancy in the mean-variance model of portfolio investment 191

Steuer, R. E., Hirschberger, M. and Deb, K. (2016) Extracting from the
relaxed for large-scale semi-continuous variable nondominated frontiers.
Journal of Global Optimization, 64(1):33–48. doi: 10.1007/s10898-015-
0305-4.

Tobin, J. (1958) Liquidity preference as behavior towards risk. Review of Eco-
nomic Studies, 25(2):65–86. https://EconPapers.repec.org/RePEc:oup:
restud:v:25:y:1958:i:2:p:65-86.

Utz, S., Wimmer, M., Hirschberger, M. and Steuer, R. E. (2014) Tri-
criterion inverse portfolio optimization with application to socially respon-
sible mutual funds. European Journal of Operational Research, 234(2):
491–498. doi: 10.1016/j.ejor.2013.07.024. http://www.sciencedirect.com
/science/article/pii/S037722171300605X.

Utz, S., Wimmer, M. and Steuer, R. E. (2015) Tri-criterion modeling for
constructing more-sustainable mutual funds. European Journal of Opera-
tional Research, 246(1):331–338. https://epub.uni-regensburg.de/31634/.

Yoshimoto, A. (1996) The mean-variance approach to portfolio optimization
subject to transaction costs. Journal of the Operations Research Society
of Japan, 39(1):99–117. doi: 10.15807/jorsj.39.99.

Zhang, Y., Li, X. and Guo, S. (2018) Portfolio selection problems with
Markowitz’s mean–variance framework: A review of literature. Fuzzy Op-
timization and Decision Making, 17(2):125–158, Jun 2018. 10.1007/s10700-
017-9266-z.


	Introduction and problem formulation
	Conditions for asset redundancy
	The sufficient condition
	The relaxed condition for asset redundancy

	Numerical experiments
	Conclusion

