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Abstract: This paper addresses an approach for solving multicrite-
ria portfolio investment problem. The original Markowitz mean-variance
model is formulated as a problem of bi-objective optimization with linear
and quadratic objective functions. In the current work, this model is ex-
tended by introducing a new objective, reflecting asset properties that are
useful for the portfolio allocation process. A method basedon parameter-
ized achievement scalarizing function is applied to produce Pareto opti-
mal portfolios. A mathematical programming formulation that allows for
solving the problem with conventional optimization methods is presented.
In addition, a method of reflecting the decision maker’s preferences by
means of changing the weights in the achievement scalarizing functions is
introduced. A decision making process is simulated for the three-objective
portfolio optimization problem.
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1. Introduction

The mean-variance model of portfolio investment, first studied by Harry Markowitz
in the 1950s (see Markowitz, 1952, 1959) is formulated as a bi-objective optimization
problem with linear (expected return) and quadratic (variance) objective functions.
The classical approach to making decisions assumes deriving the two-dimensional
Pareto front and letting the investor choose the most preferred combination of the ob-
jective function values. In real world application, knowing only portfolio’s risk-return
characteristics might be not enough for portfolio selection. There are many other
factors and measures that impact portfolio performance, such as transaction costs and
tax effects, specific investment guidelines and institutional features, hedging needs,
market impact costs, estimation errors etc. (see, e.g., Alcada-Almeida et al., 2009; Utz,
Wimmer and Steuer, 2015). Furthermore, based on the liquidity of different securities,
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their trading costs may be significantly different (Kolm, T¨utüncü and Fabozzi, 2014).
Out of two securities with similar expected return and risk profiles, one with higher
liquidity is more likely to have higher post-transaction cost returns. Therefore, a
portfolio construction framework that ignores transaction costs will lead to suboptimal
portfolios. For this purpose, the current research work proposes to incorporate into the
model an additional linear objective that reflects those characteristics of an asset. Thus,
original bi-objective problem transforms into a problem with three and more objectives.

The traditional approach to solving multicriteria optimization problems with three
and more objectives is by scalarization. It involves formulating a single objective prob-
lem that is related to the multicriteria problem by means of areal-valued scalarizing
function typically being a function of the individualized objective functions of the mul-
ticriteria problem, auxiliary scalar or vector variables,and/or scalar or vector param-
eters. Sometimes, the feasible set of the multicriteria optimization problem is addi-
tionally restricted by new constraint functions, related to the objective functions of the
multicriteria problem and/or the new variables introduced. Two major requirements are
set for a scalarizing function in order to provide method completeness (see Sawaragi,
Nakayama and Tanino, 1985):

• it should be able to cover the entire set of Pareto optimal solutions, and
• every solution found by means of scalarization should be (weakly) Pareto opti-

mal.

One of the widely spread approaches of dealing with multipleconflicting objectives
involves constructing and optimizing a so-called achievement scalarizing function
(ASF). This method was introduced in Wierzbicki (1980) and is based on a reference
point of aspiration levels. The ASF can be interpreted as minimizing the distance from
a reference point, specified by the decision maker (DM), to the feasible region, if the
reference point is unattainable, or, alternatively, maximizing the distance. The distance
is defined by some appropriate metric, introduced in the objective space. Sometimes,
the DM may require more advanced scalarization mechanisms.In Nikulin, Miettinen
and Mäkelä (2012) a parameterized version of an ASF was proposed. Those authors
introduced an integer parameter in order to control the degree of metric flexibility
varying fromL1 to L∞. It was proven that the parameterized ASF is able to detect
any Pareto optimal solutions. Moreover, conditions under which the Pareto optimality
of each solution produced by the parameterized ASF is guaranteed was also obtained
in Nikulin, Miettinen and Mäkelä (2012). In Wilppu, Mäkelä and Nikulin (2017) a
new family of two-slope parameterized ASFs that generalizes both parameterized ASF
and two-slope ASF were presented. These two-slope parameterized ASFs guarantee
(weak) Pareto optimality of the solutions produced, and cangenerate every (weakly)
Pareto optimal solution.

In interactive methods, the DM works together with an analyst of an interactive
computer program. (By ananalysthere is meant a person or a computer program
responsible for the mathematical side of the solution process, Miettinen, 1999). One
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can say that the analyst tries to determine the preference structure of the DM in an
interactive way. A solution pattern is formed and repeated several times. After every
iteration, some information is given to the DM and (s)he is asked to answer some
questions or provide some other type of information. The working order in these
methods is: analyst, DM, analyst, DM, etc.

After a reasonable (finite) number of iterations every interactive method should
yield a solution that the DM can be satisfied with and/or convinced that no considerably
better solution exists. The basic steps in interactive algorithms can be expressed as

• find an initial feasible solution,
• interact with the DM, and
• obtain a new solution (or a set of new solutions). If the new solution (or one of

them) or one of the previous solutions is acceptable to the DM, stop. Otherwise,
go to the previous step.

Interactive methods differ from each other by the form, in which information is
given to the DM, by the form, in which information is providedby the DM, and how
the problem is transformed into a single objective optimization problem (see, e.g.,
Miettinen, 1999; Miettenen and Mäkelä, 2006; Steuer and Choo,1983).

In Montonen, Ranta and Mäkelä (2019) authors introduce the interactive multi-
objective optimization method using the two-slope parameterized achievement scalar-
izing function and adapt it for a nonsmooth multiobjective mixed-integer nonlinear
optimization problem. The current work investigates the applicability of interactive
optimization approach, based on the parameterized ASF, to multicriteria portfolio in-
vestment problem. A new way to manage an interactive processby changing weighing
coefficients of scalarizing functions is introduced. Usingcustom scalarization tech-
nique, the three objective portfolio investment problem isconverted into a single ob-
jective problem of mathematical programming and solved by the optimization solver
software. Numerical experiments illustrate how synchronous usage (Miettinen and
Mäkelä, 2006) of the scalarizing functions may be potentially advantageous for obtain-
ing different Pareto optimal portfolios.

2. Basic notations and definitions

Let X be an arbitrary set of feasible solutions or a set of decisionvectors. Let a vector
valued functionf : X → R

m, consisting ofm ≥ 2 partial objective functions, be
defined on the set of feasible solutions:

f(x) = (f1(x), f2(x), . . . , fm(x)).

Without loss of generality we may assume that every objective function is to be
minimized on the set of feasible solutions:

min
x∈X

fi(x), i ∈ Nm = {1, 2, . . . ,m}. (1)
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Further, throughout the paper we will refer toRm as an objective space and to
vectorf(x) as an objective vector.

We also assume that
1. every objective functionfi is a lower semicontinuous function;
2. X is a nonempty compact set.
Let us denote by

M i(X) = argmin
x∈X

fi(x), i ∈ Nm

a set of minima of theith objective function. Evidently, if

m
⋂

i=1

M i(X) 6= ∅,

then there exists at least one solution, which delivers a minimum for all objectives.
Such a solution can be called anideal solution. An optimization problem, which
does not contain ideal solutions is callednon-degenerateand objectives are at least
partly conflicting (Nikulin, Miettinen and Mäkelä, 2012). Simultaneous optimization
of several objectives for non-degenerate multiobjective optimization problems is not
a straightforward task, and we need to define optimality for such problems. In what
follows, we consider non-degenerate problems.

The traditional definition of the Pareto principle of optimality:

DEFINITION 1 A decision vectorx∗ ∈ X is Pareto optimalif there exists nox ∈ X
such thatfi(x) ≤ fi(x

∗) for all i ∈ Nm andfj(x) < fj(x
∗) for at least one indexj.

We can denote the set of Pareto optimal decision vectors asPm(X). Furthermore,
the set{f(x) ∈ R

m : x ∈ Pm(X)} is called thePareto frontier. For two vectors
a, b ∈ R

m, we writea ≤ b if ai ≤ bi for all i ∈ Nm. Then we say that one vector
a dominatesanother vectorb if ai ≤ bi anda 6= b. Thus, the set of Pareto optimal
solutions is simply a subset of feasible solutions, whose images are non-dominated in
the objective space.

The optimality in a multiobjective case can be introduced indifferent ways. The
following definition was firstly proposed by Slater (1950):

DEFINITION 2 A decision vectorx∗ ∈ X is weakly Pareto optimalif there exists no
x ∈ X such thatfi(x) < fi(x

∗) for all i ∈ Nm.

We can denote the set of weakly Pareto optimal decision vectors or the Slater set as
Slm(X). For two vectorsa, b ∈ R

m, we writea < b if ai < bi for all i ∈ Nm. Then
we say that one vectora strictly dominatesanother vectorb if ai < bi for all i ∈ Nm.
Thus, the set of weakly Pareto optimal solutions is a subset of feasible solutions,
whose images are strictly non-dominated in the objective space. An objective vector
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f(x) is (weakly) Pareto optimal if the corresponding decision vector is (weakly)
Pareto optimal.

Under the assumptions 1–2 mentioned earlier in the problem formulation, we
know that the set of Pareto optimal solution is non-empty, that is, there always exists
at least one Pareto optimal solution (Sawaragi, Nakayama and Tanino, 1985). Obvi-
ously, the set of Pareto optimal solutions is a subset of weakly Pareto optimal solutions.

Lower and upper bounds on objective values of all Pareto optimal solutions are
given by theideal andnadir objective vectorsf I andfN , respectively. The compo-
nentsfi of the ideal (nadir) objective vectorf I = (f I

1 , . . . , f
I
m) (fN = (fN

1 , . . . , fN
m ))

are obtained by minimizing (maximizing) each of the objective functions individually,
subject to the set of Pareto optimal solutions:

f I
i = min

x∈Pm(X)
fi(x), i ∈ Nm,

fN
i = max

x∈Pm(X)
fi(x), i ∈ Nm.∗

3. Achievement scalarizing functions

In reference point based methods (see, e.g., Wierzbicki, 1980, 1986, 1999), the DM
specifies a reference pointfR consisting of desirable or reasonable aspiration levels
fR
i for each objective functionfi, i ∈ Nm. The reference point only indicates what

levels of objective function values the DM considers satisfactory.

A certain class of real-valued functionssR : Rm → R, referred to as achievement
scalarizing functions (ASFs), can be used to scalarize a multiobjective optimization
problem. Achievement scalarizing functions have been introduced by Wierzbicki in
(1980). The scalarized problem is given by

min
x∈X

sR(f(x)). (2)

Pareto optimal solutions can be characterized by achievement scalarizing functions
if the functions satisfy certain requirements.

DEFINITION 3 (Wierzbicki, 1986) An ASFsR : Rm → R is said to be
1. increasing, if for anyy1, y2 ∈ R

m, y1i ≤ y2i for all i ∈ Nm, there issR(y1) ≤
sR(y

2);

∗At this point of this paper, but, in fact, concerning the entire issue, a note is due from the Editors. Namely,
it should be emphasized that it is almost unknown in the worldliterature (and, alas, also to a limited extent
in the Polish literature of the subject) that the concept of comparing the multidimensional objects analysed
(here: portfolios, characterized by the shares of individuals assets) to some kind of ideal and nadir points,
formed out of the maximum and minimum values for the particular dimensions (criteria), was formulated,
along with the entire respective procedure, first by Zdzisław Hellwig (1968), otherwise a prominent Polish
statistician and econometrician, author of several methodological innovations in these domains (ed.).
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2. strictly increasing, if for any y1, y2 ∈ R
m, y1i < y2i for all i ∈ Nm, there is

sR(y
1) < sR(y

2);
3. strongly increasing, if for any y1, y2 ∈ R

m, y1i ≤ y2i for all i ∈ Nm and
y1 6= y2, there issR(y1) < sR(y

2).

Obviously, any strongly increasing ASF is also strictly increasing, and any strictly
increasing ASF is also increasing. The following theorems define necessary and suffi-
cient conditions for an optimal solution of (2) to be (weakly) Pareto optimal:

THEOREM 1 (Wierzbicki, 1986)
1. Let sR be strongly (strictly) increasing. Ifx∗ ∈ X is an optimal solution of

problem(2), thenx∗ is (weakly) Pareto optimal.
2. If sR is increasing and the solution of(2) x∗ ∈ X is unique, thenx∗ is Pareto

optimal.

THEOREM 2 (Miettinen, 1999) IfsR is strictly increasing andx∗ ∈ X is weakly
Pareto optimal, then it is a solution of(2) with fR = f(x∗) and the optimal value
of sR is zero.

The advantage of ASFs is that any (weakly) Pareto optimal solution can be
obtained by moving the reference point only. It was shown in Wierzbicki (1986) that
the solution of an ASF depends Lipschitz continuously on thereference point. In
general, ASFs are conceptually very appealing to generate Pareto optimal solutions,
and they overcome most of the difficulties arising with othermethods, Miettinen
(1999), in the class of methods for generating Pareto optimal solutions.

In the great majority of cases, the ASF is based on the Chebyshev distance orL∞:

s∞R (f(x), λ) = max
i∈Nm

λi(fi(x) − fR
i ), (3)

whereλ is anm-vector of non-negative coefficients.

An achievement scalarizing function based on the linear distanceL1 is proposed in
Ruiz et al. (2008). Given problem (1), a reference vectorfR ∈ R

m and a vector of
strictly positive weightsλ, the additive achievement scalarizing function is defined as
follows:

s1R(f(x), λ) =
∑

i∈Nm

λi|fi(x) − fR
i |. (4)

The following properties ofs1R(f(x), λ) were proven in Ruiz et al. (2008).

THEOREM 3 (Ruiz et al., 2008) Given problem(2) with ASF defined by(4), let fR be
a reference point such thatfR is not dominated by an objective vector of any feasible
solution of problem(2). Also assumeλi > 0 for all i ∈ Nm. Then, any optimal
solution of problem(2) is a weakly Pareto optimal solution.
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THEOREM 4 (Ruiz et al., 2008) Given problem(2) with ASF defined by(4) and any
reference pointfR, assumeλi > 0 for all i ∈ Nm. Then, among the optimal solutions
of problem(2) there exists at least one Pareto optimal solution. If the optimal solution
of problem(2) is unique, then it is Pareto optimal.

In Nikulin, Miettinen and Mäkelä (2012) authors extend the ideas of Ruiz et al.
(2008) by introducing parameterization based on the notionof embedded subsets.
Here, an integer parameterq ∈ Nm is used in order to control the degree of metric
flexibility varying fromL1 to L∞.

Let Iq be a subset ofNm of cardinalityq. A parameterized ASF is defined as
follows:

sqR(f(x), λ) = max
Iq⊆Nm:|Iq|=q

{

∑

i∈Iq

max [λi(fi(x) − fR
i ), 0]

}

, (5)

whereq ∈ Nm andλ = {λ1, . . . , λm}, λi > 0, i ∈ Nm. Notice that

forq ∈ Nm : sqR(f(x), λ) ≥ 0;

q = 1 : s1R(f(x), λ) = max
i∈Nm

max[λi(fi(x)− fR
i ), 0] ∼= s∞R (f(x), λ);

q = m : smR (f(x), λ) =
∑

i∈Nm

max[λi(fi(x)− fR
i ), 0] = s1R(f(x), λ).

Here, ”∼=” means equality in the case where there exist no feasible solutions
x ∈ X , which strictly dominate the reference point, that is,fi(x) < fR

i for all i ∈ Nm.

For any givenq ∈ Nm, the problem to be solved is

min
x∈X

sqR(f(x), λ). (6)

It is obvious that using problem (6), every feasible solution of the multiobjective
problem (including Pareto optimal) is supported. Indeed, given anyx ∈ X , the
reference pointfR = f(x) and a vector of weighting coefficientsλ > 0, the
optimal solution to problem (6) isx with the optimal value ofsqR(f(x), λ) equal
zero. Thus, the first of the two requirements, mentioned in the introduction, is satisfied.

For anyx ∈ X , denoteIx = {i ∈ Nm : fR
i ≤ fi(x)}. The following two results,

analogous to Theorems 3 and 4, describe the conditions, under which the second of the
two requirements mentioned in introduction is satisfied.

THEOREM 5 (Nikulin, Miettinen and M̈akel̈a, 2012) Given problem(6), let fR be a
reference point such that there exists no feasible solution, whose image strictly domi-
natesfR. Also assumeλi > 0 for all i ∈ Nm. Then, any optimal solution of problem
(6) is a weakly Pareto optimal solution.
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THEOREM 6 (Nikulin, Miettinen and M̈akel̈a, 2012) Given problem(6), let fR be a
reference point. Also assumeλi > 0 for all i ∈ Nm. Then, among the optimal
solutions of problem(6) there exists at least one Pareto optimal solution.

Theorem 6 implies that the uniqueness of the optimal solution guarantees its Pareto
optimality. Notice that the facts stated above about the solutions of parameterized
ASFs also implicitly follow from the results of Theorem 1. Toshow this, it is sufficient
to prove thatsqR(f(x), λ) is increasing. Moreover, the parameterized ASF is strictly
increasing if there are no feasible solutions dominatingfR.

4. Scalarization technique and mathematical programming prob-
lem formulation for 3-objective portfolio investment

Let us first consider multicriteria minimization problem (1). In order to derive its single
objective version, allm objectives are converted into the following constraints:

fi(x) ≤ yi, i ∈ Nm,
y ∈ R

m.
(7)

For reference point based scalarizations, constraints (7)are transformed into the fol-
lowing inequalities:

λi(fi(x)− fR
i ) ≤ yi, i ∈ Nm, (8)

whereyi are dummy variables,fR
i are aspiration levels andλi are weights.

Let vectorx = (x1, x2, . . . , xn) denote portfolios, i.e. vectors of fractions of
the investment capital spent on individual assets,n be the number of assets, which
are denoted by natural numbers{1, . . . , n}, Q be a positive semidefinite covariance
matrix, µ ∈ R

n is a vector of mean returns andv = (v1, . . . , vn), wherevi is a
liquidity characteristic of asseti. For simplicity, we assume that the liquidity of the
portfolio is additive, and the characteristic of asset liquidity is subject to minimization.
Both the mean returns and the covariance coefficients are estimated using statistical
methods over time series of historical asset prices.

Using the notations above, the extended mean-variance-liquidity portfolio invest-
ment problem is defined as follows:

min f1(x) := xTQx,
min f2(x) := −µTx,
min f3(x) := vTx,

s.t.

{

x ∈ R
n
+ :

∑

i∈Nn

xi = 1

}

.

(9)

Here the first quadratic objective minimizes variance, the second linear objective of
maximizing the mean return is replaced with minimizing the negative mean return for
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uniformity and the third linear objective minimizes the liquidity level of portfolios.

Then, in the case of parameterized ASF (5), the scalarized problem for three objec-
tives, that ism = 3, is formulated as follows:

min z,
s.t.

∑

i∈Iq

yi ≤ z for anyIq ⊆ Nm : |Iq| = q,

yi ≥ 0, i ∈ Nm,
λi(fi(x)− fR

i ) ≤ yi, i ∈ Nm,
x ∈ R

n
+ :

∑

i∈Nn

xi = 1.

(10)

5. Numerical experiments

When mathematical programming model as above is formulatedfor the problem,
it can be solved with standard optimization methods. To illustrate the use of the
proposed method for solving the three-objective portfolioinvestment problem (10) it
was implemented in Python language and computed using Gurobi Optimizer software.

The problem is generated for 300 randomly selected company shares from the US
stock market. Rates of return were calculated for each business day relative to the
same day one week before. The time period was from 01.01.2014to 16.09.2019. As
a liquidity characteristic of assets we considered the inverse of their median trading
volumes.

However this approach may seem primitive, it reflects the definition of liquidity as
a minimization objective, which suffices for a proof-of-concept example.

Solutions are obtained for four sets of weights, which are scaled based on ideal
and nadir points. One set consists of equal weights for all objectives and three other
sets emphasize each one particular objective. Ideal point is chosen as the vector of
aspiration levels.

Calculation results for each objective, different sets of weighting coefficients and
values ofq are presented in Tables 1 through 3. Below, the objective function values
in conventional forms suitable for investor are presented:the first objective, related
to standard deviation of returns and the second objective, related to expected return
(in contrast to the negative expected return in the model). Graphical representation of
these data is displayed in the Figs. 1 through 3.

Despite the fact that experiments were conducted for one data set and results are
preliminary, some conclusions can already be made. First ofall, calculation are prac-
tically relevant, the number of assets used is comparable with portfolio sizes that in-
vestors deal with in the real world.
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Table 1. Standard deviation
P
P
P
P
P
P
PP

q
Emphasis

No emphasis Standard
deviation

Expected
return

Trade volume
index

1 0.0789773 0.0599774 0.0935434 0.0668605
2 0.0510246 0.0412636 0.0935434 0.0474164
3 0.0388386 0.0348017 0.0530248 0.0423503

Table 2. Expected return
P
P
P
P
P
P
PP

q
Emphasis

No emphasis Standard
deviation

Expected
return

Trade volume
index

1 0.0087615 0.0083066 0.0096741 0.007894
2 0.0072291 0.0070765 0.0096741 0.006576
3 0.0061713 0.0060213 0.0078653 0.005823

Table 3. Trade volume index

P
P
P
P
P
P
PP

q
Emphasis

No emphasis Standard
deviation

Expected
return

Trade volume
index

1 8.57E-06 7.72E-06 1.202E-05 5.514E-06
2 3.58E-06 4.447E-06 1.202E-05 1.57E-06
3 1.14E-06 1.294E-06 6.057E-06 2.115E-07

Figure 1. Standard deviation
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Figure 2. Expected return

Figure 3. Trade volume index

Second, different Pareto solutions are obtained for different values of parameterq.
The values of objectives forq = 2 always lie between the corresponding values forq =
1 andq = 3. In the case ofq = 3, the scalarizing function resulted in lower values of all
objectives (which is better for standard deviation and liquidity characteristic, and worse
for expected return). Thus, solution in the case ofq = 2 might be more preferable for
the DM, this showing the benefits from using different types of scalarization.

6. Assisting the decision maker in guiding interactive solution pro-
cess

In the numerical experiments, reported in the previous section, weights were chosen
with emphases on different objectives and they were fixed. Pareto optimal solutions are
generated for these weights and presented to the DM. Alternatively, the DM may take
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actively part in the solution process and specify preference information interactively by
classifying each of the objective functions into differentclasses (Miettinen and Mäkelä,
2006). In the proposed approach two classes are considered:

• fi values that are desired to be improved (i.e. decreased),
• fi values that may be impaired (i.e. increased).

In comparison to other classification-based approach, we ask for binary preference
information for each objective, which is the least possibleamount of information.

Further on, this section describes how the preferences of the DM can be trans-
formed into the weighing coefficients based on the properties of the corresponding
scalarization type. For illustrative purpose, the interactive procedure is considered for
the case of three objectives, that is,m = 3. Then, the parameterized ASF (5) has the
following form:

sqR(f(x), λ) = max
Iq⊆{1,2,3}:|Iq|=q

{

∑

i∈Iq

max [λi(fi(x) − fR
i ), 0]

}

, (11)

whereq = 1, 2, 3 andλ = (λ1, λ2, λ3), λi > 0, i ∈ N3.

Taking into account the fact that an ideal vectorf I = (f I
1 , f

I
2 , f

I
3 ) is chosen as a

reference pointfR, we have:

for q = 1

s1R(f(x), λ) = max
{

max[λ1(f1(x) − fR
1 ), 0],max[λ2(f2(x)− fR

2 ), 0],

max[λ3(f3(x) − fR
3 ), 0]

}

= max
{

λ1(f1(x)− f I
1 ), λ2(f2(x)− f I

2 ), λ3(f3(x) − f I
3 )
}

;

for q = 2

s2R(f(x), λ) = max
{

max[λ1(f1(x) − fR
1 ), 0] + max[λ2(f2(x) − fR

2 ), 0],

max[λ1(f1(x) − fR
1 ), 0] + max[λ3(f3(x) − fR

3 ), 0],

max[λ2(f2(x) − fR
2 ), 0] + max[λ3(f3(x) − fR

3 ), 0]
}

= max
{

λ1(f1(x)− f I
1 ) + λ2(f2(x)− f I

2 ),

λ1(f1(x)− f I
1 ) + λ3(f3(x) − f I

3 ),

λ2(f2(x)− f I
2 ) + λ3(f3(x) − f I

3 )
}

;
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for q = 3

s3R(f(x), λ) = max
{

max[λ1(f1(x) − fR
1 ), 0] + max[λ2(f2(x) − fR

2 ), 0]

+max[λ3(f3(x)− fR
3 ), 0]

}

= λ1(f1(x) − f I
1 ) + λ2(f2(x)− f I

2 ) + λ3(f3(x)− f I
3 ).

In order to show how coefficientsλi are used to direct the interactive procedure,
suppose that the problem (6) is solved forq = 1, q = 2 andq = 3. Let us first
consider the case ofq = 1:

max
{

λ1(f1(x) − f I
1 ), λ2(f2(x)− f I

2 ), λ3(f3(x)− f I
3 )
}

= α. (12)

In other words, the minimal distance from the ideal point to the Pareto frontier in
terms of parameterized ASF withq = 1 is α. The set of points, for which the distance
from the reference point is equal toα is called theα-level set. The image ofα-level
set for (12) looks similar to what we always have for the Chebyshev type ASF, that is,
it has cubic shape. Now, we determine the direction in which this set intersects the
Pareto frontier, that is, the coordinates of the corner of the cube.

Here, three cases are possible:
Case 1:

{f1(x) = α/λ1 + f I
1 , f2(x) ∈ [f I

2 , α/λ2 + f I
2 ], f3(x) ∈ [f I

3 , α/λ3 + f I
3 ]};

Case 2:

{f1(x) ∈ [f I
1 , α/λ1 + f I

1 ], f2(x) = α/λ2 + f I
2 , f3(x) ∈ [f I

3 , α/λ3 + f I
3 ]};

Case 3:

{f1(x) ∈ [f I
1 , α/λ1 + f I

1 ], f2(x) ∈ [f I
2 , α/λ2 + f I

2 ], f3(x) = α/λ3 + f I
3 }.

From here we obtain that the corner coordinates are(α/λ1+f I
1 , α/λ2+f I

2 , α/λ3+f I
3 ).

Thus, we can change coordinates of the ideal point projection onto Pareto front by
moving this corner.

Now let us consider the corresponding functions forq = 2 andq = 3:

max
{

λ1(f1(x) − f I
1 ) + λ2(f2(x)− f I

2 ), λ1(f1(x) − f I
1 ) + λ3(f3(x)− f I

3 ),

λ2(f2(x) − f I
2 ) + λ3(f3(x) − f I

3 )
}

= α. (13)

λ1(f1(x) − f I
1 ) + λ2(f2(x) − f I

2 ) + λ3(f3(x)− f I
3 ) = α. (14)
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Here,α is the minimal distance from the ideal point to the Pareto frontier in terms
of the parameterized ASF forq = 2 and q = 3, respectively. Detailed graphical
constructions ofα-level sets for (13) and (14) are demonstrated in Nikulin, Miettinen
and Mäkelä (2012). For controlling the interactive process we are interested only in
the case where all the three sums in (13) and the sum in (14) areequal toα. For (14),
this forms a flat triangular face, which is contained in a plane with the normal vector
(λ1, λ2, λ3). For (13), the flat triangle transforms into a triangle pyramid with top
vertex (α/2λ1 + f I

1 , α/2λ2 + f I
2 , α/2λ3 + f I

3 ). From here it follows that we can
control the place of potential contact ofα-level set for (13) andα-level set for (14)
with the image of the feasible set by changing the normal vector or the top vertex.

Figure 4. Twoα-level sets of parameterized ASFs forq = 1 corresponding to different
values of weighing coefficients(λ′

1, λ
′
2, λ

′
3) and(λ′′

1 , λ
′′
2 , λ

′′
3)

Thus, the weighing coefficients vectorλ indicates the relative importance of the
deviations of the objectives valuesfi(x), i = 1, 2, 3, from the ideal vector(f I

1 , f
I
2 , f

I
3 )

and can be used to reflect the DM preferences. It follows from the above discussion
that for all values of parameterq by decreasingλi, we increase the value offi(x) and
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by increasingλi, we decrease the value offi(x).

Figures 4 through 6 illustrate how different values ofλ1, λ2 and λ3 affect the
directions, in whichα-level sets of ASFs will intersect the Pareto frontier.

Using the information obtained above about the relation between objective func-
tions and weighing coefficients, the basic steps of the interactive procedure can be
described as follows:

1. Initially, an ideal vector is chosen as a reference point and weighing coefficients
are inverse with respect to the corresponding differences between the nadir and
ideal vector to provide objective functions normalization.

2. At each iterationc, objective function values are calculated at the current Pareto
optimal decision vectorxc ∈ Pm(X) and presented to the DM.

3. (S)he then expresses what kind of changes would be desirable to her/him by
classifying each of the objective functions into two classes, i.e. whether the
objective is desired to be decreased or increased.

4. Then, weighing coefficients are changed according to the DM answer and rela-
tion between objectives and weights described above.

5. Process is stopped when the DM is satisfied with the obtained solution.

The advantage of this procedure is that the investor has a better view of the solu-
tions set and may direct solution process towards the potentially more desirable effi-
cient portfolios. These portfolios may be skipped when weights are generated by the
method programmatically. Moreover, the procedure does notrequire any additional
mathematical knowledge for the investor and s/he may express preferences in a conve-
nient way, based on the information known about objective functions.

7. Conclusion

In this paper an approach, based on parameterized ASFs is proposed for applying
in solving the multiobjective portfolio investment problem. Quadratic programming
formulation of the problem with three objectives is presented. A new way of directing
interactive process by changing the weighing coefficients depending on the metric
used in ASF is introduced. The DM is asked to provide simple information, which can
be considered an advantage of this approach.

The numerical experiments were performed to illustrate thefact that different ASFs
allow to detect more versatile Pareto optimal points, and synchronous use (Miettenen
and Mäkelä, 2006) of these ASFs, as a result, may reduce thenumber of iterations
needed for interactive procedure to converge. Thus, the proposed method provides the
DM with a better view of the potential compromises and gives more flexible tools for
detecting Pareto optimal solutions.
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Figure 5. Twoα-level sets of parameterized ASFs forq = 2 corresponding to different
values of weighing coefficients(λ′

1, λ
′
2, λ

′
3) and(λ′′

1 , λ
′′
2 , λ

′′
3)
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