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Abstract: As the robotic manipulators are highly nonlinear,
it is a challenging task to design, in particular, the PUMA 560
robotic arm with acceptable performance. This paper intends to
show the design and development of an adaptive sliding mode con-
troller (SMC) for a robotic manipulator. Since it is not realistic to
match the SMC operations with the system model at every time in-
stant, this paper adopts fuzzy inference to replace the system model.
This approach successfully achieves the objectives of the experiment,
carried out in two stages. In the first stage, it acquires the precise
characteristics of the system model for the diverse samples and ade-
quately represents the robotic manipulator. Subsequently, we derive
the acquired characteristics in the form of fuzzy rules. In the second
stage, we represent the derived fuzzy rules on the basis on adap-
tive fuzzy membership functions. Further, the approach introduces
the self-adaptiveness into a recent algorithm called Grey Wolf Opti-
mization (GWO) in order to establish the adaptive fuzzy member-
ship functions. We then compare the effectiveness of the proposed
method with the identified experimental model and the known meth-
ods, like SMC, Fuzzy SMC (FSMC), and GWO-SMC. Finally, the
comparison with the known methods establishes the effectiveness of
the proposed SAGWO-FSMC technique.

Keywords: PUMA 560 robotic arm, robotic manipulator, joint
angles, fuzzy model, SAGWO

1. Introduction

In recent times, robots have been playing the fundamental role in the advance-
ment of the industrial automation. Regarding the development of effective adap-
tive controllers, it is one of the truly challenging tasks to manage the robotic
manipulators. Thus, the control engineers consider as highly complex handling
the robotic manipulators in the conditions of fast operation in response to the
disturbances from the external environment (see Lin and Lian, 2011; Rongcheng,
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Wenzhan and Sen, 2008; Lian, 2012; Vinay et al., 2016). The robotic manip-
ulator can be considered as an example of a complex system, which acquires
its complexity from the unmodelled dynamics and the properties of friction,
pliability and the impacts of cross coupling, involving also the uncertainties
and nonlinearities. Since most of the industrial automation systems gradu-
ally increasingly depend on the robotic manipulators, the sophisticated tasks,
like welding and painting, are expected to produce precise trajectory tracking
(Whitcomb et al., 1997), performed by the robust robotic system. Therefore,
the recent stream of research often involves the task of motion control of robotic
manipulators.

Under such circumstances, it is essential to develop the innovative control
schemes, which should be appropriately insensitive with respect to the uncer-
tainties of the parameters. These control schemes should be able to achieve
exact trajectory tracking over the extensive ranges of motions with highly dif-
ferentiated payloads. In the domain of robotics, the developments, concerning
motion control, have been realised by the use of diverse schemes, like feedback
linearization (Lian, 2012; Vijay and Jena, 2016), decentralized control (Lian,
2013; Mondal and Mahanta, 2014), model predictive control (Lian, 2014), adap-
tive control (Ekemezie and Osuagwu, 2001; Lin and Lian, 2011), and sliding
mode control (Wong and Chen, 1998; Rongcheng, Wenzhan and Sen, 2008; Li,
Ling and Chen, 2015). Due to its dimension-wise stability and environmental
resistance, the sliding mode control (SMC) (Vascak and Madarasz, 2005; Kuo,
Huang and Hong, 2011) gained extensive acceptance and drew a lot of atten-
tion from the research community. Basically, SMC is considered to provide the
effective controlling scheme, as it ensures adequate performance also in the pres-
ence of external disturbances and uncertainties of the system (Salas, Llama and
Santibanez, 2013; Shafiei, 2010; Piltan and Sulaiman, 2012). Furthermore, the
state variables of the system are set to evenness using the rule of discontinuous
feedback control, by the SMC technique. Thus, the uncertain nonlinear system
is appropriately controlled by the SMC control system, as it possesses the valu-
able invariance properties. Even more, the SMC-based systems ensure better
control performance for the multi-input multi-output (MIMO), nonlinear and
discrete time signals.

Currently, diverse applications, like process control, robotics (Li, Ling and
Chen, 2015; Vascak and Madarasz, 2005; Kuo, Huang and Hong, 2011; Robin-
son et al., 2016; Incremona et al., 2015; Corradini et al., 2012; Lakhekar and
Roy, 2014), aerospace and power electronics (Han and Lee, 2011; Hu and Woo,
2006), do largely depend on the sliding mode controllers. Due to the existence
of a linear category of switching surfaces, the asymptotic pattern of convergence
is secured in the existing SMC. Nevertheless, some drawbacks have also arisen
in connection with the conventional SMC technique. The primary limitation is
the problem of chattering, which amounts to generation of high-frequency os-
cillations in the output of the controller, while the second drawback is the high
sensitivity with respect to the external disturbances and the parameter uncer-
tainties. In order to overcome certain pertinent limitations, various researchers



Self-adaptive grey wolf optimization based adaptive fuzzy sliding mode control 385

have developed different methods, which were collectively classified into two
categories, namely the estimated ”uncertain methods” and the boundary layer
saturation method.

Nowadays, SMC is applied in conjunction with the methodologies of artificial
intelligence. These methodologies include neural networks (NNs), and fuzzy
logic and neuro-fuzzy techniques, which are being associated with the SMC to
promote enhanced performance. They can be applied in time-variant, nonlinear
and uncertain types of plants (Lin and Chen, 2002; Leung, Zhou and Su, 1991;
Islam and Liu, 2011). In addition, the chattering can be reduced by applying
the fuzzy logic approach to the SMC, and the methods of SMC to the fuzzy
logic controller (FLC) (Siradjuddin et al., 2014; Iyapparaja and Sureshkumar,
2012), which, in turn, enhances also the stability of the system (Efe, 2008;
Singh, 1985; Visioli and Legnani, 2002; Hsu, Chen and Li, 2001; Whitcomb et
al., 1997; Kim and Gibson, 1991). Besides, some authors have noted the robust
trajectory tracking problem arising in the presence of external disturbances and
uncertainties in the robotic manipulators. The effective trajectory tracking of
the robotic manipulator was attained by the neural network based sliding mode
adaptive control (NNSMAC), that is – the linkage of adaptive techniques, an
approximation by the neural network and the SMC technique.

This paper contributes the SAGWO-FSMC methodology to promote the
optimum tuning of the joint angle in a robotic manipulator like PUMA 560
robotic arm. The methodology is used for this purpose by proceeding through
two stages: (a) extraction of precise characteristics of the system model using
fuzzy inference system, and (b) adaptive modification of the acquired character-
istics of the system, using SAGWO algorithm, which thus controls the overall
performance of the manipulator. The second section of the paper describes the
related studies, along with the problem definition, while the third section of
the paper presents the system model of PUMA 360 robotic arm. Further, the
adaptive fuzzy based SMC controlling scheme is described in the fourth section.
Then, the fifth section of the paper is devoted to the comparative analysis of
the proposed SAGWO-FSMC with the desired experimental model and con-
ventional SMC, FSMC and GWO-SMC models regarding the joint angles, the
displacement and the mean displacement error. The final section provides the
summarising remarks on the proposed method.

2. Literature review

2.1. Related work

In 2013, Ruey-Jing Lian (2013) developed an enhanced adaptive grey-prediction
self-organizing fuzzy sliding-mode controller (EAGSFSC) to assure the posi-
tive steadiness of the robotic systems. In the implemented grey-prediction self-
organizing fuzzy controller (GPSOFC), the proposed method was used to get
rid of the entire problem, related to stability. In addition, the approach pro-
posed supported the self-organizing fuzzy controller (SOFC), in the removing
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the issues, related to the parameter values, resulting from the choice of unstable
parameters, while the method proposed also improved the impact of dynamic
coupling among the degrees of freedom (DOF), here referring to the number
of joints in a robotic arm in a dynamic system. Moreover, the same method
made it possible to achieve several benefits, such as the reduction of tracking
errors, related to the joint-space trajectory planning and point-to-point control
of the robot. Furthermore, this method assisted the rhombus-path control of
the robot with reduced tracking errors of the joint-space trajectory. Next, it
reduced the variation of control command to enhance the duration of the service
life of the system. The implemented GPSOFC method reduces the computa-
tional effort of the SOFC technique by bringing the number of learning cycles
from four to two. Thus, the effective performance of the proposed EAGSFSC
has been validated through the valuable experimental results, this performance
being obviously better than that of the controllers like GPSOFC and SOFC.

Then, Sanjoy Mondal and Chitralekha Mahanta (2014) controlled robotic
manipulators using the controller called adaptive second order terminal sliding
mode (SOTSM) controller. Instead of the normal control input, its time deriva-
tive was used in the SOTSM controller. In the derivative based control, the
discontinuous sign function appeared. In order to obtain the continuous con-
trol, the integration process was performed, and so the control becomes chatter-
less. Moreover, for dealing with uncertainties an adaptive tuning method was
utilized. Since he proposed SOTSM technique removed the problem of inappro-
priate chattering of the controller, the successful tracking performance could be
achieved.

Yet before, in 2012, Ruey-Jing Lian (2012) presented the enhanced self-
organizing fuzzy sliding-mode controller (EASFSC) meant to overcome the prob-
lem of stability in the robotic system, this controller having originated from
SOFC. In this case, the proper selection of the membership function and the
extraction of appropriate fuzzy rules, adapted for the Fuzzy Logic Controller
(FLC) design, were not the sole characteristics of the proposed method. The
method, namely, enhanced the performance, related to the control of the robotic
system, by assuring the balance associated with the overall operation of the sys-
tem. In the respective experiment, an effective algorithm, based on Lyapunov
stability theorem was adopted to improve the stability of the system using the
proposed method. In addition, the control performance of the proposed method
was validated by applying it to the 2-link robot. The most advantageous part of
the proposed method was the reduction of the total count of learning cycles, as
demonstrated by the simulation results. Consequently, the life expectancy of the
actuator was also increased by the proposed EASFSC method. Moreover, the
EASFSC was highly effective in diminishing both RMS and maximum errors,
during the trajectory tracking for the purpose of robotic manipulator control.

Vijay and Jena (2016) suggested a hybrid system, which was a combination
of the SMC with artificial neuro-fuzzy inference system (ANFIS), for use in the
robotic manipulator. They have contributed, thereby, a new system for the
robotic manipulator with the control strategy of two DOFs. First, a controlling
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technique of the robotic manipulator was accomplished by incorporating the
proportional integral derivative (PID) sliding surface to the SMC. Further, a
meta-heuristic algorithm of Particle Swarm Optimization (PSO) was used to
optimize the parameters of the controller. Moreover, the same procedure was
performed for other SMC techniques, including the boundary sliding mode con-
trol (BSMC), and the boundary sliding mode control with PID sliding surface
(PIDBSMC). However, the conventional method used was not convenient for
practical purposes, and the PSO tuning was used to identify the proper pa-
rameters of PIDBSMC. Apart from this, the proposed ANFIS based PIDBSMC
method turned out to be suitable for experimenting with a real-time system,
since it could adaptively alter the parameters of SMC, which further enhanced
the performance of the system, even in the presence of diverse disturbances at
the input.

The parameters of the SOFC are managed by the addition of the radial-
basis-function neural-network (RBFN) to the self-organizing fuzzy radial-basis-
function neural network controller (SFRBNC) in the real time systems. How-
ever, the complication in determining the stability of the system existed as the
challenging problem for the systems in question. Accordingly, Ruey-Jing Lian
(2014) implemented the robotic system with self-organizing fuzzy sliding-mode
radial-basis-function neural-network controller (ASFSRBNC). Application of
the ASFSRBNC ensured the accurate attainment of stability of the system,
meaning that in this manner the problems of SFRBNC have been resolved.
Further, the control performance of the FLC was enhanced by employing the
adaptive law that involved optimization of the parameters of the fuzzy system
for controlling the robotic system. Ultimately, the Lyapunov stability theorem
was employed in order to improve the stability of the ASFSRBNC method.

2.2. Assessment

Over the previous half-century, diverse sets of robotic manipulators have been
designed (Lian, 2013). The development of the robotic systems with effective
controllers has been growing tremendously. The controllers applied included
the techniques of SMC, FLC, Neural Networks, feedback control based on PD
output, finite-time control etc. (see, e.g., Mondal and Mahanta, 2014; or Wong
and Chen, 1998), and were meant to bring the robotic systems to perfection.
This is insofar a challenging task as, in general, the nonlinearities may occur
in the dynamic model robotic manipulators. Furthermore, the dynamic models
may also suffer from uncertainties, related to stability, friction, as well as al-
teration of the load. Those issues highly affect the overall performance of the
manipulators, when a simple control algorithm regulates the imprecise model of
the plant. Under such circumstances, SMC has attained much of attention, as it
both provides effective performance and improved stability. In fact, SMC is less
sensitive with regard to various external disturbances and the deviations of the
poorly known and undefined parameters (Rongcheng, Wenzhan and Sen, 2008;
Li, Ling and Chen, 2015; Vascak and Madarasz, 2005; Kuo, Huang and Hong,
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2011). In this context, though, generation of chattering has to be considered
as another challenge inherent to the nature of the respective control law. This
kind of challenge can be removed by the boundary-layer method.

Recently, diverse self-tuning mechanisms have been proposed to enhance
the performance of the controllers. Among the different methods, SOFC was
considered to be a successful method, constituting a realistic approach to robot
control in terms of varying the parameters of the PS controllers and of other
existing controllers (see Mondal and Mahanta, 2014; Lian, 2012; or Vijay and
Jena, 2016), other applications, including naval vehicles (Wong and Chen, 1998),
process control (Lian, 2014; Ekemezie and Osuagwu, 2001; Lin and Lian, 2011),
as well as other kinds of processes (Rongcheng, Wenzhan and Sen, 2008; Li,
Ling and Chen, 2015; Vascak and Madarasz, 2005).

First of all, the SOFC (Lian, 2012) is meant to reduce the usage of human
experts in implementing the FLC. However, the design parameters should be
chosen prudently for the application of this method, since the imprecise selection
may lead to the instability of the system. Even more, the GPSOFC technique
(Lian, 2013) provides complete robustness and self-adaptive properties to the
system, yet the system is highly sensitive to the initial value, which results in
generation of wider fluctuations in the output. Then, high precision and robust
characteristics are the beneficial features of the TSM controller (see Modal and
Mahanta, 2014). However, the convergence of this method is slow, and it re-
quires complex manipulations to control the speed of the joints. Further, the
PSO, used by Vijay and Jena (2016) is easy to implement, which leads to high
efficiency, but it may in some cases get trapped in the local area and thus bring
out a lower convergence rate. Finally, RBFN (Lian, 2014) provides for a faster
convergence rate and a high level of tolerance, also with respect to the noisy
inputs.

3. Modelling of PUMA 560 robot

3.1. Robotic variables and the coordinate system

Figure 1 shows the structure of the PUMA 560 robot, which comprises the
arrangement of six revolute joints. The middle line of the trunk line L1 concurs
with the axis of the joint 1. Accordingly, the measurement regarding the angle of
the joint 1, θ1, begins from the positive y-axis, that is – in the counter clockwise
direction. Regarding the joint 2, the respective axis is assigned to begin from
the positive x-axis, move perpendicularly to it, and converge with the axis of
joint 1. In addition, it concurs with the middle line of the shoulder. In general,
the shoulder is considered to be an offset, with length b1. The measurement of
the particular lengths is made between the upper arm and the trunk. When θ1
is equal to zero, the respective offset is parallel to the x− y plane and is in the
direction of the negative x-axis. Around the joint 2, the upper arm and link L2

get revolved, at an angle of θ2. As per Fig. 2, when the link L2 is parallel to
the z-axis, the angle θ2 is equal to zero.
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Figure 1. The structure of PUMA 560 robot arm
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Furthermore, the axis of joint 3 and the elbow are placed in parallel to the
axis of joint 2. As shown in Fig. 3, the two-part link is formed by the link L3 and
the forearm, termed m and n, respectively. The vector sum of m and n defines
the link L3. This vector sum corresponds to the distance between the axis of
joint 3 and the middle of the spherical wrist. The distance b2, parallel to the
x− y plane, provides the offset of the link L3 from the link L2. Moreover, b2 is
situated along or parallel to the positive x-direction, when the angle θ1 is equal
to zero. As per Fig. 2, L2 is parallel to the z-axis and L3 forms the angle δ with
the vertical direction, this angle being considered to be known, when pointing
up the arm at the reference position, explained below. The resultant angle is
a function, associated with the dimension of the arm. Therefore, the reference
position is as defined in Eq. (1), where δ = sin(L0/L3), and L3 indicates the
offset from the middle line of the two parts, making the forearm:

θ3r = δ. (1)

 

Figure 2. Initial state of the PUMA 360 robot arm

Now, the spherical wrist is formed by the joints 4, 5 and 6. Here, the axis
of the joint 4 is perpendicular to and converges with the axis of the joint 5.
The middle of the wrist to the flange forms the link L4. In addition, around
the axis of joint 4, its angle θ4 gets rotated. On the other hand, the axis of the
joint 5 is parallel to the axes of joints 2 and 3. The link L4 forms the angle
of rotation θ5. The measurement of the particular angle is on the z-axis in the
coordinate of L4. This results in the rotation of the base coordinates through
θ1k (first), -(θ2 + θ3)i (second), and θ4k (final). Furthermore, the axis of the
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joint 6 is perpendicular to and crosses the axis of joint 5. Besides, it coincides
with the middle line of the gripper mounting flange.

 

Figure 3. Demonstration of link L3

Conform to this specification, Fig. 4 shows the link representation regarding
the arm of the robot at any random positions. The joint coordinates (θ = θ1,
θ2, θ3, θ4, θ5, θ6), and the Cartesian coordinates R = (rx, ry , rz , rρ, rθ, rψ)

T

represent the end effector positions, with T denoting the transpose. In this
representation, the position vector is constituted by r = (rx, ry, rz)

T , and
the rotations of the z-axis, the new x-axis, and new z-axis are denoted as,
respectively, rρ, rθ, rψ . Thus, a simplified solution is obtained by selecting the
parameters of rotation, by the joint arrangements at the wrist.

3.2. Robotic model

The representation of dynamics of a serial n-link robot is given in Eq. (2), where
u denotes the joint displacements, represented by an n x 1 vector, u̇ denotes the
joint velocities as an nx1 vector, τ denotes the torque of the actuators, again
as an n x 1 vector, M(u) denotes the symmetric positive definite n x n inertia
matrix, c(u, u̇) denotes the torques of centripetal and Coriolis forces as an n x
1 vector and g(u) denotes the torque of the gravitation, being also an n x 1
vector. Moreover, the value of g(u) is calculated as the gradient of the potential
energy U(u), due to gravity:

M(u)ü+ c(u, u̇) + g(u) = τ. (2)

Let us consider that the joints of the robot are linked together with the revolute
joints. Here, ud represents the required joint positions. It is assumed to be a
double differentiable vector function. To attain the control aim, Eq. (3), below,
needs to be satisfied, which, in turn, provides the estimation of the torque of
the actuator.

lim
t→∞

u(t) = ud(t). (3)

The current simulation considers the DOF PUMA-560 robot, with the arrange-
ment of six joints. In addition, based on Armstrong, Khatib and Burdick (1986),
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Figure 4. Link representation of PUMA 560 arm
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the kinematical and dynamical properties of the arm are established. The mo-
tors of PUMA are the commercially available and applicable DC motors.

4. Adaptive fuzzy based SMC control scheme

4.1. The proposed control scheme

The architecture of the control scheme, based on the adaptive fuzzy system, is
shown in Fig. 5. The proposed simulation model is developed to tune the joint
angles of the PUMA 560 robot arm. Here, the actual feedback is generated
from the real PUMA 560 system, which is connected to the equivalent control
law generator. Further, the desired trajectory and the actual feedback are used
to compute the error function (E) and the differential error function (DE ).
Then, the sliding surface generator generates the activating signal, based on the
computed error function value. The sliding mode constants are adjusted by the
proposed adaptive fuzzy system with a metaheuristic SAGWO algorithm, which
results in the minimized joint angle error.

To the fuzzy system, two inputs, namely E and DE, are applied. As per the
fuzzy values of these inputs, these values are referred to as Zero (Z), Positive
Small (PS), Positive Medium (PM), Positive Big (PB), Negative Small (NS),
Negative Medium (NM) and Negative Big (NB). The values of Z, PS, PM, NS
and NM are represented by the triangular membership functions and the values
of PB and NB are represented by the trapezoidal membership functions.

With the so defined input values, the fuzzy system generates the correspond-
ing rules, considered to produce the sliding mode constants. In this manner,
the generated sliding mode constants are completely based on the values of E
and DE. Accordingly, Table 1 depicts the rules or the sliding mode constants
generated by the fuzzy system.

Table 1. Rules or SMC constants generated by the fuzzy system

E/DE NB NM NS Z PS PM PB
NB NB NB NB NB NM NS Z
NM NB NB NB NM NS Z PS
NS NB NB NM NS Z PS PM
Z NB NM NS Z PS PM PB
PS NM NS Z PS PM PB PB
PM NS Z PS PM PB PB PB
PB Z PS PM PB PB PB PB

The shapes of the fuzzy membership functions used are shown in Fig. 6.
The expression for the triangular membership function is given in Eq. (4), in

which r refers to the lower limit, s to the upper limit, t is some value between r

and s, and x is the input variable, representing either error (E) or the differential
error (DE ). Likewise, the representation of the trapezoidal membership function
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Figure 5. Architecture of the adaptive fuzzy based SMC control scheme
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NM3 NB1 
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Figure 6. Shapes of the fuzzy membership functions used
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is provided in Eq. (5), where u and v denote the lower and upper support limits
at the membership of 1, and where r <u < v <s. The values of the parameters
of the memberships function for SMC are shown in Table 2.

µ1(x) =















0, x ≤ r
x−r
t−r

, r < x ≤ t
s−x
s−t

, t < x < s

0, x ≥ s

(4)

µ2(x) =















0, (x < r) or (x > s)
x−r
u−r

, r ≤ x ≤ u

1, u ≤ x ≤ v
s−x
s−v

, v ≤ x ≤ s

(5)

Table 2. Parameters of the membership functions used in SMC

x r t s u v

NM NB1 (NB2-NB1)/2 NB2 - -
NS NM1 (NM2-NM1)/2 NM2 - -
PS PM1 (PM2-PM1)/2 PM2 - -
PM PB1 (PB2-PB1)/2 PB2 - -
NB - - - NB1 NM2

PB − − - PM2 PB1

4.2. Adaptive membership function

Basically, a membership function is defined as a “curve that defines how each
point in the input space is mapped to a membership value between 0 and 1”. The
output of a fuzzy system generates the particular membership function with
the rules it extracts, see Alavandar and Nigam (2008). Therefore, the SAGWO
algorithm is made use of here to adaptively alter the membership functions,
which should minimize the error between the actual and the desired value.

The GWO algorithm (Mirjalili, Mirjalili and Lewis, 2014) is a recently in-
troduced meta-heuristic algorithm, which operates on the basis of the principles
standing behind the hunting behaviour of grey wolves, when they catch the prey.
In our case, three wolves, designated as α, β, and δ, proceed with the hunting
for the respective preys. The hunting pattern is based on three phases, which
include (a) tracking, following, and catching the prey, (b) until the movement
of the prey, continuing pursuing, surrounding and disturbing, and (c) attacking
the prey. Among the three wolves, α is assigned the role of the leader of all
wolves, taking the decisions, regarding sleeping, hunting and resting time of
wolves. The second and third wolves, i.e. β and δ assist the leader in taking the
necessary decisions. There is also a fourth wolf present, called ω, this wolf being
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only allowed to eat, and so it does not have importance during hunting. Fig-
ure 7 shows the solution encoding for adaptive membership functions, treated
by the SAGWO algorithm. Here, each solution element is the position of each
wolf, and the best solution has to be determined from a set of solutions using
the proposed algorithm.

 
 

Z PS PM PB NS NM NB 

J  

Figure 7. Solution encoding pattern of theSAGWO algorithm

Thus, the membership functions, after integrating the fuzzy system with the
GWO algorithm, are collectively represented as in Eq. (6), where J indicates
the solution vector to the SAGWO algorithm, as shown in Fig. 7.Eq. (6),
namely, represents the update of the fuzzy membership functions, relative to
the improvement, introduced through the solution found.

µ = µ(J). (6)

The objective function of the proposed SAGWO based SMC in PUMA 560
robotic arm is expressed through Eq. (7), and it amounts to the error between
the actual and the desired joint angles. In Eq. (7), θDi denotes the desired joint
angle and θAi denotes the measured joint angle. The formulation for the desired
joint angle is provided in Eq. (8), in which ε denotes the control signals from
SMC and Kfuzzy denotes the output from the fuzzy system. Here, the desired
joint angle is determined on the basis of the generated control signals from the
SMC, which change. The computation of the control signal is done according
to Eq. (9), in which εeq and εsw denote the system model and the continuous
part of SMC, respectively, the latter magnitude being defined as in Eq. (10),
followed by Eq. (11), with si denoting the switching boundary and f referring
to the fuzzy representation of xi (the membership function).

E|t=tmax =

3
∑

i=1

∣

∣θDi (t)− θA(t)
∣

∣ (7)

θD = ε
(

Kfuzzy
)

(8)

ε = εeq + εsw (9)

εsw = −Kfuzzysatf(xi) (10)
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satf(xi) =







+1, if f(xi) > si
fi
si

if f(xi) ≤ si
−1, if f(xi) < si

. (11)

Thus, the control signal from the SMC is generated on the basis of the fuzzy
rules, as illustrated in Table 1. From there, the desired joint angles are com-
puted. Next, there follows the adaptive adjustment of the determined joint
angles by the SAGWO algorithm.

The formulations, associated with the encircling pattern of grey wolves are
represented in Eqs. (12) through (15), where C and H specify the coefficient
vectors specifying the control combinations, J denotes the position(s) of the
grey wolves, Jp denotes the position vector of the prey and t is the current
iteration number. The expressions for the determination of vectors C and H

are provided in Eqs. (14) and (15), respectively, in which a denotes a parameter,
which decreases from the value of 2 to 0, as explained later on, while r1 and r2
denote the random vectors, whose values are uniformly distributed between [0,
1].

K = |H · Jp(t)− J(t)| (12)

J(t+ 1) = Jp(t)− C ·K (13)

C = 2a.r1 − a (14)

H = 2 · r2. (15)

The SAGWO algorithm adapts the parameter a as in Eq. (16), where τ denotes
the change in the fitness function, which, in turn, is given in Eq.(17). In this
equation, f(t-1) refers to the preceding iteration and f(t) to the current one.
In the first iteration, τ = 1.

a =

(

2− 2×
1

Maximum iteration

)

× τ (16)

τ =
f(t− 1)− f(t)

f(t− 1)
. (17)

Finally, the hunting behaviour of the grey wolves is formulated in Eqs. (18)
through (23), these equations determining the respective positions of each wolf.
Ultimately, Eq. (24) gives the rule for updating the position, based on the
positions of all the involved wolves.

Kα = |C1 · Jα − J | (18)

Kβ = |C2 · Jβ − J | (19)

Kδ = |C3 · Jδ − J | (20)
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J1 = Jα − C1 · (Kα) (21)

J2 = Jβ − C2 · (Kβ) (22)

J3 = Jδ − C3 · (Kδ) (23)

J(t+ 1) =
J1 + J2 + J3

3
. (24)

The pseudocode of the proposed SAGWO based SMC for the PUMA 560 robotic
arm is provided in the form of Algorithm 1. The input of the SAGWO algorithm
consists in establishing the bounds of the triangular membership functions (the
maximum and minimum limits), corresponding to E and DE. In the SAGWO
algorithm, the position of the α wolf is assigned to represent the best solution.

A more verbal description of functioning of Algorithm 1 is provided below:

ALGORITHM 1: PSEUDOCODE OF THE PROPOSED
SAGWO BASED SMC
Input: Bounds of membership functions and population size

Output: J a
Initialize the population of grey wolves J n, n =
1, 2, . . . , nmax
Initialize the vectors C and H
Assign Jα, Jβ and J δ, as three best search agents
While (t < Maximum iteration)
Set τ = 1 and assign a as in Eq. (16)
For all positions of wolves
Update each best position as per Eq. (24)
End for
Update a, C and H
Compute the fitness of all positions of wolves
t = t+ 1
Set τ as per Eq. (17) and assign a
End while
Return J a

1. At first, the population of the grey wolves is initialized as Jn, where n =
1, 2, . . . , nmax.

2. Then, the vectors C and H are also initialized.
3. Subsequently, the three best search agents are considered as Jα, Jβ and

Jδ.
4. It is also necessary to initialize the value of a as per Eq. (16).
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5. At the first iteration, the value of τ is equal to one, and following the first
iteration, the value of τ is assigned as per Eq. (17).

6. Then, as per Eq. (24), the position of the entire set of wolves or the best
search agents is updated.

7. Accordingly, the update of the vectors C and H and of the parameter a
is performed.

8. Then, the fitness of all the positions of wolves is calculated.
9. The same process is repeated for consecutive iterations until the best

search agent is obtained.

5. Simulation results

5.1. The procedure

The basic Simulink model of the SAGWO-FSMC is shown in Fig. 8, with the
SAGWO block being broadly modelled as in Fig. 9. The respective experiment
is simulated in MATLAB. During the optimization procedure, the number of
iterations required to realise the SAGWO-FSMC is assigned as 100. The re-
quired parameter values are set as mentioned in the algorithm. Following the
here described experiment implementation, its performance is compared with
those of the conventional techniques, such as SMC, FSMC, and GWO-SMC, in
order to validate the effectiveness of the new approach.

5.2. Results and discussion

We now turn to the discussion of results obtained from the experiments, con-
cerning the proposed robotic controller. Thus, Fig. 10 shows the convergence
analysis. As mentioned earlier, the objective function or the cost function of
this experiment is the error between the actual and the desired value, which is to
be minimised. The analysis compares the converging performance between the
conventional GWO and the proposed SAGWO based FSMC approach. Here,
the conventional GWO-FSMC starts from the value of 8 × 10−3 and ends at
4.4× 10−3. On the other hand, the proposed SAGWO-FSMC, which also starts
from 8× 10−3, ends at 4.2× 10−3, i.e. performs better than the GWO-FSMC.

Further, the performance analysis in terms of three joint angles, namely θ1,
θ2 and θ3 has been conducted and is illustrated in Fig. 11.

The analysis was limited to 10 ms and the movement of the joint angles
subject to control was observed. The comparison of the actual joint angle θ1 with
the desired value of it, as provided in Fig. 11(a), shows that the performance of
SAGWO-FSMC in terms of the error is 1%, of SMC – 3%, of FSMC and GWO-
FSMC – 1.9%. Now, regarding a similar analysis with respect to the joint angle
θ2, which is shown in Fig. 11(b), the measured θ2 of SAGWO-FSMC is 4.41%
away from the actual value, which is again better than for the other models.
Finally, the measured θ3 of SAGWO-FSMC is 6.15% away from the actual value,
as shown in Fig. 11(c). Therefore, the proposed SAGWO-FSMC controls the
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Figure 8. Simulink model of SAGWO-FSMC
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Figure 10. Convergence analysis

joint angles, concerning movement precision, in the way showing superiority
over the conventional SMC methods.

The graphical representation of the analysis concerning three displacements,
namely x, y, and z, over time is shown in Fig. 12. The performance with respect
to each of displacement dimensions by the proposed SAGWO-FSMC is com-
pared with the desired experimental model and the results for the conventional
techniques, such as SMC, FSMC, and GWO-FSMC. The measured displacement
should be possibly close to the displacement of the desired model. In the case of
displacement x, as shown in Fig. 12(a), the error-wise performance of SMC is
9.52% and of FSMC and SAGWO-FSMC it is 2.56%. Thus, the SMC technique
produces movement far away from the actual one, whereas the other methods
follow the desired movement much more closely in terms of x. Then, the dis-
placement y shows for SMC the deviation of 1%, for FSMC and GWO-FSMC
and for SAGWO-FSMC - only 0.04%, as illustrated in Fig. 12(b). Finally, as
shown in Fig. 12(c), the displacement z, produced by SAGWO-FSMC is by
14.49% away from the desired displacement, meaning better performance than
for other compared techniques.

Fig. 13 shows the graphical representation of changes in mean displacement
error with time. As per the graphical representation, it can be seen that the
mean displacement error of the SMC is quite high, being equal 0.05, while that
of GWO-FSMC is at 0.01. However, the error is reduced, virtually to 0 by the
proposed SAGWO-FSMC. Thus, it is proved that the error is perfectly [?????]
reduced by the proposed SAGWO-FSMC method.
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Figure 11. Performance with respect to three angles of joints: (a) θ1, (b) θ2 and
(c) θ3 in time
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Figure 12. Performance regarding three displacements, namely (a) X (b) Y and
(c) Z over time
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Figure 13. Representation of mean displacement error with time

6. Error analysis

Table 3. presents error analysis of the proposed SAGWO-FSMC in comparison
with other considered methods, like SMC, FSMC, and GWO-FSMC. The error
values, provided in this table, imply that indeed, the proposed SAGWO-FSMC
algorithm performs well compared to other techniques.

6.1. Optimized plots

In this research work, an adaptive SMC controller for robotic manipulator has
been developed. Further, in this context, fuzzy rules have been generated with
two inputs, Error (E) and Differential Error (DE ). These rules can serve for an
easy determination of the SMC constants, which can further be used to control
the system properly. The method uses the optimized membership functions for
the fuzzy part of the system. These optimized triangular membership plots for
two inputs, and for output are shown in Figs. 14, 15 and 16, respectively.

7. Conclusions

This paper presented the development of an effectively performing controller
for the robotic manipulator like PUMA 560 robotic arm. An adaptive SMC
was implemented for this robotic manipulator. The general difficulty consisted
in that a system model could not be ensured to match the operation of SMC
at every time instant. Hence, fuzzy inference system was employed to replace
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Table 3. Error analysis of proposed SAGWO-FSMC compared to other tech-
niques. Error values are computed according to Eq. (7)

Time
(ms)

SMC FSMC GWO-FSMC SAGWO-FSMC

1 0.083907 0.08509 0.085151 0.084797
2 0.082915 0.074572 0.074599 0.074599
3 0.085664 0.078341 0.07845 0.078137
4 0.015349 0.0080468 0.0043225 0.0041288
5 0.020738 0.0080224 0.00036686 0.0005326
6 0.02631 0.0080041 0.0001145 0.00003908
7 0.031954 0.0079878 0.00015332 0.00046102
8 0.037628 0.0079734 0.0002266 0.00039751
9 0.043308 0.0079607 0.00034445 0.00043008
10 0.048986 0.0079494 0.00042725 0.00036425
Mean 0.047676 0.029395 0.024416 0.024389

Figure 14. Triangular membership functions (after optimization) plot for input
1 (Error)

Figure 15. Triangular membership functions (after optimization) plot for input
2 (Differential Error)
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Figure 16. Triangular membership functions plot for output error

the system model. The adaptive fuzzy membership function was used to repre-
sent the derived fuzzy rules in the second stage, using the SAGWO algorithm.
Next, the performance of the thus elaborated SAGWO-FSMC algorithm was
compared with the desired behaviour and the methods like SMC, Fuzzy SMC
(FSMC) and GWO-SMC. The experimental analysis demonstrated the supe-
rior performance of SAGWO-FSMC in tuning the optimum joint angles of the
robotic manipulator.
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