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Abstract:  As the robotic manipulators are highly nonlinear,
it is a challenging task to design, in particular, the PUMA 560
robotic arm with acceptable performance. This paper intends to
show the design and development of an adaptive sliding mode con-
troller (SMC) for a robotic manipulator. Since it is not realistic to
match the SMC operations with the system model at every time in-
stant, this paper adopts fuzzy inference to replace the system odel.
This approach successfully achieves the objectives of the experant,
carried out in two stages. In the rst stage, it acquires the precie
characteristics of the system model for the diverse samples andla-
quately represents the robotic manipulator. Subsequently, we déve
the acquired characteristics in the form of fuzzy rules. In the seand
stage, we represent the derived fuzzy rules on the basis on adap-
tive fuzzy membership functions. Further, the approach introduces
the self-adaptiveness into a recent algorithm called Grey Wolf Opti-
mization (GWO) in order to establish the adaptive fuzzy member-
ship functions. We then compare the e ectiveness of the proposk
method with the identi ed experimental model and the known meth-
ods, like SMC, Fuzzy SMC (FSMC), and GWO-SMC. Finally, the
comparison with the known methods establishes the e ectivenessfo
the proposed SAGWO-FSMC technique.

Keywords: PUMA 560 robotic arm, robotic manipulator, joint
angles, fuzzy model, SAGWO

1. Introduction

In recent times, robots have been playing the fundamental role in he advance-
ment of the industrial automation. Regarding the development of eective adap-
tive controllers, it is one of the truly challenging tasks to manage therobotic
manipulators. Thus, the control engineers consider as highly compx handling
the robotic manipulators in the conditions of fast operation in respmse to the
disturbances from the external environment (see Lin and Lian, 2@1; Rongcheng,
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Wenzhan and Sen, 2008; Lian, 2012; Vinay et al., 2016). The robotimanip-
ulator can be considered as an example of a complex system, whichcpires
its complexity from the unmodelled dynamics and the properties of fiction,
pliability and the impacts of cross coupling, involving also the uncertairties
and nonlinearities. Since most of the industrial automation systemsgradu-
ally increasingly depend on the robotic manipulators, the sophisticaed tasks,
like welding and painting, are expected to produce precise trajecty tracking
(Whitcomb et al., 1997), performed by the robust robotic system. Therefore,
the recent stream of research often involves the task of motionantrol of robotic
manipulators.

Under such circumstances, it is essential to develop the innovativeontrol
schemes, which should be appropriately insensitive with respect tohte uncer-
tainties of the parameters. These control schemes should be abte achieve
exact trajectory tracking over the extensive ranges of motionswith highly dif-
ferentiated payloads. In the domain of robotics, the developmerg, concerning
motion control, have been realised by the use of diverse schemes,dikeedback
linearization (Lian, 2012; Vijay and Jena, 2016), decentralized cotmol (Lian,
2013; Mondal and Mahanta, 2014), model predictive control (Lian, 2014), adap-
tive control (Ekemezie and Osuagwu, 2001; Lin and Lian, 2011), ash sliding
mode control (Wong and Chen, 1998; Rongcheng, Wenzhan and 8e2008; Li,
Ling and Chen, 2015). Due to its dimension-wise stability and environnental
resistance, the sliding mode control (SMC) (Vascak and Madarasz2005; Kuo,
Huang and Hong, 2011) gained extensive acceptance and drew a lof atten-
tion from the research community. Basically, SMC is considered to povide the
e ective controlling scheme, as it ensures adequate performancdso in the pres-
ence of external disturbances and uncertainties of the systenfSalas, Llama and
Santibanez, 2013; Sha ei, 2010; Piltan and Sulaiman, 2012). Furtarmore, the
state variables of the system are set to evenness using the rule discontinuous
feedback control, by the SMC technique. Thus, the uncertain notinear system
is appropriately controlled by the SMC control system, as it posseses the valu-
able invariance properties. Even more, the SMC-based systems sure better
control performance for the multi-input multi-output (MIMO), no nlinear and
discrete time signals.

Currently, diverse applications, like process control, robotics (Li, Ling and
Chen, 2015; Vascak and Madarasz, 2005; Kuo, Huang and HongQ21; Robin-
son et al., 2016; Incremona et al., 2015; Corradini et al., 2012; Laldkar and
Roy, 2014), aerospace and power electronics (Han and Lee, 20Hu and Woo,
2006), do largely depend on the sliding mode controllers. Due to thexéstence
of a linear category of switching surfaces, the asymptotic pattem of convergence
is secured in the existing SMC. Nevertheless, some drawbacks haséso arisen
in connection with the conventional SMC technique. The primary limitation is
the problem of chattering, which amounts to generation of high-flequency os-
cillations in the output of the controller, while the second drawback isthe high
sensitivity with respect to the external disturbances and the palameter uncer-
tainties. In order to overcome certain pertinent limitations, variou s researchers
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have developed di erent methods, which were collectively classi ed ito two
categories, namely the estimated "uncertain methods" and the bandary layer
saturation method.

Nowadays, SMC is applied in conjunction with the methodologies of aricial
intelligence. These methodologies include neural networks (NNs), ral fuzzy
logic and neuro-fuzzy techniques, which are being associated witthe SMC to
promote enhanced performance. They can be applied in time-varignnonlinear
and uncertain types of plants (Lin and Chen, 2002; Leung, Zhou ad Su, 1991,
Islam and Liu, 2011). In addition, the chattering can be reduced byapplying
the fuzzy logic approach to the SMC, and the methods of SMC to thefuzzy
logic controller (FLC) (Siradjuddin et al., 2014; lyapparaja and Sureshkumar,
2012), which, in turn, enhances also the stability of the system (B¢, 2008;
Singh, 1985; Visioli and Legnani, 2002; Hsu, Chen and Li, 2001; Whittmb et
al., 1997; Kim and Gibson, 1991). Besides, some authors have notége robust
trajectory tracking problem arising in the presence of external dsturbances and
uncertainties in the robotic manipulators. The e ective trajector y tracking of
the robotic manipulator was attained by the neural network basedsliding mode
adaptive control (NNSMAC), that is { the linkage of adaptive techn iques, an
approximation by the neural network and the SMC technique.

This paper contributes the SAGWO-FSMC methodology to promote the
optimum tuning of the joint angle in a robotic manipulator like PUMA 560
robotic arm. The methodology is used for this purpose by proceedig through
two stages: (a) extraction of precise characteristics of the syem model using
fuzzy inference system, and (b) adaptive modi cation of the acqured character-
istics of the system, using SAGWO algorithm, which thus controls the overall
performance of the manipulator. The second section of the papedescribes the
related studies, along with the problem de nition, while the third section of
the paper presents the system model of PUMA 360 robotic arm. Ftther, the
adaptive fuzzy based SMC controlling scheme is described in the fotir section.
Then, the fth section of the paper is devoted to the comparative analysis of
the proposed SAGWO-FSMC with the desired experimental model ad con-
ventional SMC, FSMC and GWO-SMC models regarding the joint angles the
displacement and the mean displacement error. The nal section povides the
summarising remarks on the proposed method.

2. Literature review
2.1. Related work

In 2013, Ruey-Jing Lian (2013) developed an enhanced adaptive gy-prediction
self-organizing fuzzy sliding-mode controller (EAGSFSC) to assurehe posi-
tive steadiness of the robotic systems. In the implemented grey+#ediction self-
organizing fuzzy controller (GPSOFC), the proposed method was sed to get
rid of the entire problem, related to stability. In addition, the appro ach pro-
posed supported the self-organizing fuzzy controller (SOFC), in lhe removing
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the issues, related to the parameter values, resulting from the abice of unstable
parameters, while the method proposed also improved the impact oflynamic
coupling among the degrees of freedom (DOF), here referring tohie number
of joints in a robotic arm in a dynamic system. Moreover, the same m#hod

made it possible to achieve several bene ts, such as the reductioaf tracking

errors, related to the joint-space trajectory planning and point-to-point control

of the robot. Furthermore, this method assisted the rhombus-@th control of
the robot with reduced tracking errors of the joint-space trajectory. Next, it

reduced the variation of control command to enhance the duratio of the service
life of the system. The implemented GPSOFC method reduces the coputa-
tional e ort of the SOFC technique by bringing the number of learning cycles
from four to two. Thus, the e ective performance of the proposed EAGSFSC
has been validated through the valuable experimental results, thigperformance
being obviously better than that of the controllers like GPSOFC and SOFC.

Then, Sanjoy Mondal and Chitralekha Mahanta (2014) controlled robotic
manipulators using the controller called adaptive second order terrmal sliding
mode (SOTSM) controller. Instead of the normal control input, it s time deriva-
tive was used in the SOTSM controller. In the derivative based contol, the
discontinuous sign function appeared. In order to obtain the coninuous con-
trol, the integration process was performed, and so the controbecomes chatter-
less. Moreover, for dealing with uncertainties an adaptive tuning méhod was
utilized. Since he proposed SOTSM technique removed the problem afiappro-
priate chattering of the controller, the successful tracking peformance could be
achieved.

Yet before, in 2012, Ruey-Jing Lian (2012) presented the enhamrd self-
organizing fuzzy sliding-mode controller (EASFSC) meant to overcane the prob-
lem of stability in the robotic system, this controller having originated from
SOFC. In this case, the proper selection of the membership functio and the
extraction of appropriate fuzzy rules, adapted for the Fuzzy Lajic Controller
(FLC) design, were not the sole characteristics of the proposed gthod. The
method, namely, enhanced the performance, related to the condl of the robotic
system, by assuring the balance associated with the overall opetian of the sys-
tem. In the respective experiment, an e ective algorithm, based @ Lyapunov
stability theorem was adopted to improve the stability of the system using the
proposed method. In addition, the control performance of the poposed method
was validated by applying it to the 2-link robot. The most advantageous part of
the proposed method was the reduction of the total count of leaning cycles, as
demonstrated by the simulation results. Consequently, the life expctancy of the
actuator was also increased by the proposed EASFSC method. Meover, the
EASFSC was highly e ective in diminishing both RMS and maximum errors,
during the trajectory tracking for the purpose of robotic manipulator control.

Vijay and Jena (2016) suggested a hybrid system, which was a cormimtion
of the SMC with arti cial neuro-fuzzy inference system (ANFIS), for use in the
robotic manipulator. They have contributed, thereby, a new system for the
robotic manipulator with the control strategy of two DOFs. First, a controlling
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technique of the robotic manipulator was accomplished by incorporéing the

proportional integral derivative (PID) sliding surface to the SMC. Further, a

meta-heuristic algorithm of Particle Swarm Optimization (PSO) was used to

optimize the parameters of the controller. Moreover, the same pocedure was
performed for other SMC techniques, including the boundary slidingmode con-
trol (BSMC), and the boundary sliding mode control with PID sliding s urface
(PIDBSMC). However, the conventional method used was not comenient for

practical purposes, and the PSO tuning was used to identify the poper pa-
rameters of PIDBSMC. Apart from this, the proposed ANFIS based PIDBSMC

method turned out to be suitable for experimenting with a real-time system,

since it could adaptively alter the parameters of SMC, which further enhanced
the performance of the system, even in the presence of diversésturbances at
the input.

The parameters of the SOFC are managed by the addition of the raigl-
basis-function neural-network (RBFN) to the self-organizing fuzy radial-basis-
function neural network controller (SFRBNC) in the real time systems. How-
ever, the complication in determining the stability of the system existed as the
challenging problem for the systems in question. Accordingly, Rueyling Lian
(2014) implemented the robotic system with self-organizing fuzzy kding-mode
radial-basis-function neural-network controller (ASFSRBNC). Application of
the ASFSRBNC ensured the accurate attainment of stability of the system,
meaning that in this manner the problems of SFRBNC have been resokd.
Further, the control performance of the FLC was enhanced by mploying the
adaptive law that involved optimization of the parameters of the fuzzy system
for controlling the robotic system. Ultimately, the Lyapunov stabilit y theorem
was employed in order to improve the stability of the ASFSRBNC methad.

2.2. Assessment

Over the previous half-century, diverse sets of robotic manipulabrs have been
designed (Lian, 2013). The development of the robotic systems wlit e ective
controllers has been growing tremendously. The controllers appliedncluded
the techniques of SMC, FLC, Neural Networks, feedback contrbbased on PD
output, nite-time control etc. (see, e.g., Mondal and Mahanta, 2014; or Wong
and Chen, 1998), and were meant to bring the robotic systems to @rfection.
This is insofar a challenging task as, in general, the nonlinearities may acur
in the dynamic model robotic manipulators. Furthermore, the dynamic models
may also su er from uncertainties, related to stability, friction, as well as al-
teration of the load. Those issues highly a ect the overall performance of the
manipulators, when a simple control algorithm regulates the imprecig model of
the plant. Under such circumstances, SMC has attained much of déntion, as it
both provides e ective performance and improved stability. In fact, SMC is less
sensitive with regard to various external disturbances and the deiations of the
poorly known and unde ned parameters (Rongcheng, Wenzhan ath Sen, 2008;
Li, Ling and Chen, 2015; Vascak and Madarasz, 2005; Kuo, Huangral Hong,
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2011). In this context, though, generation of chattering has tobe considered
as another challenge inherent to the nature of the respective cdrol law. This
kind of challenge can be removed by the boundary-layer method.

Recently, diverse self-tuning mechanisms have been proposed tmlance
the performance of the controllers. Among the di erent methods SOFC was
considered to be a successful method, constituting a realistic appach to robot
control in terms of varying the parameters of the PS controllers aad of other
existing controllers (see Mondal and Mahanta, 2014; Lian, 2012;roVijay and
Jena, 2016), other applications, including naval vehicles (Wong anc€Chen, 1998),
process control (Lian, 2014; Ekemezie and Osuagwu, 2001; Lin drLian, 2011),
as well as other kinds of processes (Rongcheng, Wenzhan and $S&908; Li,
Ling and Chen, 2015; Vascak and Madarasz, 2005).

First of all, the SOFC (Lian, 2012) is meant to reduce the usage of hman
experts in implementing the FLC. However, the design parameters lsould be
chosen prudently for the application of this method, since the impreise selection
may lead to the instability of the system. Even more, the GPSOFC tedinique
(Lian, 2013) provides complete robustness and self-adaptive pperties to the
system, yet the system is highly sensitive to the initial value, which results in
generation of wider uctuations in the output. Then, high precision and robust
characteristics are the bene cial features of the TSM controller(see Modal and
Mahanta, 2014). However, the convergence of this method is slgwand it re-
quires complex manipulations to control the speed of the joints. Futher, the
PSO, used by Vijay and Jena (2016) is easy to implement, which leadsothigh
e ciency, but it may in some cases get trapped in the local area and hus bring
out a lower convergence rate. Finally, RBFN (Lian, 2014) provides ér a faster
convergence rate and a high level of tolerance, also with respecb tthe noisy
inputs.

3. Modelling of PUMA 560 robot
3.1. Robotic variables and the coordinate system

Figure 1 shows the structure of the PUMA 560 robot, which comprigs the
arrangement of six revolute joints. The middle line of the trunk line L; concurs
with the axis of the joint 1. Accordingly, the measurement regarding the angle of
the joint 1, 1, begins from the positivey-axis, that is { in the counter clockwise

direction. Regarding the joint 2, the respective axis is assigned to égin from

the positive x-axis, move perpendicularly to it, and converge with the axis of
joint 1. In addition, it concurs with the middle line of the shoulder. In g eneral,
the shoulder is considered to be an o set, with lengthb,. The measurement of
the particular lengths is made between the upper arm and the trunk When ;

is equal to zero, the respective o set is parallel to thex vy plane and is in the
direction of the negative x-axis. Around the joint 2, the upper arm and link L,

get revolved, at an angle of ,. As per Fig. 2, when the link L, is parallel to

the z-axis, the angle ; is equal to zero.
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Figure 1. The structure of PUMA 560 robot arm
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Furthermore, the axis of joint 3 and the elbow are placed in parallel b the
axis of joint 2. As shown in Fig. 3, the two-part link is formed by the link L3 and
the forearm, termed m and n, respectively. The vector sum ofm and n de nes
the link L3. This vector sum corresponds to the distance between the axis of
joint 3 and the middle of the spherical wrist. The distance by, parallel to the
X Yy plane, provides the o set of the link L3 from the link L,. Moreover, by is
situated along or parallel to the positive x-direction, when the angle ; is equal
to zero. As per Fig. 2,L, is parallel to the z-axis and L 3 forms the angle with
the vertical direction, this angle being considered to be known, whe pointing
up the arm at the reference position, explained below. The resultanangle is
a function, associated with the dimension of the arm. Therefore, lhe reference
position is as de ned in Eq. (1), where = sin(Lo/L3), and L3 indicates the
o set from the middle line of the two parts, making the forearm:

3r = . (1)

Figure 2. Initial state of the PUMA 360 robot arm

Now, the spherical wrist is formed by the joints 4, 5 and 6. Here, tle axis
of the joint 4 is perpendicular to and converges with the axis of the ¢int 5.
The middle of the wrist to the ange forms the link L4. In addition, around
the axis of joint 4, its angle 4 gets rotated. On the other hand, the axis of the
joint 5 is parallel to the axes of joints 2 and 3. The link L4 forms the angle
of rotation 5. The measurement of the particular angle is on thez-axis in the
coordinate of L4. This results in the rotation of the base coordinates through

1k (rst), -( 2+ 3)i (second), and 4k (nal). Furthermore, the axis of the
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joint 6 is perpendicular to and crosses the axis of joint 5. Besides, itoincides
with the middle line of the gripper mounting ange.

Join 3 ancis

Figure 3. Demonstration of link L3

Conform to this speci cation, Fig. 4 shows the link representation regarding
the arm of the robot at any random positions. The joint coordinates ( = 1,
2, 3, 4, 5, 6), and the Cartesian coordinatesR = (ry, ry, rz, r ,r ,r )T
represent the end e ector positions, with T denoting the transpose. In this
representation, the position vector is constituted by r = (ry, ry, r;)7, and
the rotations of the z-axis, the new x-axis, and new z-axis are denoted as,
respectively,r , r ,r . Thus, a simpli ed solution is obtained by selecting the
parameters of rotation, by the joint arrangements at the wrist.

3.2. Robotic model

The representation of dynamics of a serial n-link robot is given in Eq.(2), where

u denotes the joint displacements, represented by an x 1 vector, u denotes the
joint velocities as an nx1 vector, denotes the torque of the actuators, again
as ann x 1 vector, M (u) denotes the symmetric positive de nite n x n inertia

matrix, c(u;u) denotes the torques of centripetal and Coriolis forces as an x

1 vector and g(u) denotes the torque of the gravitation, being also ann x 1

vector. Moreover, the value ofg(u) is calculated as the gradient of the potential
energy U(u), due to gravity:

M (u)e + c(u;u) + g(u) = )

Let us consider that the joints of the robot are linked together with the revolute
joints. Here, ug represents the required joint positions. It is assumed to be a
double di erentiable vector function. To attain the control aim, Eq . (3), below,
needs to be satis ed, which, in turn, provides the estimation of thetorque of
the actuator.

lim u(t) = ug(t): 3)

The current simulation considers the DOF PUMA-560 robot, with the arrange-
ment of six joints. In addition, based on Armstrong, Khatib and Bur dick (1986),
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Figure 4. Link representation of PUMA 560 arm
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the kinematical and dynamical properties of the arm are establishd. The mo-
tors of PUMA are the commercially available and applicable DC motors.

4. Adaptive fuzzy based SMC control scheme
4.1. The proposed control scheme

The architecture of the control scheme, based on the adaptiveukzzy system, is
shown in Fig. 5. The proposed simulation model is developed to tune th joint
angles of the PUMA 560 robot arm. Here, the actual feedback is gesrated
from the real PUMA 560 system, which is connected to the equivalencontrol
law generator. Further, the desired trajectory and the actual feedback are used
to compute the error function (E) and the dierential error function ( DE).
Then, the sliding surface generator generates the activating siga, based on the
computed error function value. The sliding mode constants are adjsted by the
proposed adaptive fuzzy system with a metaheuristic SAGWO algoribm, which
results in the minimized joint angle error.

To the fuzzy system, two inputs, namely E and DE, are applied. As per the
fuzzy values of these inputs, these values are referred to as £e(Z), Positive
Small (PS), Positive Medium (PM), Positive Big (PB), Negative Small (N S),
Negative Medium (NM) and Negative Big (NB). The values of Z, PS, PM, NS
and NM are represented by the triangular membership functions ad the values
of PB and NB are represented by the trapezoidal membership furtons.

With the so de ned input values, the fuzzy system generates the arrespond-
ing rules, considered to produce the sliding mode constants. In thisnanner,
the generated sliding mode constants are completely based on thales of E
and DE. Accordingly, Table 1 depicts the rules or the sliding mode constants
generated by the fuzzy system.

Table 1. Rules or SMC constants generated by the fuzzy system

E/DE NB |NM | NS | Z PS | PM | PB
NB NB | NB | NB | NB | NM | NS Z
NM NB | NB | NB | NM | NS y4 PS
NS NB | NB | NM | NS Z PS | PM
y4 NB | NM | NS 4 PS | PM | PB
PS NM | NS Z PS | PM | PB | PB
PM NS 4 PS | PM | PB | PB | PB
PB Z PS |PM | PB | PB | PB | PB

The shapes of the fuzzy membership functions used are shown in Fig.

The expression for the triangular membership function is given in Eq.(4), in
which r refers to the lower limit, s to the upper limit, t is some value betweemn
and s, and x is the input variable, representing either error (E) or the di erential
error (DE). Likewise, the representation of the trapezoidal membership faction
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Adsprive fuzzy SMC

Figure 5. Architecture of the adaptive fuzzy based SMC control sheme

NB NM NS z PS PM PB

NBs | NM; NB, NS NM: Z NS | PS Z3 PMi PS |PB PM;  PB

NB, NM NS 7, PS PM, PB,

Figure 6. Shapes of the fuzzy membership functions used
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is provided in Eqg. (5), whereu and v denote the lower and upper support limits
at the membership of 1, and wherer < u < v <s . The values of the parameters
of the memberships function for SMC are shown in Table 2.

8 0 r
¢
2 .or<x t
1(X):3 $ X t<x<s (4)
0 x s
8
50; (x<r)or (x>s)
) = s r x u 5
2()_B 1’ u X v ()
: i—c Vv X S

Table 2. Parameters of the membership functions used in SMC

X r t S u \"
NM | NB; | (NB,-NB1)2 | NB; | - -
NS | NMy | (NM2-NM1)/2 | NM; | - -
PS | PM; | (PM-PM1)2 | PM; | - -
PM | PB; | (PB,-PBy)/2 | PB, | - -
NB | - - - NB; | NM,
PB - PM, | PB;

4.2. Adaptive membership function

Basically, a membership function is de ned as a\curve that de nes how each
point in the input space is mapped to a membership value betare0 and 1". The
output of a fuzzy system generates the particular membership faction with
the rules it extracts, see Alavandar and Nigam (2008). Thereforethe SAGWO
algorithm is made use of here to adaptively alter the membership funions,
which should minimize the error between the actual and the desired alue.

The GWO algorithm (Mirjalili, Mirjalili and Lewis, 2014) is a recently in-
troduced meta-heuristic algorithm, which operates on the basis othe principles
standing behind the hunting behaviour of grey wolves, when they ctch the prey.
In our case, three wolves, designated as, , and , proceed with the hunting
for the respective preys. The hunting pattern is based on three pases, which
include (a) tracking, following, and catching the prey, (b) until the movement
of the prey, continuing pursuing, surrounding and disturbing, and (c) attacking
the prey. Among the three wolves, is assigned the role of the leader of all
wolves, taking the decisions, regarding sleeping, hunting and restin time of
wolves. The second and third wolves, i.e. and assist the leader in taking the
necessary decisions. There is also a fourth wolf present, calléd this wolf being
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only allowed to eat, and so it does not have importance during hunting Fig-
ure 7 shows the solution encoding for adaptive membership functios treated
by the SAGWO algorithm. Here, each solution element is the position ofeach
wolf, and the best solution has to be determined from a set of solutins using
the proposed algorithm.

NB NM NS Z PS PM PB

G ; 2

Figure 7. Solution encoding pattern of theSAGWO algorithm

Thus, the membership functions, after integrating the fuzzy sysem with the
GWO algorithm, are collectively represented as in Eq. (6), whereJ indicates
the solution vector to the SAGWO algorithm, as shown in Fig. 7.Eq. (6),
namely, represents the update of the fuzzy membership function relative to
the improvement, introduced through the solution found.

= Q) (6)

The objective function of the proposed SAGWO based SMC in PUMA 5®
robotic arm is expressed through Eq. (7), and it amounts to the eror between
the actual and the desired joint angles. In Eq. (7), P denotes the desired joint
angle and # denotes the measured joint angle. The formulation for the desired
joint angle is provided in Eg. (8), in which " denotes the control signals from
SMC and K T2z denotes the output from the fuzzy system. Here, the desired
joint angle is determined on the basis of the generated control sigals from the
SMC, which change. The computation of the control signal is done ecording
to Eqg. (9), in which "¢q and "5, denote the system model and the continuous
part of SMC, respectively, the latter magnitude being de ned as in Eq. (10),
followed by Eqg. (11), with s; denoting the switching boundary and f referring
to the fuzzy representation ofx; (the membership function).

. X3
Ejiz tmax = P A (7
i=1
D _n Kfuzzy (8)
"= I'eq + "sw 9)

"w = KM satf (x)) (10)



Self-adaptive grey wolf optimization based adaptive fuzzy sliding mode control 397

E +1; if f (X)) >s;
satf (xi))= . Liff (x) s (11)
L i fo(x) <

Thus, the control signal from the SMC is generated on the basis othe fuzzy
rules, as illustrated in Table 1. From there, the desired joint angles & com-
puted. Next, there follows the adaptive adjustment of the detemined joint
angles by the SAGWO algorithm.

The formulations, associated with the encircling pattern of grey wdves are
represented in Egs. (12) through (15), whereC and H specify the coe cient
vectors specifying the control combinations,J denotes the position(s) of the
grey wolves, J, denotes the position vector of the prey andt is the current
iteration number. The expressions for the determination of vectos C and H
are provided in Egs. (14) and (15), respectively, in whicha denotes a parameter,
which decreases from the value of 2 to 0, as explained later on, whilg andr,
denote the random vectors, whose values are uniformly distributé between [0,
1].

K =jH Jp(t) JI()] (12)
J(t+1)= J,(t) C K (13)
C=2ar; a (14)
H=2 1y (15)

The SAGWO algorithm adapts the parameter a as in Eq. (16), where denotes
the change in the tness function, which, in turn, is given in Eq.(17). In this
equation, f (t-1) refers to the preceding iteration andf (t) to the current one.
In the rstiteration, =1.

_ 1

a= 2 2 Maximum iteration (16)
_f@ 1) (1),
= D (17)

Finally, the hunting behaviour of the grey wolves is formulated in Egs. (18)
through (23), these equations determining the respective positios of each wolf.
Ultimately, Eq. (24) gives the rule for updating the position, based o the
positions of all the involved wolves.

K =jCi J Jj (18)
K =jC, J Jj (19)
K =jCs J Jj (20)
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Ji=J G (K) (21)
Jo=J C, (K ) (22)
J3=J3 Gz (K) (23)
J+1)= m (24)

3

The pseudocode of the proposed SAGWO based SMC for the PUMA ®6robotic
arm is provided in the form of Algorithm 1. The input of the SAGWO algor ithm
consists in establishing the bounds of the triangular membership fuations (the
maximum and minimum limits), corresponding to E and DE. In the SAGWO
algorithm, the position of the  wolf is assigned to represent the best solution.

A more verbal description of functioning of Algorithm 1 is provided below:

ALGORITHM 1: PSEUDOCODE OF THE PROPOSED
SAGWO BASED SMC
Input: Bounds of membership functions and population size

Output: J 5

Initialize the population of grey wolves J ,;n =
1,2)10 0 Nmax

Initialize the vectors C and H

Assign J ;J and J , as three best search agents
While (t<Maximum iteration )

Set =1 and assign a as in Eq. (16)

For all positions of wolves

Update each best position as per Eq. (24)

End for

Update a, C and H

Compute the tness of all positions of wolves
t=t+1

Set as per Eq. (17) and assign a

End while

Return J

1. At rst, the population of the grey wolves is initialized as J,, wheren =
1,2, Nmax -

2. Then, the vectorsC and H are also initialized.

3. Subsequently, the three best search agents are considered & , J and
J.

4. It is also necessary to initialize the value ofa as per Eq. (16).
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5. At the rstiteration, the value of is equal to one, and following the rst
iteration, the value of is assigned as per Eq. (17).

6. Then, as per Eq. (24), the position of the entire set of wolves othe best
search agents is updated.

7. Accordingly, the update of the vectorsC and H and of the parametera

is performed.

. Then, the tness of all the positions of wolves is calculated.

9. The same process is repeated for consecutive iterations untihé best
search agent is obtained.

0o

5. Simulation results
5.1. The procedure

The basic Simulink model of the SAGWO-FSMC is shown in Fig. 8, with the
SAGWO block being broadly modelled as in Fig. 9. The respective experimnt
is simulated in MATLAB. During the optimization procedure, the numbe r of
iterations required to realise the SAGWO-FSMC is assigned as 100. Té re-
quired parameter values are set as mentioned in the algorithm. Folloing the
here described experiment implementation, its performance is congred with
those of the conventional techniques, such as SMC, FSMC, and G@-SMC, in
order to validate the e ectiveness of the new approach.

5.2. Results and discussion

We now turn to the discussion of results obtained from the experimats, con-
cerning the proposed robotic controller. Thus, Fig. 10 shows the @anvergence
analysis. As mentioned earlier, the objective function or the cost dinction of
this experiment is the error between the actual and the desired vime, which is to
be minimised. The analysis compares the converging performance taeen the
conventional GWO and the proposed SAGWO based FSMC approach.Here,
the conventional GWO-FSMC starts from the value of 8 10 3 and ends at
4:4 10 3. On the other hand, the proposed SAGWO-FSMC, which also starts
from8 10 3 ends at42 10 3, i.e. performs better than the GWO-FSMC.

Further, the performance analysis in terms of three joint anglesnamely 1,

2 and 3 has been conducted and is illustrated in Fig. 11.

The analysis was limited to 10 ms and the movement of the joint angles
subject to control was observed. The comparison of the actugbint angle ; with
the desired value of it, as provided in Fig. 11(a), shows that the pefiormance of
SAGWO-FSMC in terms of the error is 1%, of SMC { 3%, of FSMC and GWO-
FSMC { 1.9%. Now, regarding a similar analysis with respect to the jointangle

2, which is shown in Fig. 11(b), the measured , of SAGWO-FSMC is 4.41%
away from the actual value, which is again better than for the othe models.
Finally, the measured 3 of SAGWO-FSMC is 6.15% away from the actual value,
as shown in Fig. 11(c). Therefore, the proposed SAGWO-FSMC cdrols the
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Figure 8. Simulink model of SAGWO-FSMC
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Figure 10. Convergence analysis

joint angles, concerning movement precision, in the way showing sugiority
over the conventional SMC methods.

The graphical representation of the analysis concerning three dacements,
namely x, y, and z, over time is shown in Fig. 12. The performance with respect
to each of displacement dimensions by the proposed SAGWO-FSMC isom-
pared with the desired experimental model and the results for theconventional
techniques, such as SMC, FSMC, and GWO-FSMC. The measured disgcement
should be possibly close to the displacement of the desired model. lin¢ case of
displacementx, as shown in Fig. 12(a), the error-wise performance of SMC is
9.52% and of FSMC and SAGWO-FSMC it is 2.56%. Thus, the SMC technige
produces movement far away from the actual one, whereas thetleer methods
follow the desired movement much more closely in terms ok. Then, the dis-
placementy shows for SMC the deviation of 1%, for FSMC and GWO-FSMC
and for SAGWO-FSMC - only 0.04%, as illustrated in Fig. 12(b). Finally, as
shown in Fig. 12(c), the displacementz, produced by SAGWO-FSMC is by
14.49% away from the desired displacement, meaning better perforance than
for other compared techniques.

Fig. 13 shows the graphical representation of changes in mean digggement
error with time. As per the graphical representation, it can be sea that the
mean displacement error of the SMC is quite high, being equal 0.05, vile that
of GWO-FSMC is at 0.01. However, the error is reduced, virtually to Oby the

reduced by the proposed SAGWO-FSMC method.
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Figure 11. Performance with respect to three angles of joints: (g 1, (b) 2 and
(c) sintime
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Figure 12. Performance regarding three displacements, namely Y& (b) Y and
(c) Z over time
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Figure 13. Representation of mean displacement error with time

6. Error analysis

Table 3. presents error analysis of the proposed SAGWO-FSMC in gaparison
with other considered methods, like SMC, FSMC, and GWO-FSMC. Theerror
values, provided in this table, imply that indeed, the proposed SAGWOFSMC
algorithm performs well compared to other techniques.

6.1. Optimized plots

In this research work, an adaptive SMC controller for robotic manipulator has
been developed. Further, in this context, fuzzy rules have beenanerated with
two inputs, Error ( E) and Di erential Error ( DE). These rules can serve for an
easy determination of the SMC constants, which can further be ued to control
the system properly. The method uses the optimized membership factions for
the fuzzy part of the system. These optimized triangular memberkip plots for
two inputs, and for output are shown in Figs. 14, 15 and 16, respdively.

7. Conclusions

This paper presented the development of an e ectively performingcontroller
for the robotic manipulator like PUMA 560 robotic arm. An adaptive SM C
was implemented for this robotic manipulator. The general di culty ¢ onsisted
in that a system model could not be ensured to match the operatiorof SMC
at every time instant. Hence, fuzzy inference system was emplogeto replace
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Table 3. Error analysis of proposed SAGWO-FSMC compared to othetech-
niques. Error values are computed according to Eq. (7)

Time SMC FSMC GWO-FSMC SAGWO-FSMC
(ms)

1 0.083907| 0.08509 0.085151 0.084797

2 0.082915| 0.074572 0.074599 0.074599

3 0.085664| 0.078341 0.07845 0.078137

4 0.015349| 0.0080468 0.0043225 0.0041288
5 0.020738| 0.0080224 0.00036686 0.0005326
6 0.02631 | 0.0080041 0.0001145 0.00003908
7 0.031954| 0.0079878 0.00015332 0.00046102
8 0.037628| 0.0079734 0.0002266 0.00039751
9 0.043308| 0.0079607 0.00034445 0.00043008
10 0.048986| 0.0079494 0.00042725 0.00036425
Mean 0.047676| 0.029395 0.024416 0.024389

Figure 14. Triangular membership functions (after optimization) plot for input

1 (Error)

Figure 15. Triangular membership functions (after optimization) plot for input

2 (Di erential Error)
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Figure 16. Triangular membership functions plot for output error

the system model. The adaptive fuzzy membership function was uskto repre-
sent the derived fuzzy rules in the second stage, using the SAGWOIlgorithm.

Next, the performance of the thus elaborated SAGWO-FSMC algoithm was
compared with the desired behaviour and the methods like SMC, Fuzz SMC
(FSMC) and GWO-SMC. The experimental analysis demonstrated tte supe-
rior performance of SAGWO-FSMC in tuning the optimum joint angles of the
robotic manipulator.
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