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Abstract: This paper addresses an approach for solving multicrite-
ria portfolio investment problem. The original Markowitzan-variance
model is formulated as a problem of bi-objective optimiaativith linear
and quadratic objective functions. In the current works tilmodel is ex-
tended by introducing a new objective, reflecting asset gntigs that are
useful for the portfolio allocation process. A method bagegarameter-
ized achievement scalarizing function is applied to predBareto opti-
mal portfolios. A mathematical programming formulatioatlallows for
solving the problem with conventional optimization methdslpresented.
In addition, a method of reflecting the decision maker’s grexfices by
means of changing the weights in the achievement scalgriaimctions is
introduced. A decision making process is simulated forlineg-objective
portfolio optimization problem.
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1. Introduction

The mean-variance model of portfolio investment, first Eddy Harry Markowitz
in the 1950s (see Markowitz, 1952, 1959) is formulated as@bfgctive optimization
problem with linear (expected return) and quadratic (var& objective functions.
The classical approach to making decisions assumes dgrilie two-dimensional
Pareto front and letting the investor choose the most pederombination of the ob-
jective function values. In real world application, knogianly portfolio’s risk-return
characteristics might be not enough for portfolio selattioThere are many other
factors and measures that impact portfolio performanag as transaction costs and
tax effects, specific investment guidelines and institdldfeatures, hedging needs,
market impact costs, estimation errors etc. (see, e.gadalddIlmeida et al., 2009; Utz,
Wimmer and Steuer, 2015). Furthermore, based on the liguofldifferent securities,
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their trading costs may be significantly different (Kolmytt@ificti and Fabozzi, 2014).
Out of two securities with similar expected return and ris&fiees, one with higher

liquidity is more likely to have higher post-transactionstaeturns. Therefore, a
portfolio construction framework that ignores transatosts will lead to suboptimal

portfolios. For this purpose, the current research worlppses to incorporate into the
model an additional linear objective that reflects thoseadtaristics of an asset. Thus,
original bi-objective problem transforms into a problenttwthree and more objectives.

The traditional approach to solving multicriteria optimtion problems with three
and more objectives is by scalarization. It involves foratinlg a single objective prob-
lem that is related to the multicriteria problem by means oéal-valued scalarizing
function typically being a function of the individualizetjective functions of the mul-
ticriteria problem, auxiliary scalar or vector variablesd/or scalar or vector param-
eters. Sometimes, the feasible set of the multicriterianupation problem is addi-
tionally restricted by new constraint functions, relatedte objective functions of the
multicriteria problem and/or the new variables introducBglo major requirements are
set for a scalarizing function in order to provide method pteteness (see Sawaragi,
Nakayama and Tanino, 1985):

¢ it should be able to cover the entire set of Pareto optimaitsols, and
e every solution found by means of scalarization should beakiyg Pareto opti-
mal.

One of the widely spread approaches of dealing with multipl&licting objectives
involves constructing and optimizing a so-called achiesetrscalarizing function
(ASF). This method was introduced in Wierzbicki (1980) amdbased on a reference
point of aspiration levels. The ASF can be interpreted asmizing the distance from
a reference point, specified by the decision maker (DM), ¢éofdasible region, if the
reference point is unattainable, or, alternatively, mazing the distance. The distance
is defined by some appropriate metric, introduced in theativge space. Sometimes,
the DM may require more advanced scalarization mechaniBirisikulin, Miettinen
and Makela (2012) a parameterized version of an ASF wasgsed. Those authors
introduced an integer parameter in order to control the eegf metric flexibility
varying from L, to L.,. It was proven that the parameterized ASF is able to detect
any Pareto optimal solutions. Moreover, conditions undeictvthe Pareto optimality
of each solution produced by the parameterized ASF is gtegdwas also obtained
in Nikulin, Miettinen and Makela (2012). In Wilppu, Makeand Nikulin (2017) a
new family of two-slope parameterized ASFs that generslim#h parameterized ASF
and two-slope ASF were presented. These two-slope parameetédSFs guarantee
(weak) Pareto optimality of the solutions produced, and gamerate every (weakly)
Pareto optimal solution.

In interactive methods, the DM works together with an artabfsan interactive
computer program. (By aanalysthere is meant a person or a computer program
responsible for the mathematical side of the solution mschliettinen, 1999). One
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can say that the analyst tries to determine the preferengetste of the DM in an
interactive way. A solution pattern is formed and repeatactsal times. After every
iteration, some information is given to the DM and (s)he ikealsto answer some
questions or provide some other type of information. Thekimgy order in these
methods is: analyst, DM, analyst, DM, etc.

After a reasonable (finite) number of iterations every iattive method should
yield a solution that the DM can be satisfied with and/or coogd that no considerably
better solution exists. The basic steps in interactiverétlyns can be expressed as

o find an initial feasible solution,

e interact with the DM, and

e obtain a new solution (or a set of new solutions). If the nelutsan (or one of

them) or one of the previous solutions is acceptable to the 86p. Otherwise,
go to the previous step.

Interactive methods differ from each other by the form, inickhinformation is
given to the DM, by the form, in which information is provideg the DM, and how
the problem is transformed into a single objective optitidraproblem (see, e.g.,
Miettinen, 1999; Miettenen and Makela, 2006; Steuer andd;1983).

In Montonen, Ranta and Makela (2019) authors introdueeirteractive multi-
objective optimization method using the two-slope paramstd achievement scalar-
izing function and adapt it for a nonsmooth multiobjectivexed-integer nonlinear
optimization problem. The current work investigates theli@pbility of interactive
optimization approach, based on the parameterized ASFutticniteria portfolio in-
vestment problem. A new way to manage an interactive prdneskanging weighing
coefficients of scalarizing functions is introduced. Usogstom scalarization tech-
nique, the three objective portfolio investment problernasverted into a single ob-
jective problem of mathematical programming and solvedhgydptimization solver
software. Numerical experiments illustrate how synchrmnasage (Miettinen and
Makela, 2006) of the scalarizing functions may be potdhytadvantageous for obtain-
ing different Pareto optimal portfolios.

2. Basic notations and definitions

Let X be an arbitrary set of feasible solutions or a set of decigemtors. Let a vector
valued functionf : X — R™, consisting ofm > 2 partial objective functions, be
defined on the set of feasible solutions:

f(@) = (fu(@), f2(@), - -, ().

Without loss of generality we may assume that every objedtmction is to be
minimized on the set of feasible solutions:
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Further, throughout the paper we will refer &§" as an objective space and to
vector f (x) as an objective vector.

We also assume that

1. every objective functiorf; is a lower semicontinuous function;
2. X is a nonempty compact set.

Let us denote by _
M'(X)= argnéi)r(l fi(z), i€ Ny,

a set of minima of theé'® objective function. Evidently, if
() M{(X) #0,
i=1

then there exists at least one solution, which delivers amuim for all objectives.
Such a solution can be called &teal solution An optimization problem, which
does not contain ideal solutions is calledn-degeneratand objectives are at least
partly conflicting (Nikulin, Miettinen and Makela, 2012pimultaneous optimization
of several objectives for non-degenerate multiobjectipnoization problems is not
a straightforward task, and we need to define optimality émhsproblems. In what
follows, we consider non-degenerate problems.

The traditional definition of the Pareto principle of optiiha

DEFINITION 1 A decision vector:* € X is Pareto optimaif there exists na: € X
such thatf;(z) < f;(z*) for all i € N,,, and f;(z) < f;(z*) for at least one index.

We can denote the set of Pareto optimal decision vecta¥gsY ). Furthermore,
the set{f(z) € R™ : x € P™(X)} is called thePareto frontier For two vectors
a,b € R™, we writea < b if a; < b; foralli € N,,. Then we say that one vector
a dominatesanother vectob if a; < b; anda # b. Thus, the set of Pareto optimal
solutions is simply a subset of feasible solutions, whosegies are non-dominated in
the objective space.

The optimality in a multiobjective case can be introducedifferent ways. The
following definition was firstly proposed by Slater (1950):

DEFINITION 2 A decision vector* € X is weakly Pareto optimaf there exists no
x € X suchthatf;(z) < f;(z*) for all i € N,,.

We can denote the set of weakly Pareto optimal decision v®otdhe Slater set as
SI™(X). For two vectors:, b € R™, we writea < bif a; < b; forall i € N,,. Then
we say that one vectar strictly dominate@nother vectob if a; < b; for alli € N,,.
Thus, the set of weakly Pareto optimal solutions is a subkétasible solutions,
whose images are strictly non-dominated in the objectiaEsp An objective vector
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f(z) is (weakly) Pareto optimal if the corresponding decisiomtue is (weakly)
Pareto optimal.

Under the assumptions 1-2 mentioned earlier in the problemmflation, we
know that the set of Pareto optimal solution is non-emptgt th, there always exists
at least one Pareto optimal solution (Sawaragi, Nakayardaranino, 1985). Obvi-
ously, the set of Pareto optimal solutions is a subset of lyddreto optimal solutions.

Lower and upper bounds on objective values of all Paretar@dtsolutions are
given by theideal andnadir objective vectorsf’ and £V, respectively. The compo-
nentsf; of the ideal (nadir) objective vectg = (ff,..., fL) (fN = (f,..., fN)
are obtained by minimizing (maximizing) each of the objezfunctions individually,
subject to the set of Pareto optimal solutions:

I . .
i = 7 ) S Nm7
fi zggl;rgx)f (), i

N .
Fo= a. i N S Nm.*
i = Jnax f (), 1

3. Achievement scalarizing functions

In reference point based methods (see, e.g., Wierzbicl80,19986, 1999), the DM
specifies a reference poirfit? consisting of desirable or reasonable aspiration levels
fft for each objective functiorf;, i € N,,. The reference point only indicates what
levels of objective function values the DM considers satigiry.

A certain class of real-valued functiong : R™ — R, referred to as achievement
scalarizing functions (ASFs), can be used to scalarize diohjgctive optimization
problem. Achievement scalarizing functions have beerodhiced by Wierzbicki in
(1980). The scalarized problem is given by

min sp(f(x)). (2)

Pareto optimal solutions can be characterized by achiewesgalarizing functions

if the functions satisfy certain requirements.

DEFINITION 3 (Wierzbicki, 1986) An ASkx : R™ — R is said to be
1. increasingif for anyy!,y? € R™, y! <42 forall i € N,,, there issg(y') <

sr(y?); -

*At this point of this paper, but, in fact, concerning the entssue, a note is due from the Editors. Namely,
it should be emphasized that it is almost unknown in the wiitddature (and, alas, also to a limited extent
in the Polish literature of the subject) that the conceptarfiparing the multidimensional objects analysed
(here: portfolios, characterized by the shares of indiisliassets) to some kind of ideal and nadir points,
formed out of the maximum and minimum values for the paréicadimensions (criteria), was formulated,
along with the entire respective procedure, first by Zdwidtellwig (1968), otherwise a prominent Polish
statistician and econometrician, author of several metlogical innovations in these domains (ed.).
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2. strictly increasingif for any y!,y?> € R™, y! < y? forall i € N,,, there is
sr(y') < sr(y®);

3. strongly increasingif for any y',y?> € R™, y} < y? for all i € N,, and
yt # 42, there issg(y') < sr(y?).

Obviously, any strongly increasing ASF is also strictlyremsing, and any strictly
increasing ASF is also increasing. The following theoreefing necessary and suffi-
cient conditions for an optimal solution of (2) to be (wegkRareto optimal:

THEOREM 1 (Wierzbicki, 1986)
1. Letsg be strongly (strictly) increasing. lf* € X is an optimal solution of
problem(2), thenx* is (weakly) Pareto optimal.
2. If sg is increasing and the solution dR) z* € X is unique, ther:* is Pareto
optimal.

THEOREM 2 (Miettinen, 1999) Ifsy is strictly increasing andc* € X is weakly
Pareto optimal, then it is a solution aR) with f® = f(2*) and the optimal value
of sg is zero.

The advantage of ASFs is that any (weakly) Pareto optimaltissl can be
obtained by moving the reference point only. It was shown ierfdbicki (1986) that
the solution of an ASF depends Lipschitz continuously onréference point. In
general, ASFs are conceptually very appealing to genemtd®optimal solutions,
and they overcome most of the difficulties arising with otieethods, Miettinen
(1999), in the class of methods for generating Pareto opsoiations.

In the great majority of cases, the ASF is based on the Chelygiktance or .:
$F(f(),2) = max \(fi(@) = £7), (3)
where)\ is anm-vector of non-negative coefficients.

An achievement scalarizing function based on the linedadéel, is proposed in
Ruiz et al. (2008). Given problem (1), a reference vegtérc R™ and a vector of
strictly positive weights\, the additive achievement scalarizing function is defined a
follows:

sp(f(@),\) = D Nlfiw) = 7. (4)

1EN,
The following properties o}, ( f(x), A) were proven in Ruiz et al. (2008).

THEOREM 3 (Ruiz et al., 2008) Given proble(®) with ASF defined bi4), let % be

a reference point such that” is not dominated by an objective vector of any feasible
solution of problenm(2). Also assume\; > 0 for all i € N,,. Then, any optimal
solution of problen{2) is a weakly Pareto optimal solution.
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THEOREM4 (Ruiz et al., 2008) Given problef2) with ASF defined by4) and any
reference poinyf ¥, assume\; > 0 for all i € N,,,. Then, among the optimal solutions
of problem(2) there exists at least one Pareto optimal solution. If theropt solution
of problem(2) is unique, then it is Pareto optimal.

In Nikulin, Miettinen and Makela (2012) authors extene tideas of Ruiz et al.
(2008) by introducing parameterization based on the notibembedded subsets.
Here, an integer parametere N, is used in order to control the degree of metric
flexibility varying from L, to L.

Let 9 be a subset ofV,, of cardinalityq. A parameterized ASF is defined as
follows:

S?%(f(x)v A) = quﬂ%ﬁﬂ:q { Z max [ (fi(z) — fz’R)7 0]}7 (5)

ield
whereg € N,,, andX = {\1,..., A\ }, \; > 0,¢ € N,,,. Notice that
forq € Ny, = sh(f(x),A) > 0;
g =1:sp(f(@),\) = max max[\(fi(w) = f), 0] = 5% ( (), \);

qg=m: Sylg(f(x)a /\) = Z ma'X[Al(fz(x) - flR)vo] = S}%(f((E), A)
1€ENm,
Here, =" means equality in the case where there exist no feasiblatisnb
x € X, which strictly dominate the reference point, thatfigx) < fZ foralli € N,,.

For any given; € N,,, the problem to be solved is

min s (f(x), A). (6)

It is obvious that using problem (6), every feasible solutid the multiobjective
problem (including Pareto optimal) is supported. Indeedemganyx € X, the
reference pointf® = f(z) and a vector of weighting coefficients > 0, the
optimal solution to problem (6) is: with the optimal value ofs%(f(x),\) equal
zero. Thus, the first of the two requirements, mentionedanntroduction, is satisfied.

For anyr € X, denotel, = {i € N,,, : f& < fi(x)}. The following two results,
analogous to Theorems 3 and 4, describe the conditionsr urieh the second of the
two requirements mentioned in introduction is satisfied.

THEOREMS5 (Nikulin, Miettinen and Nakek, 2012) Given problen®), let £ be a
reference point such that there exists no feasible solutidrose image strictly domi-
natesf . Also assume; > 0 for all i € N,,,. Then, any optimal solution of problem
(6) is a weakly Pareto optimal solution.
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THEOREM6 (Nikulin, Miettinen and Ndkek, 2012) Given problen®), let £ be a
reference point. Also assume > 0 for all i € N,,,. Then, among the optimal
solutions of probleng6) there exists at least one Pareto optimal solution.

Theorem 6 implies that the uniqueness of the optimal solgicarantees its Pareto
optimality. Notice that the facts stated above about thetsois of parameterized
ASFs also implicitly follow from the results of Theorem 1. 3loow this, it is sufficient
to prove thats% (f(x), ) is increasing. Moreover, the parameterized ASF is strictly
increasing if there are no feasible solutions dominafifig

4. Scalarization technique and mathematical programming pob-
lem formulation for 3-objective portfolio investment

Let us first consider multicriteria minimization problen).(In order to derive its single
objective version, alln objectives are converted into the following constraints:

i(z) <y, 1 € N,
S )

For reference point based scalarizations, constraintarg/jransformed into the fol-
lowing inequalities:

Ni(filx) = f1) < wi, i € Npp, 8)

wherey; are dummy variables/,* are aspiration levels ang are weights.

Let vectorz = (z1,x9,...,z,) denote portfolios, i.e. vectors of fractions of
the investment capital spent on individual assetfe the number of assets, which
are denoted by natural numbdls, ..., n}, @ be a positive semidefinite covariance
matrix, © € R™ is a vector of mean returns and= (vy,...,v,), wherev; is a
liquidity characteristic of assét For simplicity, we assume that the liquidity of the
portfolio is additive, and the characteristic of assetiliify is subject to minimization.
Both the mean returns and the covariance coefficients airasgetl using statistical
methods over time series of historical asset prices.

Using the notations above, the extended mean-varianaliiyg portfolio invest-
ment problem is defined as follows:

min f(z) = 27 Qx,

min fo(x) = —puTx,

min f3(z) =0Tz, 9)
s.t. {xeRi: > :vz-:l}.

i€Np,

Here the first quadratic objective minimizes variance, #eosad linear objective of
maximizing the mean return is replaced with minimizing tleg&tive mean return for
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uniformity and the third linear objective minimizes thedidity level of portfolios.

Then, in the case of parameterized ASF (5), the scalarizsulgan for three objec-
tives, that isn = 3, is formulated as follows:

min z,
st. Y yi <zforanyl? C Ny, : [I9] =gq,
icla
reRY: Y x; =1
i€EN,

5. Numerical experiments

When mathematical programming model as above is formuldedhe problem,
it can be solved with standard optimization methods. Tositate the use of the
proposed method for solving the three-objective portfaliestment problem (10) it
was implemented in Python language and computed using GOpilmizer software.

The problem is generated for 300 randomly selected comgaamgs from the US
stock market. Rates of return were calculated for each basinday relative to the
same day one week before. The time period was from 01.01.2014.09.2019. As
a liquidity characteristic of assets we considered therse®f their median trading
volumes.

However this approach may seem primitive, it reflects thendifn of liquidity as
a minimization objective, which suffices for a proof-of-cept example.

Solutions are obtained for four sets of weights, which amestbased on ideal
and nadir points. One set consists of equal weights for gflatlves and three other
sets emphasize each one particular objective. ldeal ppichasen as the vector of
aspiration levels.

Calculation results for each objective, different sets efghting coefficients and
values ofq are presented in Tables 1 through 3. Below, the objectivetiom values
in conventional forms suitable for investor are presentbe: first objective, related
to standard deviation of returns and the second objectalated to expected return
(in contrast to the negative expected return in the modeipical representation of
these data is displayed in the Figs. 1 through 3.

Despite the fact that experiments were conducted for ore skdtand results are
preliminary, some conclusions can already be made. Firali,ofalculation are prac-
tically relevant, the number of assets used is comparalite partfolio sizes that in-
vestors deal with in the real world.
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Table 1. Standard deviation

mphasis No emphasis| Standard Expected Trade  volume
q deviation return index
1 0.0789773 | 0.0599774 | 0.0935434 | 0.0668605
2 0.0510246 | 0.0412636 | 0.0935434 | 0.0474164
3 0.0388386 | 0.0348017 | 0.0530248 | 0.0423503
Table 2. Expected return
mphasis No emphasis| Standard Expected Trade  volume
q deviation return index
1 0.0087615 | 0.0083066 | 0.0096741 | 0.007894
2 0.0072291 | 0.0070765 | 0.0096741 | 0.006576
3 0.0061713 | 0.0060213 | 0.0078653 | 0.005823
Table 3. Trade volume index
mphasis No emphasis| Standard Expected Trade  volume
4 deviation return index
1 8.57E-06 | 7.72E-06 1.202E-05 | 5.514E-06
2 3.58E-06 | 4.447E-06 | 1.202E-05 | 1.57E-06
3 1.14E-06 | 1.294E-06 | 6.057E-06 | 2.115E-07
Standard deviation objective
0.14621
0.12621
0.10621
0.08621 ——cl
0.06621 s ~ e
- [ ” 7 e TN ~ b =
0.04621 ’_"--._!- ................ 3
0.02621
0.00621
Noemphasis  Std. deviation Exp. return  Trade vol index

Figure 1. Standard deviation
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Expected return objective
100185
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[ .
"_.- . el — =1
60185 W ssanasanns »° ."’0
- =2
0.0040185 seepan 03
20185
0.0000185
MNoemphasis  Std. deviation Exp. return  Trade vol index
Figure 2. Expected return
Trade volume index objective
3.005E-05
2 505E-05
2.005E-05
—— =1
1.505E-05 —_— =2
1.005E-05 ke 3
-
N
-
-
5.052E-06 R
- - - e N
< 2E-08 rrrresssasas " -.,e
MNoemphasis  Std. deviation Exp. return  Trade vol index

Figure 3. Trade volume index

Second, different Pareto solutions are obtained for diffevalues of parameter
The values of objectives fgr= 2 always lie between the corresponding valueg;fer
1andq = 3. Inthe case of = 3, the scalarizing function resulted in lower values of all
objectives (which is better for standard deviation anditigy characteristic, and worse
for expected return). Thus, solution in the caseg ef 2 might be more preferable for
the DM, this showing the benefits from using different typesaalarization.

6. Assisting the decision maker in guiding interactive soltion pro-
cess

In the numerical experiments, reported in the previous@ectveights were chosen
with emphases on different objectives and they were fixetetBaptimal solutions are
generated for these weights and presented to the DM. Alfeehg the DM may take
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actively part in the solution process and specify prefezénformation interactively by
classifying each of the objective functions into differelaisses (Miettinen and Makela,
2006). In the proposed approach two classes are considered:

e f; values that are desired to be improved (i.e. decreased),
e f; values that may be impaired (i.e. increased).

In comparison to other classification-based approach, wkeasbinary preference
information for each objective, which is the least possisteount of information.

Further on, this section describes how the preferenceseoDtti can be trans-
formed into the weighing coefficients based on the propeiiethe corresponding
scalarization type. For illustrative purpose, the intévacprocedure is considered for
the case of three objectives, thatss,= 3. Then, the parameterized ASF (5) has the
following form:

sh(f(z),A) = max { Z max | — £, ]} (11)

1iC{1,23}:|1=q |

whereq = 1,2,3 andX = (A1, A2, A3), A; >0, i € N3.

Taking into account the fact that an ideal vecfdr= (f{, f1, f1) is chosen as a
reference poinf*, we have:
forg=1
sh(f(2), A) = max{ max[\i (f1(2) = 1%),0], maxha(fa(@) — ££),0],
max[\a(fa(x) - /1), 0]}
= max{ M1 (f1(@) = 1), Mo (fa(@) = ). Nafa() = )}

forg=2

$h(f (), A) = max{ max [\ (f1(2) = £1),0] + maxDa(fa(x) — 5,0,
Palfa(@) = 19,0+ maxDa(f3 () — ££),0],

max{Xa (f2(x) — f£1),0] + max|Xa(fs(x) - f11),0]}

= max{ \(fi(e) = f1) + Xa(fo(@) = f),

N(fi(@) = 1) + afs(@) = ),

Na(falw) = )+ Na(fale) = )

max

€T



An interactive compromise programming for portfolio intreent problem 205

forq=3

sh(f(x),\) = maX{ max[A1 (f1(z) = f1), 0] + max[Aa(fa(z) = f5), 0]
+max(a(f3() - £, 0]}
=M (f1(2) = f1) + Xa(falx) = f3) + As(fs(@) = f3)-

In order to show how coefficients; are used to direct the interactive procedure,
suppose that the problem (6) is solved fo= 1, ¢ = 2 andg = 3. Let us first
consider the case qf= 1:

max{ X1 (fi(@) = ) da(fee) = £), dalfsl@) = F) } = (12)

In other words, the minimal distance from the ideal pointiie Pareto frontier in
terms of parameterized ASF with= 1 is «. The set of points, for which the distance
from the reference point is equal tois called thex-level set. The image af-level
set for (12) looks similar to what we always have for the Clslgy type ASF, that is,
it has cubic shape. Now, we determine the direction in whigd $et intersects the
Pareto frontier, that is, the coordinates of the corner efctibe.

Here, three cases are possible:
Case 1:

{fi(@) = a/M + f1, f2(2) € [f3, 0/ 2 + f3], f3(x) € [f3, /A3 + f3]};
Case 2:
{fi(@) € [ /M + fi], fa(2) = afXa + [, fa(x) € [f5, /A3 + f3]};
Case 3:
{fi(@) € [, a/M + fi], fa(2) € [f3, 0/ Xe + 3], f3(x) = /A3 + f3}.
From here we obtain that the corner coordinategay@\; + f1, o/ Ao+ f4, o/ Az + f1).
Thus, we can change coordinates of the ideal point projeaito Pareto front by

moving this corner.

Now let us consider the corresponding functions¢fet 2 andg = 3:

max{ A (f1(@) = f) + Aa(fal@) = F), M (fi() = F1) + Ns(fa() = £1),
No(f2(@) = 1)+ Ns(fol@) = f)} = o (13)

M (fr(x) = 1) + Xa(f2() = f3) + As(f3(x) — f5) = . (14)
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Here,«a is the minimal distance from the ideal point to the Paretatigy in terms
of the parameterized ASF far = 2 andq = 3, respectively. Detailed graphical
constructions ofv-level sets for (13) and (14) are demonstrated in Nikulinettinen
and Makela (2012). For controlling the interactive prexeve are interested only in
the case where all the three sums in (13) and the sum in (14qa& toc. For (14),
this forms a flat triangular face, which is contained in a plaith the normal vector
(A1, A2, A3). For (13), the flat triangle transforms into a triangle pyiduwith top
vertex (a/2X\1 + f1,a/2Xs + f1,a/2Xs + f1). From here it follows that we can
control the place of potential contact aflevel set for (13) andv-level set for (14)
with the image of the feasible set by changing the normaloremtthe top vertex.

A

-1.0

(/5" a) 5~ 1 o) 2+ 1))

-1.0

s

—-1.5

o/ {1 af o 1 af K+ 1)

(

. .

Figure 4. Twoa-level sets of parameterized ASFs fo= 1 corresponding to different
values of weighing coefficien{s\], A5, \5) and (A}, A\J, \Y)

Thus, the weighing coefficients vectarindicates the relative importance of the
deviations of the objectives valug¢gr),i = 1,2, 3, from the ideal vecto(f{, £, f1)
and can be used to reflect the DM preferences. It follows frioenabove discussion
that for all values of parameterby decreasing,;, we increase the value gf(x) and
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by increasing\;, we decrease the value ff(x).

Figures 4 through 6 illustrate how different valuesaf, Ao and A3 affect the
directions, in whichn-level sets of ASFs will intersect the Pareto frontier.

Using the information obtained above about the relationvbeh objective func-
tions and weighing coefficients, the basic steps of the actere procedure can be
described as follows:

1. Initially, an ideal vector is chosen as a reference paidtweighing coefficients
are inverse with respect to the corresponding differeneésden the nadir and
ideal vector to provide objective functions normalization

2. At each iteration, objective function values are calculated at the currergtea
optimal decision vectar, € P™(X) and presented to the DM.

3. (S)he then expresses what kind of changes would be dest@ther/him by
classifying each of the objective functions into two classee. whether the
objective is desired to be decreased or increased.

4. Then, weighing coefficients are changed according to teaDswer and rela-
tion between objectives and weights described above.

5. Process is stopped when the DM is satisfied with the olitaiaktion.

The advantage of this procedure is that the investor hasterhéw of the solu-
tions set and may direct solution process towards the gatlgninore desirable effi-
cient portfolios. These portfolios may be skipped when Wweigre generated by the
method programmatically. Moreover, the procedure doesemtire any additional
mathematical knowledge for the investor and s/he may esgneerences in a conve-
nient way, based on the information known about objectivefions.

7. Conclusion

In this paper an approach, based on parameterized ASFs pega0 for applying
in solving the multiobjective portfolio investment proble Quadratic programming
formulation of the problem with three objectives is presentA new way of directing
interactive process by changing the weighing coefficiemgetiding on the metric
used in ASF is introduced. The DM is asked to provide simdiermation, which can
be considered an advantage of this approach.

The numerical experiments were performed to illustratddbethat different ASFs
allow to detect more versatile Pareto optimal points, amtByonous use (Miettenen
and Makela, 2006) of these ASFs, as a result, may reducaubimber of iterations
needed for interactive procedure to converge. Thus, thegsed method provides the
DM with a better view of the potential compromises and givesearflexible tools for
detecting Pareto optimal solutions.
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(

1

Figure 5. Twoa-level sets of parameterized ASFs fo 2 corresponding to different
values of weighing coefficien{s\], A5, \5) and (A}, A\J, \Y)
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