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Abstract :  In the paper the existence of a solution to the three-
dimensional elastoplastic problem with the Prandtl-Reuss constitu-
tive law and the Neumann boundary conditions is established. The 
proof is based on a suitable combination of the parabolic regulariza-
tion of equations and the penalty method for the elastoplastic yield 
condition. The method is applied in the case of the domain with 
smooth boundary as well as in the case of an interior crack. It is 
shown that the weak solutions to the elastoplastic problem satisfying 
the variational inequality meet all boundary conditions. 
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1. Introduction
In the standard approach to the elastoplastic problems the weak solutions are 
introduced in the form of solutions to the variational inequalities. We refer the 
reader to Temam (1983), Khludnev, Sokolowski (1997), Anzellotti (1983), Anzel-
lotti, Giaquinta (1982), Demengel (1983), Khludnev (1988), Johnson (1976), 
Suquet (1981), Temam (1986) for the related results. The variational inequal-
ities are derived under assumption that solutions to the elastoplastic problem 
are sufficiently smooth and the originally prescribed boundary conditions are 
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satisfied. On the other hand, the original boundary conditions are not easily 
recovered for the solutions to the variational inequalities, even if such a weak 
solution is regular since the set of admissible stresses is not any linear space. As 
the result at least a part of boundary conditions prescribed for the elastoplastic 
problem is not obtained for the weak solutions. The problem has been solved 
in a satisfactory way only in one-dimensional cases; it has been shown that so-
lutions of variational inequalities satisfy all boundary conditions one expects to 
obtain for the elastoplastic problem, Khludnev, Sokolowski (1997), Khludnev 
(1993a, b, 1992a, b). 

In this paper we consider the three-dimensional elastoplastic Prandtl-Reuss 
model with the Neumann boundary conditions and prove that all the original 
boundary conditions hold. The proof is based on a suitable combination of the 
parabolic regularization and the penalty method for the constraints imposed 
upon the stresses. In Section 2 domains with smooth boundaries are considered, 
and in Section 3 the case of a domain obtained by removing a smooth two 
dimensional surface from its interior is analysed. The latter corresponds to 
elastoplastic problems for bodies with interior cracks. 

We start with notations and preliminary remarks. Let O c IR3 be a bounded 
domain with a smooth boundary r having the exterior unit normal n = (n1, n2, n3). 
Denote V = (v1, V2 , v3), Vi,j = g;;:, X = (x1, X2 , X3) E n ,

J 

E. .. l'v) =  (v· · + v ·  ·) tJ 2 t,J J,i ,

i,j = 1,2,3. 
It is well known that if E.ij(v) = 0 in 0 ,  i , j  = 1, 2, 3, then vi(x) = Ci + 

bijXj, i = 1,2,3, where ci,bij E IR, bij = - bj i , i,j = 1,2,3. Linear space
of all vectors v = ( v1, v2 , V3), Vi ( x) = Ci + bij x j ,  is called the space of rigid 
displacements and denoted by R(O). 

Summation convention over repeated indices i, j, k, l = 1, 2, 3 is used through-
out the paper. All functions with two lower indices are assumed to be symmetric 
in those indices, eg. Clij = Clji, i, j = 1, 2, 3. 

To simplify the formulae below the inclusion v E L 2 (0 ) for the vector func-
tion v = (v1, v2, v3) will mean Vi E L 2 (0 ), i = 1, 2, 3, and the following notation 
is adopted for the scalar product of the vector functions u, v, 

(v, u) = (vi, ui) = l vi(x)ui(x)dx 

The same convention is used for tensor functions 

a E L 2 (0 ) for Clij E L 2 (0 ), i,j = 1, 2, 3, 
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In view of the convention we use the notation v E L 2 (D.) for the space of vector 
functions as well as for the space of tensor functions, i.e. we write 

v E L 2 (D.) and a E L 2 (D.) 

instead of v E [L2 (D.)]3 and a E [L2(D.)]9 . 

Consider all vector functions with components from L 2 (D.) satisfying the 
following conditions 

L v = 0, L(viXj  - VjXi) = 0, i,j = 1, 2, 3, v = (v1 , v2, v3). (1) 

It is clear that if p E R(D.) satisfies (1) then p = 0. In fact, we have L 2 (D.) = 
R(D.) EB R(D.)..L, and R(D.)..L coincides with the subspace of L 2 (D.) of vector func-
tions with components from L 2 (D.) satisfying (1). 

Let 

H 1(D.) = {v = (v1 , v2, v3)I Vi E L 2 (D.), i = 1,2,3, 

Vi,j E L 2 (D.), i,j = 1, 2, 3}. 

In the space H 1 (D.) we consider the following equivalent norms, 

llvlli = llvll6 + L 11Eij(v)ll6, 
i,j=l 

3 3 

lvl 1 = 1 J vl + L I J (viXj - VjXi)I + L IIEij(v)llo-
n iJ=l  n i J=l  

(2) 

(3) 

Here, 11 · llo is the norm in L 2 (D.). It can be shown by an application of the second 
Korn inequality that the norm (2) is equivalent to the usual norm in H 1 (D.). 
For the norm (3) it is easy to see that the first two terms in the right-hand side 
of (3) define the seminorm in H 1 (D.) being the norm in R(D.), and the statement 
follows from Temam (1983). 

We can consider the scalar product in H 1 (D.) inducing the norm (2), 

(u,v) = (u,v) + (Eij(u),Eij(v)), u,v E H 1 (D.) . 

In this case H 1 (D.) = R(D.) EB H};(D.), where 

H};(D.) = {v = (v1,v2,v3) E H 1 (D.)I v satisfies (l)}. 

This means that in H};(D.) the following equivalent norm is defined 

3 

lvl1 = L IIEij(v)llo •
i,j=l 

(4) 
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Furthermore, the following notation is used. Consider the space 

LD(D) = {v  = (v 1 , v2, v3)I Vi E L 1 (D), i = 1,2,3,

Sij(v) E L 1 (D), i,j = 1, 2, 3}

equipped with the norm 

3 

llvllLD(nJ = llvllucn) + L llcij(v)llucn) •
i,j=l 

Let 

LDN(D) = {v E LD(D)I v satisfies (1)}.

(5) 

Along with the usual norm (5) we shall consider the following norm in LD(D) 
(see Temam, 1983) 

3 3 

lvlLD(n) = 1 J, vl + L I J, (vixj - Vjxi)I + L llsij(v)llucnJ .
n i J = l  n i J = l  

Consequently, in the linear subspace LDN(D) of the space LD(D) the norm is 
defined as follows 

3 

llvllLDN(n) = L llcij(v)llucoJ •
i,j=l 

The space of bounded measures on D, is denoted by M 1 
( D,); M 1 

( D,) = ( C0 ( D,)) *
is the dual space of the normed space C0(D) of continuous functions with com-
pact supports, equipped with the uniform convergence topology. It is known 
that any bounded set in M 1 ( D,) is relatively compact in the (*)-weak topology, 
i.e. every bounded sequence in M 1 (D) contains a subsequence which is (*)-weak
convergent. We recall that hm E M 1 (D) is (*)-weak convergent to an element
h E M 1 (D) as m ___, oo if

hm (cp) ___, h(cp) \:/cp E Co(D). 

Introduce the Banach space of vector functions of bounded deformations 

BD(D) = {v = (v 1 , v2, v3)I Vi E L 1 (D), i = 1,2,3,

Sij(v) E M 1 (D), i,j = 1,2,3}

endowed with the norm 
3 

llvllBD(D) = llvllucn) + L llcij(v)IIM 1 (0) •
i,j=l 
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In the same way as above, 

BDN(D) = {v E BD(D)I v satisfies (1)}. 

315 

In the sequel we need the appropriate Green formula. Let erij E L 2 (D), i, j = 
1, 2, 3, erij,j E L 2 (D), i = 1, 2, 3. Then, erijnj, i = 1, 2, 3, can be considered as
elements of the space H - 1/ 2 (I') on the boundary r and, moreover, the following
formula holds, Temam (1983) 

-(erij,j, 0) = (erij, 0,j) - (erijnj, 0) i ;2 ,r \/0 E H 1 (D), i = 1, 2, 3, (6) 

where (·, -)i;2,r denotes a duality pairing between the spaces H - 1/ 2(r ) and 
Hl/2(r) .  

2. Domain with a smooth boundary
Let D, c 1R3 be a bounded domain with smooth boundary I', Q = O x  (0, T), x = 
(x 1 , x2, x 3 ) E n ,  t E (0, T). The elastoplastic problem for a body occupying the 
domain n in the nondeformable state is formulated as follows. 

Find the functions v = (v1, v2, v3), er = {erij},'T/ij,i,j = 1,2,3, defined in Q
and satisfying the following equations and inequalities 

-erij,j = f i ,  i = 1, 2, 3, 

Eij(v) = Cijkz!Ykl + 'T/ij, i , j  = 1, 2, 3, 

erijnj = 0, i = 1, 2, 3, on r x (0, T),

er= 0, t = 0. 

(7) 

(8) 

(9) 

(10) 

(11) 

The functions v, erij, Eij ( v) represent the velocity, components of the stress tensor 
and components of the strain tensor velocity, respectively. The dot denotes the 
derivative with respect tot, e.g. iJkz = d t . The convex and continuous function
1> defines the plasticity yield condition. It is assumed that the set

k = { e r =  {erij} E 1R6 I 1>(er)   O} (12) 

contains zero as its interior point, 0 Eintk.  We assume that the symmetry 
conditions Cijkz(x) = Cjikz(x) = Cklij(x) for i , j , k , l  = 1,2,3 are satisfied and 
there exist two positive constants c1, c2 such that 

(13) 

To simplify the formulae below we assume that Cijkl = oto{' o; is the Kronecker 
symbol. Nevertheless, all the results obtained in the paper are valid in general 
case (13). 
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The functions 'T/ij, i, j = 1, 2, 3, can be eliminated from (8), (9). In fact, 
multiply (8) by i'fij - aij and sum up in i, j. This leads to 

(14) 

Inequality (14) is used as the definition of a weak solution to the problem (7)-
(11). 

Consider the set of admissible stresses 

K = { a =  {ai1}1 aij E L2 (D), i , j  = 1, 2, 3, iJ?(a(x)):::; 0 a.e. in D} 

and denote by p the penalty operator related to the set K. The operator is given 
by the formula p(a) = a - 1ra, where 1 r :  L 2 (D) ------, KC L2 (D) is the operator of 
orthogonal projection with respect to the scalar product in L 2 (D). Recall that 
the operator p :  L 2 (D) ------, L 2 (D) is bounded, monotone and continuous, and we 
use the convention to denote L 2 (D) for [L2 (D)]9 . 

Let the brackets(-,•) denote the scalar product in L2 (Q), 

(u,v) = l
T

(u(t),v(t))dt 

for vector functions u,v E L2 (Q), f = (fi,h,!J). 
The space of statically admissible stresses is denoted by 

Vo(D) = { a =  {ai1}1 aij E L2 (D),i,j = 1,2,3; aij,j E L 3 (D), i = 1,2,3; 
aijnj = 0, i = 1, 2, 3, on r } .  

Suppose that there exists a function   = { f o  }, i, j = 1, 2, 3, satisfying the
equation (7) such tha t   E C2 (Q),  (0) = t(o) = 0 and (1 + "") (t) E K  n V0(D), 
where "" E IR,"" > 0, t E [0, T]. 

Now we can prove the following existence theorem for the problem (7)-(11). 

THEOREM 2.1 Assume that f E L3 (Q), j E L 2 (Q), f(0) = 0, (f(t), p) = 0 \Ip E
R(D), t E [O, T], and the above assumption on   is satisfied. 

Then there exist functions v = (v1,v2 ,v3), a =  {ai1} such that

v E £ 2 (0, T; BDN(D)), a E £ 2 (0, T; Vo(D)), 

& E L2 (Q), a(t) E K ,  t E (0, T), 

(ai1, Ei1(v)) = (f, v) Vv E £ 2 (0, T; H 1 (D)),

with i'f(t) E K a.e. in (0, T), 

a =  0, t = 0. 

(15) 

(17) 
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P r o o f .  First, an approximation of the problem (7)-(11) by penalization of the
plastic yield condition is introduced. Then, the parabolic regularization of the 
penalized problem is considered. The auxiliary boundary value problem con-
structed in  such a way depends on two positive parameters a, 8. The parameter 
a is used for the parabolic regularization, the parameter 8 is used for the penalty 
term. We prove the existence of solutions for the fixed parameters a > 0, 8 > 0
and justi fy the passage to limits as a, 8 --, 0. A priori estimates uniform wi th  
respect to  a, 8 are needed to perform the passage to the limits. A l l  necessary 
estimates (29), (31), (32) are derived below.

We consider in  the domain Q the following auxiliary boundary value prob-
lem: find the functions v = ( v1 , v2, v3), a = { a i j }  such that

O'.'Vi - a E i j ( v ) , j  -O-i j , j  = f i  , i  = 1,2,3, 

1 
Cl"ij + aa i j  - Eij(v) + 8p(a) i j  = 0, i,j = 1, 2, 3, 

V = 0, a = 0, t = 0. 

(18) 

(19) 

(20) 

(21) 

The dependence of solutions to  (18)-(21) on the parameters a, 8 is not indicated
in (20)-(21) in  order to simplify the formulae. Note that boundary conditions
(20) do not coincide wi th (10); the conditions (20) can be viewed as the regu-
larization of (10) connected wi th  the proposed regularization of the equilibrium
equations (7). Also, the artificial initial condition for v is introduced. 

A solution to  the problem (18)-(21) is defined in the following sense 

(22) 

a(v, v)+a(Ei j (v),  Ei j (v))+(ai j ,Ei j (v))  = (f, v) Vv E L2 (0, T;  H1 (D)), (23) 

. 1 
O-ij + a a i j  - E i j ( v )  + 8p(a) i j  = 0, i,j = 1,2,3, 

V = 0, a = 0, t = 0. 

(24) 

(25) 

In this case the boundary conditions (20) are included in (23). A t  the first step
of the proof we derive a priori estimates. To this end i t  is assumed that  the 
solutions to (18)-(21) are sufficiently smooth. Mult iply (18), (19) by Vi, O- i j - fo ,
respectively, and integrate over n.  Taking into account that the penalty term 
is nonnegative this provides the inequality 

 : t  {allvll5 + llo-116} + allo-115 - (aEij(v),j + O-ij,j, vi) -

- (E i j (v ) ,  O-ij - f o )  - (f, v) � (aa + &, �)-

(26) 
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For the sake of simplicity we do not show in (26) the dependence of v, O",  ' f on 
t. The integration by parts in the third term of the left-hand side in (26) can
be performed. Recall t h a t   satisfies the equation (7). As a result the following
inequality is obtained

(27) 

Since (O",  ) :::; ¼ 110"116 + 11 116, the integration of (27) leads to the estimate

(28) 

with the constant c being uniform in a ,  8, for a:::; a 0. Hence 

(29) 

The derivation of the following estimate requires the (a, 8)-uniform bound-
edness of }p( O") in the L 1 ( Q) norm. B y  (29) it is easy to see that 

uniformly in a ,  8, provided that the penalty term is not neglected when deriving 
(26). Due to the monotonicity of p 

Summing up the two last inequalities we dotain 

¾l a
T 

(p(O"), f j  - Odt::::: c. 

We can take here O" =   + [, ll[IIL=(Q) :::; µ, µ > 0 is sufficiently small. B y  the
hypothesis imposed o n   the inclusions O"(t) E K ,  t E (0, T), hold, hence 

and, consequently, 

(30) 
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In the sequel this estimate is improved, namely, we show that ¼P( a-) is, in fact, 
bounded in £ 2 (0, T; L 1 (fl)). 

We derive a priori estimate for the time derivatives v, er. It follows from (18),
(19), (21) that we have the homogenous initial conditions for the derivatives, 

vi (0) = 0, i = 1, 2, 3, irij(0) = 0, i,j = 1, 2, 3. 

Differentiate with respect to t the equations (18), (19) and multiply by Vi , CTi j -
l i j , respectively. Since the term

i( !p(a- ( t ) ) ,  ir(t)) 

is nonnegative for almost all t E (0, T) (see Lions, 1969, page 399) the above
multiplication and integration over n results in the inequality

1 d 
2 dt {allvll6 + llirll6} + all&ll6 - (aEij(v),j + iri j ,j , v i ) -

- ( E i j (v), iri j - l i j )  - ( i ,  v)   ( a i r +  er, l )  + i ( :
t
p(a-), l ) .

Boundary conditions (20) can be taken into account in order to integrate by 
parts in the left-hand side of the latter inequality. 

We integrate the last inequality with respect to t over the interval (0, t). 
This implies 

1 . 1 rt .. 
8(p(a-),l)l6 - J Jo (p(a-),()dr+

+ ( i r , l ) l t - r ( & l ) d r +  '!. t lll(r)ll6dr.Jo 2 Jo 
B y  estimates (29), (30) and the condition l(O) = 0 the (a, 8)-uniform estimate
follows 

(31) 

Let v = VN + PN be the decomposition of v into the sum of two orthogonal
elements, VN E £ 2 (0, T; Hh(rl)), PN E £ 2 (0, T; R(fl)). We should note at this 
point that £ 2 (0, T; H1 (fl)) = £ 2 (0, T; R(rl)) EB £ 2 (0, T; Hh(rl)) provided that
the scalar product (4) is used in H 1 (rl). For almost all t E (0, T), vN(t ) 
(vNl (t), v m ( t ), vN3(t)), 

k vN( t ) = 0, k (vNi( t )x j - VNj (t )x i) = 0, i,j = 1, 2, 3. 



320 A.M. KHLUDNEV and J. SOKOLOWSKI 

Hence, by (29), (31) it follows from (19) that E:i1(vN),i,j = 1,2,3, are bounded
in L2 (Q) uniformly in a for any fixed 8. This implies the estimate 

(32) 

with the constant c(8) depending, in general, on 8. 
Now, observe that in view of the estimates (29), (31) we can use the Galerkin 

approximations of parabolic problems with monotone operators, Lions (1969), 
in order to show that for any fixed a ,  8 the solution to (18)-(21) exists in the 
sense of (22)-(25). 

The estimates obtained allow us to pass to the limit as a --+ 0. Indeed, 
denote by v ° ' , O'° '  the solution to (22)-(25) and consider the decomposition v ° '  = 
vN + PN, vN E L2 (0, T; HJ,(O)), PN E L2 (0, T; R(O)). Note that the solution
( v ° ' , O'° ' ) satisfies the estimates (29), (31), (32). Hence, from the sequence v ° ' , O'° '

one can choose a subsequence (with the previous notation for the subsequence) 
such that for any fixed 8 > 0 and a --+ 0 

a v ° '  --+ 0 weakly in L 2 (0, T; H 1 (0 )), 

v° '  --+ v5 N weakly in L 2 (0, T; Hl,(O)), 

a v ° '  --+ 0 weakly in L 2 (Q), 

(J' ° '  ---) (]' 5 weakly in L 2 (Q),

&° '  ---) (55 weakly in L 2 (Q).

Passing to the limit in (18), (19) as a--+ 0 we dotain that 

(O'f1 , Ei1 (v)) = (J, v) Vv E L 2 (0, T; H 1 (0 )),

&t - E:ij ( v5 ) + 1p(  0'5 )ij = 0, i, j = 1, 2, 3. 

(33) 

(34) 

A justification of the convergence p(O' ° ' ) --+ p(0'5 ) can be done by the monotoni-
city arguments. We omit the details. 

Now let us show that ¾P(0'5 ) are bounded in L2 (0, T, L 1 (0 )) uniformly in 8. 
It follows from (33) that for a.e. t E (0, T ) ,  

-(O'f1(t),ci1(v)) = (J(t),v) 'vv E H 1 (0 ).

Hence, for almost all t E (0, T )  

-(O't(t), Ei1(v5 (t))) = (J(t), v5 (t)).

Multiply (34) by O'f1 - f o  and integrate over 0 .  This yields 

(35) 

(36) 
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By (2 9) and (31) the right-hand side of (36) is bounded in L 2 (0, T) uniformly 
in 8. Summing up (35) and (36) we obtain that 

(37) 

uniformly in 8. Introduce the convex functional on the space L 2 (D), 

The Gateaux derivative of F is given by F' ( u) = 2p( u). Let us take a function 
a = { ai1 } E L 00 (Q). Then by the conditions imposed on t it follows that
t(t) + a(t) belongs to the set K, tt E (0, T), provided that the norm llall£oo(Q) 
is sufficiently small. By the convexity of F we have 

i(p(u6 (t)), a(t)) :S i(p(u6 (t)), u6 (t) - t(t)) + (38) 

1 1 + 28F(t(t) + a(t)) - 28F(u
6 (t )). 

The second term of the right-hand side of (38) equals to zero by the inclusion 
t(t) + a(t) E K and consequently, in view of (37), 

i(p(u6 (t)), a(t)) are bounded in L 2 (0, T). 

Since a is an arbitrary element of the space L00 ( Q) with a small norm we infer 
the desired estimate, 

ip(u6 (t)) are bounded in L 2 (0, T ; L 1(D,)). 

Hence, from (34) it follows that 

llci1(v6)IIL2(D,T;L1(!1)) :Sc, i,j = 1, 2 , 3. (39) 

The inequality (39) and the inclusion v6 E L 2 (0, T; H);,(D)) yield the estimate 

llv6 IIL2(o,T;LDN(n)) : S c ,  

uniformly in 8. Moreover, the space L 1 (D,) is continuously imbedded in M 1 (D), 
consequently 

llv6 IIL2(0,T;BDN(O)) :Sc. (40) 

On the other hand the inequality 

( 41) 
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is satisfied uniformly in 8. Recall that BD(O) c L312 (0,) in the three-dimensional 
space. Moreover, we have the following estimate 

(42) 

with the constant c independent of functions 0 '6 , 176
. 

By (40), (41), (42) we can choose a subsequence (with the previous notation 
for the subsequence) such that as 8 -+ 0, 

0 ' 6 - + O' weakly in L2 (Q), 

176 -+ 17 weakly in L 2 (Q), 

v6 - + v weakly in L 2 (0, T; £ 312 (0,)), 

Eij (v6 ) - + Eij (v) (*)-weakly in L 2 (0, T; M 1 (0 )), i,j = 1, 2, 3, 

0"
6 (T ) -+ O'(T) weakly in L 2 (0,). 

As a result, passing to the limit as 8-+ 0 in (33), we obtain 

(O'ij , Eij (v)) = (f,v) Vv E L 2 (0, T ; H 1 (0,)). 

The equations (34) imply 

( 43) 

(17fj , aij - O'fj ) - (Eij (v6 ), aij - O'fj ) 2". 0 Va E L 2 (0, T; Vo(O)), (44) 

a(t) E K ,  t E (0, T). 

The identity ( 43) ensures the fulfilment of the equations 

-O't, j =Ji, i = 1,2,3,

in the sense of distributions. 
Furthermore, by (33) 

(sij (v6 ), 0't ) = -(O't j , vf ) 

and, moreover, 

Hence, inequality ( 44) can be rewritten in the following form 

(45) 

(17fj , aij - O"fj) + (vf, aij ,j - O'fj ) 2 0 Va E L 2 (0, T; Vo(O)), (46) 

a(t) E K ,  t E (0, T). 

By ( 45) the functions O'fj ,j can be replaced by - Ji and from ( 46) it follows that 

(47) 
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Passing to the lower limit in both sides of ( 4 7) and replacing Ji  by - a i j , j  we 
obtain (16). The inclusion a(t) E K ,  t E (0, T), can be verified by the standard 
arguments. Since v8 E L2 (0,T;H1 (D)), the convergence o f v8 to v implies the 
inclusionv E L2 (0,T;BDN(D)). Thepropertya(t) E V0 (D),t E (0,T), actually 
follows from (43) taking into account the equations 

- a i j , j  = Ji, i = 1, 2, 3, 

and the Green formula (6). Therefore, Theorem 2.1 is proved. ■ 

3 .  D o m a i n  w i t h  a n o n s m o o t h  b o u n d a r y  ( b o d y  w i t h  a c r a c k )  

In this section we prove the existence theorem for elastoplastic problem in the 
case of the domain with nonsmooth boundary. In applications, nonsmooth 
boundaries occur due to the presence of cracks in the body. In the frame-
work of elasticity the properties of the solutions in domains with cracks are 
analysed in many papers, and we refer the reader to e.g. Oleinik, Kondratiev, 
Kopacek (1981, 1982), Grisvard (1992), Duduchava, Wendland (1995), Nazarov, 
Plamenevskii (1991), Morozov (1984), Khludnev (1995, 1996a,b), Nicaise (1992) 
for the related results. 

Again, let D, c IR-3 be a bounded domain with the smooth boundary 8D = r 
and  c C D, be a smooth orientable two-dimensional surface with a regular 
boundary. We assume that  c can be extended in such a way that the domain D, 
is divided into two parts with Lipschitz boundaries. The surface  c is described 
parametrically 

Xi = Xi(Y1, Y2), i = 1, 2, 3, (48) 

where (Y1, Y2) E w, w C IR2 is a bounded domain with smooth boundary ry, w = 
w U ry. Assume that for any point (y1, y2) E w the rank of the Jacobi matrix 
[ i:;] equals 2 and the map ( 48) is one-to-one. In this case one can choose a 
unit normal vector to the surface  c , 

kxk 
V = oy1 oy2 I OX x OX 1 · 

oy1 oy2 

Denote De = D \  c , Qc = De X (0, T), T > 0. 
The equilibrium problem for elastoplastic body occupying the domain De 

can be formulated as follows. 
Find functions v = (v1,v2 , v3), a =  {ai j } ,  T/ij,i,j = 1,2,3, defined in Qc 

and satisfying the following equations and inequalities 

- a i j , j  = Ji, i = 1, 2, 3, 

Eij ( V) = Cijkli,kl + T/ij, i, j = 1, 2, 3, 

( 49) 

(50) 
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(J'ijnj = 0, i = 1, 2, 3, on r x (0, T), 

aijVj = 0, i = 1, 2, 3, on I : ;  x (0, T), 

a =  0, t = o. 
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(51) 

(52) 

(53) 

(54) 

The same notations are used as in sections 1,2. As we see, in this case the bound-
ary of the domain Oc consists of the parts r, I:;;, I:;;-, where I : ;  correspond to
the positive and negative directions of the normal v, respectively. 

Introduce the space 

H 1 (0 c ) = { v  = (v1 , v2 , v3)I Vi E L 2 (0 c ), i = 1,2,3;

Vi,j E L 2 (0 c ), i, j = 1, 2, 3}.

Note that functions from the space H 1 (0 c ) have, in general, different boundary 
values on I : ; .  This holds for functions from functional spaces considered below, 
provided that the boundary conditions are well defined even in a weak sense. 

In this section we shall consider functions satisfying the following relations 

Let 

/ v = 0 ,  
l n c

i,j = 1,2,3}. 

(55) 

The subspaces Hh(Oc ), LDN(Oc ) consist ofall function from H 1 (0 c ) and LD(Oc ) 
respectively, satisfying (55). In the subspaces Hh(Oc ) and LDN(Oc ) the fol-
lowing norms are introduced, 

3 

lvlHt(nc ) = L llcij(v)llo, c ,
i,j=l 

3 

lvlLD N (Dc) = L llcij(v)llu(nc)
i,j=l 

which are equivalent to the standard ones. Here II · llo, c stands for the norm in 
L 2 (Oc )- The proof of the norm equivalency uses the compactness of imbeddings 
H 1 (0 c ) C L 2 (0 c ), LD(Oc ) C L 1 (0 c ) which are obtained under the conditions 
imposed on I:c and r. Indeed, let us prove that there exists a positive constant
c such that 

(56) 

where 
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Assume that the inequality (56) is false. In this case there exists a sequence vk , 

llvkllLD(nc) = 1, 

I kl 1 
V LD(nc) :S k," 

(57) 

(58) 

According to the assumptions on E e we can divide the domain De into two sub-
domains D1 and D2 with Lipschitz boundaries. Since the imbeddings LD(Di ) C 
L 1 (Di), i = 1, 2, are compact, it follows that the imbedding LD(De) C L 1 (De) 
is also compact. Consequently, by (57) we can suppose that 

vk -+ v strongly in L 1(De), 

and hence, by (58) 

vk -+ v strongly in LD(De)- (59) 

In view of (58), we have E:ij (v) = 0 in De , ie. vi (x) = Ci + bij Xj , where c i ,  bij E
IR, bij = - bj i , i, j = 1, 2, 3. Moreover, the inequality (58) implies that v satisfies 
(55), whence v = 0 which contradicts (57), (59). Therefore, (56) is proved. 

Consider the following spaces, 

BDN(De) = {v E BD(De)I v satisfies (55)}, 

Ua(De) = { a =  {aij}I O"ij E H 1 (De), i , j = 1,2,3; O"ij ,j E L 3 (De), i = 1,2,3; 

O"ij nj = 0, i = 1, 2, 3, on r ;  O"ij Vj = 0, i = 1, 2, 3, on E } .  

Again, to simplify the formulae we assume Cij kl = &t8{. Recall that the set (12) 
contains zero as its interior point. The set I< is introduced in the same way as 
in section 2, 

I < =  { a =  { aij } la ij E L 2 (De), i , j = 1,2,3, <I>(a(x)) :SO a.e. in De} -

The scalar products in L 2 (De) and L 2 (Qe) are denoted by(· ,  ·) e , (·, ·) e , respec-
tively. The space of rigid displacements on De is denoted by R(De)-

We assume that there exists a function f = { fij } , i, j = 1, 2, 3, f E
C2 (Qc), f(0) =  (O) = 0, satisfying the equation

( f o , E:ij (v))e = (f,v) e 'vv E L 2 (0, T ; H 1(De)) (60) 

and such that (1 + K,)f(t) EI< n U0(De), K, E IR, K, > 0, t E [O, T]. Now we are in 
a position to prove the theorem of existence of solutions to (49)-(54). 

THEOREM 3.1 Assume that f E L 3 (Qe), j E L 2 (Qe), f(0) = 0, (f(t), P) e = 
0 'v p E R(De), t E [O, T], and the above assumption on f hold. Then there exist
functions v = ( v 1 ,  V2, V3), a = { O"ij } such that 

v E L 2 (0, T; BDN(De)), a-, & E L 2 (Qe), a(t) EI<, t E (0, T), 
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(61) 

iJ(t) E K  a.e. in (0, T), 

a-= 0, t = o. (63) 

Proof. The general scheme of the proof coincides with that used for Theorem 
1 and our attention now focusses on details related to the nonsmoothness of the 
boundary. 

Let p be the penalty operator related to the set K, p(a-) = a- - no-, where 1r

is the orthogonal projection operator of the space [L2 (Dc)]9 onto the set K. 
Consider two positive parameters a, 8 and auxiliary boundary value problem 

in Oc of the following form. Find v = (v1,v2,v3) and a-= {o-ij}, such that 

avi -0'.Eij(v),j -O"ij,j = Ji , i  = 1,2,3, 

1 
CYij + O'.O"ij - Cij ( V) + 5P( a-)ij = 0, i, j = 1, 2, 3, 

O"ijnj + ac:ij ( v )nj = 0, i = 1, 2, 3, on r x (0, T), 

O"ijnj + O'.Eij(v)vj = 0, i = 1, 2, 3, on :Ez X (0, T),

V = 0, 0- = 0, t = 0. 

(64) 

(65) 

(66) 

(67) 

(68) 

We first obtain a priori estimates for solutions to (64)-(68). Multiply (64), (65) 
by Vi, O"ij -  ij and integrate over n. In the same way as for (29) we derive 

with a constant c uniform in a,  8, a :S a0. 
From (64), (65), (68) we have 

vi(O) = 0, i = 1,2,3, aij(O) = 0, i,j = 1,2,3. 

Hence, the differentiation of (64), (65) with respect t o t  and multiplication by 
Vi, aij -  ij result in the estimate 

(70) 

Moreover, if v = VN + PN, VN E L 2 (0, T ; H"Jv(Dc)), PN E L 2 (0, T ; R (Dc)), then
(65) provides 

llvNIIL2(0,T;H}:, (Dc)) :S c(8) (71) 

where the constant c(8) depends, in general, on 8. 
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The estimates (69)-(70) allow us to prove the solvability of (64)-(68) for the 
fixed parameters 0:, 8 in the following sense 

v°' E £ 2 (0, T; H 1(f'lc)), v°', c,°', er°' E L2 (Qc), 

a(v°', ii)c + a(E:ij(v ° ' ), E:ij(v))c + (c,fJ, E:ij(v))c = (j, ii)c 
Vii E £ 2 (0, T; H 1 (f'lc)), 

v°' = 0, c,°' = 0, t = 0. 

(72) 

(73) 

(74) 

(75) 

The solution of the above problem is denoted by v° ' , c,°', and the following step 
is a passage to the limit as 0: --+ 0. Note that boundary conditions (66), (67) 
are included in the identity (73). 

In view of the estimates (69)-(71) for any fixed 8 > 0 one can choose a 
subsequence, v°', c,°', such that as 0: --+ 0 

VNa --+ v0 weakly 1·11 £ 2 (0 T· H 1 ( "  ) )  ' ' N  tc ' 

av°'--+ 0 weakly in L 2 (Qc ), 

c,°', er°' --+ c,6 , ir0 weakly in L 2 
( Q c). 

After the passage to the limit as 0:--+ 0 we obtain 

crf1 - E:ij ( v0
) + ¼p( c,0 )ij = 0, i, j = 1, 2, 3. 

Analogously to ( 40) the following estimate holds 

llv0 IIL2 (0,T;BDN (!1 c))   C

(76) 

(77) 

(78) 

being uniform in 8. Consequently, without any loss of generality we can assume 
that there exists a subsequence still denoted by v0 , c,6 such that as 8 --+ 0 

c,0 , &0 --+ Cl, er weakly in L 2 (Qc), 

v0 --+ v weakly in £ 2 (0, T; £ 312 (0, c )), 

E:ij(v0 ) --+ E:ij(v) (*)-weakly in £ 2 (0, T; M 1 (f'lc)), i,j = 1, 2, 3, 

c,6 (T ) --+ c,(T) weakly in L 2 (f'lc)-
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From (76) it follows that 

(aij , Cij (v))c = (J, v) c 'vv E £ 2 (0, T; H 1 (D.c)),

hence, the equations 

-(]'ij ,j = Ji, i = 1, 2, 3, 

are satisfied in Qc in the sense of distributions. Also, (76) implies that 

- a fj ,j = Ji,  i = 1, 2, 3. 

Whence, by (76), (80) we have 

(cij (v6), a fj )c = - ( a fJ ,J " vf)c = (Ji, vf)c.

Moreover, 

(cij (v6), 8\j )c = - ( v f ,  <Tij ,j )c 

(79) 

(80) 

for all iJ E £ 2 (0, T; U0(D.c)). As a result, it follows from (77) for any iJ E 
£ 2 (0, T; Uo(D.c)) , a-(t) E K  a. e. in (0, T), that 

(81) 

The passage to the limit as 8 -+ 0 can be performed in (81) in the same way 
as in (46). Therefore, we arrive at (62). The property a(t) E K ,  t E (0, T), 
is obtained in the standard way. Boundary conditions (52) are fulfilled in the 
sense of the space H - 112 (r ), and the conditions (53) are satisfied by identity 
(61) in the weak sense. This completes the proof of Theorem 3.1.
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