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1. Introduction

Having a good mathematical model is very important now in technological do-
main. Practical applications resulted in much greater importance of the discrete-
time models. Models using the fractional-order derivatives or differences are
much more accurate (see Wei et al., 2016). These models, initially used for
modeling of dynamic systems with so called “memory”, currently are applied
in modelling of various types of systems. One important class of dynamical
systems is characterized by only positive signals. Thus, a dynamical system is
called positive if its trajectory, starting from any nonnegative initial state, re-
mains forever in the positive orthant for all nonnegative inputs. An overview of
state of the art in positive systems theory is given in the monographs of Farina
and Rinaldi (2000) and Kaczorek (2002). A variety of models, having positive
behavior can be found in engineering, economics, social sciences, biology and
medicine, etc. Analysis of positive and fractional electrical circuits has been ad-
dressed in Aracena, Demongeot and Goles (2004), Kaczorek (2011a,c; 2013a),
Kaczorek and Rogowski (2015), Richard (2009). Decoupling zeros of positive
electrical circuits have been introduced in Kaczorek (2013b). Fractional linear
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systems and electrical circuits have been investigated in Kaczorek (2008, 2010,
2011b,c), and singular fractional systems and electrical circuits in Kaczorek
(2011d). Robust stability of fractional positive discrete-time linear systems has
been analyzed in Buslowicz (2010).

In the fractional-order discrete-time mathematical system description, we
can use two models: with and without a discrete-time shift in the fractional-
order difference (Kaczorek and Ostalczyk, 2016). In this paper, the novelty
consists in the fact that positivity and asymptotic stability conditions of the
fractional discrete-time linear systems, described by the two mentioned mod-
els are investigated. Necessary and sufficient conditions for the positivity and
asymptotic stability of the systems are established. New tests for checking of
the stability are proposed.

The paper is organized as follows. In Section 2 the positivity of the frac-
tional systems is analyzed. The asymptotic stability of the systems is addressed
in Section 3. The theoretical results are supported by numerical examples. Con-
cluding remarks are given in Section 4.

The following notation will be used: R - the set of real numbers, Rn×m - the
set of real matrices n × m, R

n×m
+ - the set of real matrices with nonnegative

entries, Z+ - the set of nonnegative integers, Mn- the set of n × n Metzler
matrices (with nonnegative off-diagonal entries), In - the n×n identity matrix.

2. Positivity of the fractional models

In this paper the following Grünwald-Letnikov fractional-order difference of
x(k), see Ostalczyk (2008)

∆αx(k) =

k
∑

i=0

ci(α)x(k − i) , k ∈ Z = {0, 1, . . .} , (1)

where

ci(α) =







0 for i < 0 ,
1 for i = 0 ,

(−1)i α(α−1)...(α−i+1)
i! for i > 0 ,

is used. Consider the fractional discrete-time linear system

∆αx(k) = Ax(k) + Bu(k), k ∈ Z+ = {0, 1, . . .}, 0 < α ≤ 1, (2a)

y(k) = Cx(k) + Du(k), (2b)

where x(k) ∈ R
n, u(k) ∈ R

m, y(k) ∈ R
p are the state, input and output vectors,

respectively, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m. One should mention
that the above model differs from the commonly analyzed model with a discrete-
time shift (see Kaczorek, 2011c, or Stanislawski, 2013).
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∆αx(k + 1) = Ax(k) + Bu(k) , k ∈ Z+ = {0, 1, . . .} , 0 < α ≤ 1 , (3a)

y(k) = Cx(k) + Du(k) . (3b)

Theorem 1 The solution of the equation (3a) for given initial condition x−j,
j = 1, 2, . . . and input u(k), k = 0, 1, . . . has the form

x(k) = −

∞
∑

j=1

k
∑

i=0

ck+j−1(α)Φ(i)x−j +

k
∑

i=0

Φ(i)Bu(k− i) , k = 1, 2, . . . , (4)

where

Φ(k) =







[In −A]
−1

for k = 0 ,

[In −A]
−1

k
∑

j=1

cj(α)Φ(k − j) for k = 1, 2, . . .
(5)

Proof. The proof is given in Ostalczyk (2008).

From (1) and (2a) it follows that x(0) = Ax(0) + Bu(0) and

x(0) = [In −A]−1
Bu(0) = Φ(0)Bu(0) (6)

since c0(α) = 1. Therefore, x(0) and u(0) are related by (6). In a particular
case, for x−j = 0, j = 2, 3, . . . from (4), after shifting i by one, we obtain the
solution of (3a) for given x(0) and u(k) in the form

x(k) = Φ(k)x(0) +

k
∑

i=1

Φ(k − i) [In −A]
−1

Bu(i) , (7)

where

Φ(k) = [In −A]
−1

k
∑

j=1

cj(α)Φ(k − j) , Φ(0) = In . (8)

Lemma 1 The matrix

Φ(0) = [In −A]
−1

∈ R
n×n
+ (9)

if and only if the matrix A ∈ R
n×n
+ of the positive system

x(k + 1) = Ax(k) (10)

is asymptotically stable.
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Proof. It is well-known, see Kaczorek (2002), that the discrete-time linear
system (10) is positive if and only if the matrix A ∈ R

n×n
+ . The positive system

(10) is asymptotically stable if and only if the continuous-time linear system

ẋ = (A− In)x (11)

is asymptotically stable. If the continuous-time system (11) is asymptotically
stable then the condition (9) is satisfied, see Kaczorek (2002).

Example 1 It is easy to check that the discrete-time system (10) with the ma-
trix

A =

[

0.4 0.1
0.2 0.3

]

∈ R
2×2
+ (12)

is asymptotically stable and positive. The characteristic polynomial of (12) has
the form

det [I2z −A] =

∣

∣

∣

∣

z − 0.4 −0.1
−0.2 z − 0.3

∣

∣

∣

∣

= z2 − 0.7z + 0.1 (13)

and its zeros are z1 = 0.2, z2 = 0.5. The corresponding continuous-time system
(11)

A− I2 =

[

−0.6 0.1
0.2 0.7

]

∈ M2 (14)

is also asymptotically stable since the characteristic polynomial

det [I2s−A + I2] =

[

s + 0.6 −0.1
−0.2 s + 0.7

]

= s2 + 1.3s + 0.4 (15)

has positive coefficients and its zeros are s1 = −0.8, s2 = −0.5. In this case we
have

Φ(0) =

[

0.6 −0.1
−0.2 0.7

]

−1

=
1

0.4

[

0.7 0.1
0.2 0.6

]

∈ R
2×2
+ . (16)

Definition 1 The fractional system (3) is called (internally) positive if x(k) ∈
R

n
+ and y(k) ∈ R

p
+, k ∈ Z+ for any initial conditions x−j ∈ R

n
+, j = 1, 2, . . .

and all inputs u(k) ∈ R
m
+ , k ∈ Z+.

Theorem 2 The fractional system (3) is positive if and only if

A ∈ R
n×n
+ is asymptotically stable and B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

(17)
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Proof. Sufficiency. By Lemma 1 Φ(0) ∈ R
n×n
+ if A ∈ R

n×n
+ is asymptotically

stable. From (2) it follows that for 0 < α ≤ 1 we have cαi < 0 for i = 1, 2, . . ..
Therefore, for x−j ∈ R

n
+, j = 1, 2, . . . we have

−

∞
∑

j=1

k
∑

i=0

ck+j−1(α)Φ(i)x−j ∈ R
n
+ for k = 1, 2, . . . (18)

and x(k) ∈ R
n
+, k = 1, 2, . . ., since by (5) Φ(0) ∈ R

n
+, B ∈ R

n×m and u(i) ∈ R
m
+

for i ∈ Z+.
Necessity. From (6) for u(0) = 0 we have x(0) = 0. Assuming zero initial condi-
tions x−j = 0, j = 1, 2, . . ., u(1) ∈ R

m
+ from (4) we obtain x(1) = Φ(0)Bu(1) ∈

R
n
+ only if Φ(0) ∈ R

n×n
+ since Bu(1) can be arbitrary. Therefore, A ∈ R

n×n
+

should be, by Lemma 1, asymptotically stable. If u(1) = 0 then from (3b) we
have y(1) = Cx(1) and C ∈ R

p×n
+ since x(1) ∈ R

n
+ can be arbitrary. Similarly,

if x(1) = 0 then y(1) = Du(1) ∈ R
p
+ and D ∈ R

p×m
+ since u(1) ∈ R

m
+ can be

arbitrary.

Remark 1 1. It is well known (see Kaczorek, 2011c) that if the fractional
discrete-time linear system is described by the equation (3a) instead of (2a)
then it is positive if and only if

A ∈ R
n×n
+ , B ∈ R

n×m
+ . (19)

From the comparison of models we conclude that the necessary and sufficient
conditions for the positivity of the model (2) are stronger, i.e. the matrix
A ∈ R

n×n
+ should be asymptotically stable.

Example 2 Consider the models described by the equations (2) and (3) with
the matrices

A =

[

1 2
0.5 2

]

, B =

[

1
1

]

. (20)

The model (3a) with (20) is positive since the condition (19) is satisfied. The
matrix A, defined by (20), has positive entries, but it is not asymptotically stable,
since the characteristic polynomial

det [I2s−A + I2] =

∣

∣

∣

∣

s −2
−0.5 s− 1

∣

∣

∣

∣

= s2 − s− 1 (21)

has negative coefficients. In this case we have

Φ(0) = [I2 −A]
−1

=

[

0 −2
−0.5 −1

]

−1

=

[

1 −2
−0.5 0

]

(22)

and the condition (9) is not satisfied. Therefore, the model (3a) with (21) is not
positive.
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3. Stability of the fractional positive systems

Consider the system (3a) for u(k) = 0, k ∈ Z+, i.e.

∆αx(k + 1) = Ax(k) , (23)

which, using (1), can be rewritten in the form

x(k) =

k
∑

i=1

Ax(k − i) , (24)

where

A = − [In −A]
−1

ci(α) . (25)

The solution of (24)-(25) for given initial condition x(0) ∈ R
n
+ has the form

x(k) = Φ(k)x(0) , (26)

where

Φ(k) = − [In −A]
−1

k
∑

i=1

ci(α)Φ(k − i), Φ(0) = In . (27)

Definition 2 The positive system (23) is called asymptotically stable if

lim
k→∞

x(k) = 0 for all x(0) ∈ R
n
+ . (28)

Lemma 2 The positive system (23) is asymptotically stable if

lim
k→∞

(

[In −A]
−1

)k

= 0 . (29)

Proof. Note that (27) can be rewritten in the form

Φ(k) =A−1
k

{

In +
α− 1

2!
[In −A] + · · · +

(α− 1) . . . (α− k + 1)

k!
[In −A]

k−1

}

for k = 1, 2, . . . ,

(30)

and where A−1
k =

(

− [In −A]−1
)k

. The positive system (3.1) is asymptotically

stable if, by Definition 2, lim
k→∞

Φ(k) = 0 and this condition is satisfied if (29)

holds.

Theorem 3 The fractional positive system (23) is asymptotically stable if
∣

∣

∣

∣

α

1 − λmax

∣

∣

∣

∣

< 1 , (31)

where λmax is the maximal eigenvalue of the matrix A.
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Proof. It is well known (see Gantmacher, 1959) that if λmax, k = 1, . . . , n are

the eigenvalues of the matrix A, then the eigenvalues of the matrix [In −A]
−1

α

are (1 − λk)−1
α for k = 1, . . . , n . The positive system (23) is asymptotically

stable if, by Definition 2, lim
k→∞

Φ(k) = 0 and from (29) it follows that this

condition is satisfied if (31) holds.
If the eigenvalues of the matrix are real, then from (31) we have the condition

α− 1 < λmax < 1 − α . (32)

Example 3 (Continuation of Example 1) Consider the positive system with the
matrix (12). The condition (32) for α = 0.5 is not satisfied. It is satisfied for
α = 0.4, since λmax = 0.5 < 0.6. Therefore, the positive fractional system with
the matrix (12) and α = 0.4 is asymptotically stable.

By Definition 2 and (26) the positive system (23) is asymptotically stable if
and only if

lim
k→∞

Φ(k) = lim
k→∞

[In −A]
−1

k
∑

j=1

cj(α)Φ(k − j) = 0 . (33)

Therefore, from (33) we have

1 −
1

1 − λi(A)

∞
∑

j=1

cj(α)z−j = 0 (34)

and

1 − λi(A) −
∞
∑

j=1

cj(α)z−j = 0 , (35)

where λi(A), i = 1, . . . , n are the eigenvalues of the matrix A. It is well known
(see Kaczorek, 2011c) that

(z − 1)α = zα −

∞
∑

j=1

cj(α)zα−j = 0 . (36)

Upon multiplying (36) by z−α we obtain

∞
∑

j=1

cj(α)z−j = 1 − (z − 1)αz−α . (37)

Substitution of (37) into (35) yields

λi(A) = (z − 1)αz−α . (38)
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Figure 1. Stability regions for different fractional orders

From (38) for η = λi(A) and z = ejω , ω ∈ [0, 2π] we have

η(ω) =
(

ejω − 1
)α (

ejω
)−α

for ω ∈ [0, 2π] . (39)

Note that the closed curve (39) divides the complex η–plane into two regions.
Let S(α) be the bounded region inside the closed curve.

Therefore, the following theorem has been proved.

Theorem 4 The positive fractional system (23) is asymptotically stable if and
only if the condition

eta ∈ S(α) (40)

is satisfied.

Using (39) the regions for different values of α can be computed.

Example 4 (Continuation of Example 3) It was shown in Example 3 that the
positive system with the matrix (12) and α = 0.4 is asymptotically stable. From
Fig. 1 it follows also that the condition (40) is satisfied and the system is
asymptotically stable.

Using (26)- (27) we can compute the solution of the system. From Fig. 2
it follows that the system is asymptotically stable. Analogous stability regions
evaluated for model (3a) can be found in Stanislawski (2013).
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Figure 2. State vector of the positive system with the matrix (12)

4. Concluding remarks

The positivity and stability of the fractional discrete-time linear systems, de-
scribed by the new model have been addressed. Necessary and sufficient con-
ditions for the positivity of the systems have been established (Theorem 2).
Sufficient conditions (Theorem 3) and necessary and sufficient conditions for
stability (Theorem 4) have been also proposed. The respective considerations
have been illustrated by numerical examples. The respective considerations can
be easily extended to descriptor fractional positive discrete-time linear systems.
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