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Abstract: We investigate clustering of 2D contours which rep-
resent cross-sections of rotationally symmetric objects.We propose
modi�cations of the existing representations of digitized 2D contours
and similarity measures. In particular, we represent each of the in-
vestigated objects as a single number and two functions and we use
the DTW distance to measure their similarity. We apply our method
to clustering of pottery fragments.
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1. Introduction

The paper concerns clustering analysis of 2D contours. Thistopic has been
investigated in, e.g., Cao (2003); Forsyth, Mundy, di Gesu and Cipolla (1999);
Bandyopadhyay, Saha (2013) and Kªopotek and Wierzcho« (2015). To perform
a complete cluster analysis of a given set of shapes (2D contours) one should
choose appropriate tools and methods for each of the three main steps: (i ) shape
representation,(ii ) similarity (dissimilarity) measure, (iii ) clustering algorithm,
see, e.g., Kªopotek and Wierzcho« (2015). The choice made ateach of these
steps in�uences in an essential manner the results of the clustering.

In this paper we concentrate mainly on the �rst two steps, i.e. on shape
representation and on similarity measures, related to 2D contours. There ex-
ist a lot of methods of representing 2D contours and de�ning their similarity
(dissimilarity).

The choice of the appropriate methods for(i ) and (ii ) depends heavily on
the application to which they refer e.g. script recognition, see Ghosh, Dube
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and Shivaprasad (2010); Masood and Safraz (2009); Yadav andYadav (2015),
analysis of stock market trends, see Parracho, NEVES and Horta (2010), protein
shape matching, see Binkowski and Joachimiak (2008), or speech recognition,
see Bridle (1980).

In the investigated application, the 2D contours are boundaries of cross-
sections of rotationally symmetric objects, i.e. a specialclass of 2D curves.
A particular feature of the considered sets of the curves is that they are to be
grouped with respect to subtle di�erences between them. Hence, both the shape
representation and the similarity measure should recognize such di�erences be-
tween the curves.

1.1. The aim

The aim of this paper is to investigate the representations and similarity mea-
sures for 2D curves, which are the boundaries of cross-sections of rotationally
symmetric objects (objects of revolution). Our approach isbased on the analysis
and the modi�cation of the existing schemes, given in Gilboa, Karasik, Sharon
and Smilansky (2004) and Karasik and Smilansky (2001, 2008).

The proposed modi�cations focus on e�cient representations of the curves,
and on similarity measures, which improve the clustering results. In the present
work we do not focus on clustering method, we merely apply hierarchical clus-
tering method as available in standard packages.

Since for such curves there are no benchmark data, in order toprovide
trustworthy comparisons we apply the proposed methodological modi�cations to
data coming from the same domain as in Gilboa, Karasik, Sharon and Smilansky
(2004), Karasik and Smilansky (2001, 2008), that is - archaeological pottery.

1.2. Shape representations and similarity measures

Shape representation (shape description) methods can be divided into three
main categories: contour based, silhouette based and skeleton based, see Arica
and Yarman-Vural (2003). Among the most frequently used shape representa-
tion methods let us mention the following:

1. Aligning curve (Sebastian, Klein and Kimia, 2003),
2. K-curvature (Arica and Yarman-Vural, 2003),
3. Shape context (Belongie and Malik, 2002, 2000),
4. Bézier curves (Masood and Safraz, 2009; Sarfaz, Masood and Asim, 2004;

Pal, Ganguly and Biswas, 2007; Masood and Sarfraz, 2008; Sarfaz and
Masood, 2007),

5. Skeletal representation (Kimmel, Shaked, Kiryati and Bruckstein, 1995),
6. Fourier descriptors (Rui, She and Huang, 1996; Zhang and Lu, 2002),
7. Representative functions (Karasik and Smilansky, 2001;Sragusti, Karasik,

Sharon and Smilansky, 2005; Karasik and Smilansky, 2008).

Evaluations and comparisons of di�erent shape descriptorsare given in, e.g.,
Amanatiadis, Kaburlasos, Gasteratos and Papadatis (2011), García-Ordás, Ale-
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gre, García-Olalla and García-Ordás (2013). In the presentpaper, the shapes
are represented with the use of representative functions.

In the literature, a number of similarity measures for curves are used. Usu-
ally, the following measures are used as distances between curves:

1. Hausdor� distance (Aronov, Har-Peled, Knauer, Wang and Wenk, 2006),
2. Fréchet distance (Aronov, Har-Peled, Knauer, Wang and Wenk, 2006;

Wylie, 2013; Wylie and Zhu, 2016),
3. Euclidean distance (Kªopotek and Wierzcho«, 2015).

Other classical similarity measures are discussed in Kªopotek and Wierzcho«
(2015). We are using a similarity measure based on the Euclidean distance.

1.3. The organization of the paper

The organization of the paper is as follows. In Section 2 we describe the class
of investigated 2D curves.

In Section 3 we discuss the analytical and discrete representations of 2D
curves. Then, in Section 4 we describe the adopted similarity measures. In
Section 5 we present the representative functions method. In Section 6 we
describe the archaeological objects, on which we test our method. In Section 7
we present the results of the numerical experiments and the discussion. Section
8 concludes the paper.

2. The class of investigated objects

Formally, our aim is to classify 2D regular open curves� � R2 .
Each curve is a function � : [t0; t1] ! R2 represented as

� (t) := ( x(t); y(t)) t 2 [t0; t1];

where x : [t0; t1] ! R, and y : [t0; t1] ! R are twice di�erentiable real-valued
functions. The curve is called regular when its derivative is nonzero at each
point, i.e. � 0(t) := ( x0(t); y0(t)) 6= (0 ; 0) for each t 2 [t0; t1].

In the present paper we take advantage of the fact that our curves come
from technical drawings, that is, the drawings, which are all made according to
a �xed set of strict rules and are drawn so as to visually communicate how the
objects are constructed.

In consequence, the curves (data) are given in a standardized form, i.e. they
are not prone to randomness as to their location within the coordinate system
OXY .

First of all, these curves are outlines of cross-sections ofobjects of revolution,
with the axis OY �xed as the rotation axis. Each curve is located in the �rst
quadrant of the plane in the way visualized in Fig. 4. For technical reasons
each cross-section is put in the �rst quadrant upside down. In consequence,
its uppermost points become the lowermost, and are forced tolay on the axis
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OX . The point (xr ; 0) with the smallest value of x-coordinate corresponding to
y-coordinate y = 0 de�nes the the radius r of the rotating object of revolution,

r := xr (1)

the object being the result of the rotation of the curve around the axis OY.
The technical drawings, from which the curves are generated, represent the

objects in the same scale. This ensures that the informationabout the propor-
tions between the objects (and consequently, the curves) ismaintained. More-
over, we assume that a large number of investigated objects are represented only
partially, i.e. a given curve may not represent the entire object, but only a part
of it. However, we assume that the uppermost part of the contour is known, i.e.
we are able to �nd the radius xr .

We want to perform a clustering, i.e. an unsupervised classi�cation of sets of
curves described above, with respect to their size, global shape and local shape.
Since, as mentioned before, the curves represent the same class of objects (cross-
sections of rotational 3D objects), we are looking for subtle di�erences within
the investigated set. This is in contrast to many other problems, considered in
literature, where the objects di�er signi�cantly, e.g. rep resent animals and/or
geometric �gures. The subtle di�erences are of great importance to us, as a
relatively small change in the curve might have important implications for the
shape of the object of revolution represented by it. A similar problem has been
considered in Chapter 4 of Ramsay and Silverman (2002).

It is worth mentioning that papers concerning a complete process of cluster-
ing analysis of this kind of objects are rather seldom, see, e.g., Cao and Mum-
ford (2002); Mumford (1991); Sharon and Mumford (2006), andthe references
therein.

3. Representations of 2D curves

There exist numerous ways of analysing 2D shapes and curves,see, e.g., Sharon
and Mumford (2006); Zhang and Lu (2003, 2004), and the references therein.

The boundary of each silhouette, i.e. a 2D object, is represented as a curve
� (t) = ( x(t); y(t)) , t 2 [t1; t2]. For the derivative vector � 0 we have � 0(t) =
(x0(t); y0(t)) .

3.1. Analytical representation of 2D curves

Each curve can be parameterized by the arc lengths, de�ned as

s(t) =
Z t

t 0

j� 0(u)jdu: (2)

With this parameterization, the curve can be written down as

� (s) = ( x(s); y(s)) s 2 [s0; s1]: (3)
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Let us note that the value jx(s)j equals the Euclidean distance of(x(s); y(s)) to
the rotation axis 0Y. Since the curves we are investigating are located in the
�rst quadrant, we have

jx(s)j = x(s): (4)

Let � (s) be the angle, which � 0(s) forms with the positive x-axis, measured
anti-clockwise from the positive x-axis to � 0(s). The function tangent � (s) is
then de�ned in the following way

� (s) := arctan
�

y0(s)
x0(s)

�
: (5)

Now, note that the matrix J =
�
0 � 1
1 0

�
acts on R2 by rotating vectors anti-

clockwise by the angle of�= 2 .
The curvature function � is de�ned as follows

� (s) := � 00(s)J (� 0(s)) : (6)

We have the following relationship between the tangent and curvature functions

� (s) = � 0(s): (7)

The following fundamental theorem holds.

Theorem 1 (Do Carmo, 1976) Suppose we are given two vectorsa; b 2 R2,
b 6= 0 and a continuous function � : [t0; t1] ! R . Then there exists a unique
curve � : [t0; t1] ! R2 parameterized by arc length with curvature function� ,
initial position � (t0) = a and initial direction � 0(t0) = b.

Theorem 1 shows the importance of the curvature function in identifying the
curve. By Theorem 1, two vectorsa, and b, and the curvature function � su�ce
to describe uniquely a given curve� . The role of the �rst and the second
derivatives � (s) and � (s), respectively, in functional data analysis has been
extensively discussed in Chapters 18 and 19 of Ramsay and Silverman (2002).

On the other hand, from the computational point of view, the formulas (5)
and (7) may not perform well and may be sensitive to perturbations due to
numerical di�erentiation errors and noise, see Kovalevsky(2001); Liu, Latecki,
and Liu (2008).

Taking into account these observations, in order to minimize the impact
of the imprecisions mentioned, when considering the problem of clustering of
our class of 2D curves (Section 2), we use the following two representations of
investigated curves:
R1: arc-length x(s) given by (4), the tangent � (s) from (5), and the curvature

� (s) from (7);
R2: the radius r given by (1), the tangent � (s) from (5), and the curvature � (s)

from (7).
Some illustrations for the representation of curves using� (s) and � (s) are

provided in Figs 1 through 3.
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Figure 1: Pro�les featuring the same shape but di�erent radius

Figure 2: Pro�les featuring the same local shape but their global shapes are
di�erent

3.2. Discrete representation of the 2D curves

In practice, the hand-made technical drawings are digitized, the contours (bound-
aries) are extracted and smoothed with the help of standard MatLab boundary
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Figure 3: Pro�les featuring di�erent global shapes

extraction techniques. In further analysis, we consider discrete curves, i.e. a
given curve � is a pair of vectors,

� := (�x; �y) = ( x(i ); y(i )) ; i = 1 ; :::; k� :

These discrete curves are parameterized by the arc length function s, where
s = 0 is the starting point, which is chosen so as to correspond to the lowermost
point of the curve with the smallest value of x-coordinate, i.e. x(0) = xr = r is
the radius of the object (see Fig. 4).

The arc length function s, de�ned in (2), is calculated with the help of
numerical di�erentiation and numerical integration proce dures.

We consider three functions, which represent the shapes of the discrete curves
in R2. The tangent � (s) and the curvature � (s) functions are de�ned in Subsec-
tion 3.1, and are calculated numerically for discrete curves. Apart from these
two functions, we also use thex(s) function, which is the distance of the point
s from the Y axis. This function is used in order to preserve the information
about the radius of the object.

According to Theorem 1, in order to describe uniquely a curvewe need only
the curvature function, but the numerical calculation of th e curvature function
of discrete curves may not be precise (Kovalevsky, 2001), due to the loss of
information during the digitization of the image and involv ement of the sec-
ond derivative. In order to minimize the impact of these imprecisions in the
description of the shape we also use the tangent function.

From the formal point of view, the following representations of our curves



92 A. Kaliszewska and M. Syga

can be taken into account in the clustering analysis:
1. R1d - full description of the curve consisting of three vectors: x(s), � (s),

� (s)
2. R2d - description of the curve consisting of two vectors:� (s), � (s) and a

single numberxr , representing the radius of rotation (see Fig. 1)
The discrete representation R1d has been already considered in Gilboa,

Karasik, Sharon and Smilansky (2004), Karasik and Smilansky (2001, 2008).
Representation R2d is new and will be analysed in Section 7. According to
Theorem 1 the following representation R3d is also conceivable:

3. R3d - description of the curve consisting of a single vector � (s) and: xr ,
representing the radius, and� (r ), representing the initial tangent vector.

Preliminary tests on exploiting R3 are discouraging. The reason is that � (r ),
together with xr and the curvature function � (s) su�ce to uniquely describe a
curve, but they do not su�ce to properly compare two curves to each other.

Figure 4: The transformation of a section of a rotationally symetric object into
a 2D input data curve

4. Similarity measures

Now we discuss some measures of similarities and dissimilarities between curves.
To achieve this, we de�ne the "distance" between curves using the functions
� (s), � (s), and the function x(s) or radius xr . We calculate this distance in two
di�erent ways.

4.1. Euclidean similarity

In this section, in order to establish the distance between curves we use a stan-
dard de�nition of distance between the functions. Let f; g be two arbitrary
functions, then

d(f; g ) =

s
1
L

Z Smax

Smin

(f (s) � g(s))2ds: (8)
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The functions, which will be compared using the formula (8),are usually de�ned
on di�erent intervals on the s axis, so the interval [Smin ; Smax ] is taken as the
shorter of the domains of functions f , g, and L is the length of the interval
[Smin ; Smax ].

It is clear that since we work with discrete curves, the numbers d(�; �) are
calculated in the discrete way, i.e. by using the �nite sum. The distance between
functions vanishes if and only if they are identical.

In order to establish the comparison between curvesi and j without bias,
we introduce a normalization factor: the averages of respective functions over
the set of curves considered, with the set comprisingM curves:

hxi =
1

M

MX

i =1

s
1
L i

Z S i
max

S i
min

(x i (s))2ds

h� i =
1

M

MX

i =1

s
1
L i

Z S i
max

S i
min

(� i (s))2ds

h� i =
1

M

MX

i =1

s
1
L i

Z S i
max

S i
min

(� i (s))2ds;

where L i is the length of the interval [Si
min ; Si

max ], for i = 1 ; :::; M .
Now we de�ne the distance between the curvesi and j as the sum weighted

of normalized distances of the three functions:

d(i; j ) =
! x

hxi
d(x i ; x j ) +

! �

h� i
d(� i ; � j ) +

! �

h� i
d(� i ; � j ); (9)

where ! x + ! � + ! � = 1 . By choosing di�erent values of weights! x , ! � , ! � one
can decide which features of the curves are the most important. For example,
the following choice of the weights: ! x = 1

2 , ! � = 1
4 and ! � = 1

4 indicates that
in the resulting clustering the radii of the objects are moreimportant than their
shapes.

4.2. Dynamic Time Warping (DTW)

In the present section we describe the similarity measure based on the dynamic
time warping technique (DTW). In our Schemes, provided later on in this sec-
tion, we use this technique to measure similarity between functions � (s) and
� (s), the values of which are sampled at equidistant points ofs.

In view of this, the compared functions X and Y are represented by the
sequencesX := ( x1; x2; :::; xN ) of length N 2 N and Y := ( y1; y2; :::; yM ) of
length M 2 N, respectively, i.e.,X 2 RN , Y 2 RM .

In the following, by F we denote the feature space, i.e.,xn ; ym 2 F for
n 2 [1;N ], m 2 [1;M ]. To compare two di�erent elements x; y 2 F , one needs



94 A. Kaliszewska and M. Syga

a local cost measure, sometimes also referred to as the localdistance measure,
which is de�ned to be a function

c : F � F ! R+ : (10)

Evaluating the local cost measure for each pair of elements of the sequences
X and Y, one obtains the cost matrix C 2 RN � M , de�ned by C(n; m) :=
c(xn ; ym ).

An (N; M )-warping path p = ( p1; :::; pL ) is de�ned by an alignment between
two sequences:X = ( x1; x2; :::; xN ) and Y = ( y1; y2; :::; yM ), this alignment
being obtained by assigning the elementxn l of X to the element ym l of Y . The
total cost cp(X; Y ) of a warping path p between X and Y with respect to the
local cost measurec is de�ned as

cp(X; Y ) :=
LX

` =1

c(xn l ; ym l ): (11)

The next de�nition formalizes the notion of a warping path.

Definition 1 An (N,M)-warping path (simply referred to as warping path if
N and M are clear from the context) is a sequencep = ( p1; :::; pL ) with p` =
(n` ; m` ) 2 [1 : N ] � [1 : M ] for ` 2 [1 : L ] satisfying the following three
conditions:

(i) Boundary condition: p1 = (1 ; 1) and pL = ( N; M ).
(ii) Monotonicity condition: n1 � n2 � ::: � nL and m1 � m2 � ::: � mL :

(iii) Step size condition: p` +1 � p` 2 f (1; 0); (0; 1); (1; 1)g for ` 2 [1 : L � 1]:

An optimal warping path between X and Y is a warping path p� having min-
imal total cost among all possible warping paths. The DTW distance dtw(X; Y )
betweenX and Y is then de�ned as the total cost of p� :

DT W (X; Y ) := cp� (X; Y ) = min f cp(X; Y ) j p is an (N; M )-warping pathg

(12)

In our approach, we calculate DTW distance between the tangent functions
� (s), and the curvature functions � (s) of a pair of curves. LetM be the number
of curves in the considered set. We de�ne the weighteddDT W sum distance as
follows. For any curve i and j we put:

dDT W (i; j ) =
! x

hhxii
jx i

r � x j
r j +

! �

hh� ii
DT W (� i ; � j ) +

! �

hh� ii
DT W (� i ; � j ); (13)

where hhxii , hh! ii , hh� ii are normalized factors de�ned as follows

hhxii = 1
M

MP

i =1
x i

r ;

hh
 ii = 1
M

MP

i =1
DT W (� i ; 0);

hh� ii = 1
M

MP

i =1
DT W (� i ; 0);
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with ! x + ! � + ! � = 1 .
The DTW distance is akin to Fréchet distance, see Aronov, Har-Peled,

Knauer, Wang and Wenk (2006); Müller (2007).

4.3. Similarity matrix

By using formula (9) or formula (13), for each pair of curvesi; j we calculate
the number d(i; j ) or dDT W (i; j ). These numbers form two similarity matrices
D and DDT W , with entries d(i; j ) and dDT W (i; j ), respectively .

5. The representative functions method

5.1. The fundamental scheme

The literature provides a number of methods based on representative functions
(see Gilboa, Karasik, Sharon and Smilansky, 2004; Karasik and Smilansky, 2001,
2008; Sragusti, Karasik, Sharon and Smilansky, 2005).

The points on the curves are speci�ed by their distance alongthe curves
from the prede�ned reference point i.e. s-arclength, and s = 0 is set to be the
�rst lowermost point from the left (the smallest x coordinate among the points,
for which the second coordinate is 0,y=0).

To calculate d(i; j ) we must truncate the domain of s to the largest interval
in which the two (or all) functions are de�ned, and denote its end-points by
[Smin ; Smax ]. The interval [Smin ; Smax ] depends on the pair of discrete curves
which are compared.

In contrast to this, calculation of dDT W (i; j ) does not require truncation of
the domain. The corresponding scheme (Scheme DTW) will be proposed in the
next subsection.

Below, we recall the Scheme K1, proposed by Karasik and Smilansky (2001);
Sragusti, Karasik, Sharon aand Smilansky (2005).

Scheme 1 Scheme K1
[1] Using R1 calculatex(s), � (s) and � (s) according to the analytic formulas
(5), (6),
[2] Truncate the domains of x(s), � (s) and � (s) to the smallest one:

[2a] in the whole set of curves,

[2b] for any pair of functions x(s), � (s) and � (s),

[3] Calculate the distance between any two curves accordingto the formula,
(9) with given weights ! x , ! � , ! � (which express the importance of features
in clustering)
[4] Perform clustering on the basis of the similarity matrix by the standard
clustering algorithms.

The following observations, related to the steps of Scheme K1, motivate the
modi�cations, proposed in subsection 5.2 of this original scheme:
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Ad 1. It is not necessary to use all the three functionsx(s), � (s) and � (s) to
identify a given curve � .

Ad 2. Truncations of domains to the smallest one in a given setresults in a
considerable loss of information and, in consequence, leads to perturbation
in the classi�cations.

Ad 3. The discrete integral distance between functions, calculated according
to (8), seems to generate proper similarity measure only forsets of objects
with domains, which are close to each other.

5.2. The proposed scheme

In the present subsection we propose the following new procedure for cluster-
ing of 2D curves, representing cross-sections of rotationally symmetric objects.
Relative to Scheme K1 we modify the steps 1-3.

Scheme 2 Scheme DTW
[1] Calculate the radius xr and the functions � (s) and � (s) for every curve in
the set of curves according to the formulas given above as formulas (1), (5),
(6) (according to R2),
[2] For any two curves calculate the distance between the functions � (s) and
� (s) according to DTW formulas (11), (12)
[3] Calculate the similarity measure, de�ned by the DTW weighted sum for-
mula (13),
[4] Perform clustering on the basis of the similarity matrix DT W by a stan-
dard clustering algorithm with generation of the respective dendrogram.

�

6. Application - grouping of archeological pottery frag-
ments

In the present section we consider the application of the above schemes in clas-
si�cation of archaeological ceramic fragments. The objects, described by curves
as de�ned in Section 2 are cross-sections of vessels or theirfragments, uncovered
in the course of archaeological work. When dealing with archaeological ceram-
ics, cross-sections are referred to aspro�les . We consider the pottery fragments
belonging to one of the two following types:

1. rims - the top part of the vessel
2. full pro�le - a pro�le of a vessel, which is preserved from the rim to the

base.
The drawings of sections come from hand-made drawings. As these drawings

belong to the class of technical drawings, they are made according to a set of
rules and use conventions, as well as a visual language, in order to maintain
standards and convey as much information about a vessel or a fragment as
possible, without the need to supplement it with text. This, in turn, allows
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for making an automated or semi-automated comparison between the drawings.
And so the vertical line in the middle denotes the rotation axis. The great
majority of vessels have a rounded form (when formed on a potter's wheel),
which means that a section and the location of the rotation axis are su�cient
to convey the shape of the vessel. The distance between the rotation axis and
the rim denotes the radius of the vessel. It is worth mentioning that there exist
methods for automatic generation of the pro�les of pottery fragments from 3D
scans, see Cao and Mumford (2002) and the references therein.

Figure 5: The transformation of a section of a vessel into a 2Dcurve

The classi�cation of pottery, obtained through excavations, is an important
part of archaeological analysis. It is a form of organizing the material for pur-
poses of drawing conclusions concerning the investigated sets, which can be
very large at times (up to thousands of items). Such classi�cations are tradi-
tionally performed manually and are based usually on drawings of the vessels
and their fragments. These manually created classi�cations depend heavily on
the researchers' knowledge and experience and are, therefore, prone to being
bia-sed. An automatic realization of these tasks leads to more objective results
and speeds up the process. During the process of classi�cation, the vessels can
be divided into groups based on many features. In this paper,we consider as
features size, global shape and local shape.

The problem of automatic and semi-automatic classi�cation of ceramic frag-
ments has been investigated by a number of authors. In Piccoli et al. (2015) two
complementary approaches to automatic classi�cation of archaeological frag-
ments are presented: one that focuses on medial points of thefragment pro�les
and the second, focusing on visual features of the fragment surface. Maiza and
Gaildrat (2005) consider, in turn, other pro�le base automated pottery classi-
�cation approaches. Gilboa, Karasik, Sharon and Smilansky(2004) developed
a mathematical and numerical tool for morphological description, classi�cation
and analysis of archaeological fragments. Yet other approaches to classi�cation
of pottery fragments are presented in Hristov and Agre (2013), Kampel and
Sablatnig (2000), Kampel, Sablatnig and Costa (2001), Karasik and Smilansky
(2001), Makridis and Daras (2013), Sablatnig, Menard and Kropatsch (1998),
and Smilansky et al. (2010).

The starting point for our analysis is the classi�cation method, based on
representative functions, as proposed in Karasik and Smilansky (2001).
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7. Experiment

In order to test our method we have designed and conducted an experiment.
To that purpose we have chosen 35 pro�les of vessels (SET 1). The pro�les
used for the experiment come from the publication by P. Mountjoy (1999), and
represent a selection of few types of the Late Helladic vases.

The experiment was conducted according to two schemes, described above.
The results are considered as good when they coincide with the traditional
classi�cation, published in Mountjoy (1999).

7.1. Description of the tested data set

The set is composed of 35 curves, representing rims and full pro�les of varying
types (Fig. 6).

According to the traditional classi�cation (typology) pre sented in Mountjoy
(1999), they represent �ve groups of vessels:

1. Alabastra (1, 2, 3, 4, 5, 6, 7) - marked asa in dendrograms,
2. Amphoriskoi (8, 9, 10, 11, 12, 13, 14) -marked asb in dendrograms,
3. Bowls (15, 16, 17, 18, 19, 20, 21, 22) - marked asc in dendrograms,
4. Kraters (23, 24, 25, 26, 27, 28) - marked asd in dendrograms,
5. Lekytoi (29, 30, 31, 32, 33, 34, 35) - marked ase in dendrograms.
Among those fragments there are 28 full pro�les and 7 rim fragments. Figure

6 shows the collective pro�les of the the �ve groups of vessels, used in the
experiment. The alabastra (Fig. 7a) are relatively small vessels, with a square
shaped body, narrow neck and tall rim, turned outwards with a convex base.
The amphoriskoi (Fig. 7b) are close to the alabastra, being small vessels, with
a narrow neck and an outward turned rim. Contrary to alabastra, they have
a rounded body and a usually concave base with a foot. Alabastra have some
variation when it comes to the height of the vessels. The bowls (Fig. 7c) have
a varied height within the group. They are open vessels with acurved body,
a base with a foot, the rim is less turned outwards that in the alabastra and
the amphoriskoi. What distinguishes the fourth group, the kraters (Figure 7d),
from the other groups is the size, both in terms of height and rim diameter.
In terms of shape, kraters are akin to bowls, with a more elongated body.
The last group, the lekythoi (Fig. 7e), are jug-like vesselswith a tall, narrow
neck, rounded body, and a concave base with a foot. They are most akin to
amphoriskoi, and they di�er by the tall neck. The �fth �gure ( Fig. 7e) shows
the lekytoi compared to a krater, so as to show the di�erence in size between the
vessel groups. The �ve groups have been chosen as very distinctive, although
they share some characteristics, such as the shape of the rim(amphoriskoi and
lekytoi), size (alabastra and amphoriskoi), or general shape (bowls and kraters).
This choice of pro�les for the experiment will allow us to accurately show how
the method performs. The pro�les chosen for the experiment represent at least
1/3 of the full vessel pro�le. This is due to the fact that the i nclusion of very
short fragments in the classi�ed set usually leads to erroneous results, as they
provide too little information to be properly classi�ed.
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7.2. Scheme K1

This Scheme is a version of the method proposed in Karasik andSmilansky
(2001), and Gilboa, Karasik, Sharon and Smilansky (2004). The comparison
between respective functions is done pairwise. As mentioned above, pairwise
comparisons rely on establishing a common domain for each pair of pro�les sep-
arately, instead of establishing a common domain for the whole set. Intuitively,
it is clear that pairwise comparisons should be more appropriate in case the set
of classi�ed objects contains curves of varying length. Ourexperiment supports
this intuitive conviction.

We performed experiments with the following weights:
1. ! x = 1 =3, ! � = 1 =3, ! � = 1 =3
2. ! x = 1 =2, ! � = 1 =4, ! � = 1 =4
3. ! x = 1 =4, ! � = 1 =2, ! � = 1 =4
4. ! x = 1 =4, ! � = 1 =4, ! � = 1 =2:
The third choice of the weights, ! x = 1 =4, ! � = 1 =2, ! � = 1 =4, leads to

the results, which are the closest to the traditional classi�cation, as given in
Mountjoy (1999). As seen in Fig. 8, these results are far fromsatisfactory. The
group of kraters stands out from the rest of the set, being thebest classi�ed
group. Their overwhelming di�erence in size, when comparedto the other four
groups, seems to be decisive here, even though it is the function responsible for
the general shape that was given the highest weight. The group of alabastra is
reasonably well classi�ed, aside from pro�le 2. Pro�le 2 has been placed away
from its, group because of its di�erent rim (the uppermost part), which is di�er-
ent from the others in the group. This shows how a small changein the shape
can disturb the classi�cation. The change in the rim overshadows the correspon-
dence in the shape of the body of the vessel. This is due to the points on the
curve being compared with respect to their subsequent numbers, which means
that a shift in the numbers ("longer" rim) leads to the lack of correspondence
between the points when the body part is compared. The other three groups
are mixed together and the degree, to which they are grouped is unsatisfactory.
Pro�le 19 is placed outside of all the groups. This is probably due to the fact
that pro�le 19 is considerably shorter than the others. In archaeological terms,
we interpret this as pro�le 19 possibly belonging to any of the groups a, b, c or
e, but not to group d.

In order to fully investigate the representative functions method, we have
performed an experiment using the same scheme, but truncating the domain
to the smallest one in the set. As in the previous case, the group of kraters
is well pronounced. Apart from the kraters, only the bowls are fairly well
grouped together. Other groups are mixed and no clear structure of the data
is discernible. This can be attributed to the truncation pro cess, as the smallest
fragment, pro�le 19, is very short, when compared to the other fragment. The
kraters have been properly classi�ed, as their large size outweighs other aspects
of the shape, whereas the bowls have a very distinctive rim, when compared
to other groups. Because of the truncation, there was not enough data left,
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concerning the shape, to perform a satisfactory classi�cation.

7.3. Scheme DTW

In order to overcome the shortcomings of Scheme K1, discussed above, we have
decided to apply the Dynamic Time Warping (DTW) algorithm fo r calculating
distances, in order to compare the representative functions. For purposes of
improving the e�ciency of the algorithm, we decided to subst itute the arc length
function x(s) with a single number xr , as described in (1).

As in the case of Scheme K1, experiments with several weightshave been
conducted. Also in this case the best results were obtained for weights xr = 1 =4,
! � = 1 =2, ! � = 1 =4. The results are presented in Fig. 10. In this classi�ca-
tion the groups are concise and clearly delineated. This result also shows the
structure of the data, i.e. the relations between the groups. The closest resem-
blance is shown to exist between alabastra and amphoriskoi.Together, they are
akin to lekytoi, as all these vessels have a narrow opening, and a more or less
pronounced neck. These three groups di�er from bowls, whichare open shape
vessels. Similarly as previously, pro�le 19 could belong toeither of the groups,
as there is too little information about it to classify it sur ely to one distinctive
group. Such a result is acceptable, as it mimics the situations that occur in real
life. The group that shares very little similarity with the o thers are the kraters.
The method performs correctly, thanks to the use of the DTW algorithm for
the comparison of the functions. The DTW provides the necessary �exibility
in comparing the functions. This allows for the characteristic points being well
matched and favours the matching of shape features, expressed as functions,
rather than just the points with corresponding indices.

It is worth mentioning that the methods were tested on other data sets of
similar size to the one presented here. Every time the results were satisfactory.
The tables below summarize the experiments carried out. Experiments were
preformed on Set 1 (described in 7.1) and two other sets.

Table 1: Structure of sets used in experiments: number of pro�les, number of
points in the pro�le of minimal length and number of points in the pro�le of
maximal length

Number of pro�les Min length Max length
SET 1 35 276 2553
SET 2 30 3122 13 211
SET 3 32 1290 5955

8. Conclusions

In conclusion, the proposed method performs well for sets ofpro�les of vessels
coming from the �eld of archaeological research. Such method, although not
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Table 2: Percent of misclassi�ed pro�les in each scheme and set

Scheme K1 with 2b Scheme DTW
SET 1 45.7% 2.8%
SET 2 43.3% 23.3%
SET 3 9.4% 0%

Table 3: Total execution time in seconds for each scheme and set

Scheme K1 with 2b Scheme DTW
SET 1 6.261 13.435
SET 2 12.869 133.031
SET 3 11.890 130.663

conclusive, is of great assistance to archaeologists, who are dealing with large
sets of ceramic material. While it requires the knowledge ofthe scientists to
calibrate it properly, it facilitates the mundane task of po ttery classi�cation.

The future challenge is to test the method on signi�cantly larger sets. So far
we have been working only with pro�les of the whole vessel or rim fragments.
As a part of our further research we plan to investigate pro�les of fragments that
are the lower part of the vessel, i.e. the base. Another problem arises when the
investigated vessel has a handle. As far as we know, this problem has not yet
been addressed in literature. The presented problem can be also approached as
the clustering of silhouettes. Furthermore, an angle that we �nd worth further
investigation, is to look at our problem from the perspective of machine learning
methods.
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Figure 6: The investigated set of pro�les (all in the same scale)
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(a) Alabastra (b) Amphoriskoi (c) Bowls

(d) Kraters (e) Lekytoi

Figure 7: Five groups of vessels



Representative functions for clustering of 2D contours of p ottery fragments 107

Figure 8: Classi�cation result obtained using Scheme K1 with pairwise trunca-
tion of domains with weights ! x = 1 =4, ! � = 1 =2, ! � = 1 =4

Figure 9: Classi�cation result obtained using Scheme K1 with the truncation of
the domains to the smallest one in the set, with weights! x = 1 =4, ! � = 1 =2,
! � = 1 =4
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Figure 10: Classi�cation result obtained using Scheme DTW with weights ! x = 1 =4, ! � = 1 =2, ! � = 1 =4


