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Abstract: In this paper the explicit necessary and sufficient
conditions for the existence of Luenberger reduced order observer
are established. In particular, it is proven that for the given linear
time-invariant system of order n, having p linearly independent out-
puts and m inputs, a Luenberger observer of order (n − p) can be
constructed if and only if the given system is detectable. Further-
more, a procedure is given for the construction of the observer. Our
approach is based on the properties of real and polynomial matrices.
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1. Introduction

The work of Luenberger (1963) initiated the theory of observers for the state
estimation of linear time-invariant systems. Then, in Luenberger (1964) the
reduced order observer was proposed. Later on, in Luenberger (1966) and Lu-
enberger (1971) the following result was proven: corresponding to a completely
observable linear time-invariant system of order n, having p linearly independent
outputs, a state observer of order (n − p) can be constructed having arbitrary
eigenvalues. This result can now also be found in any standard book on linear
control theory.

From the above it immediately follows that observability is a sufficient con-
dition for the existence of the Luenberger reduced order observer. Thus, it is
natural to pose the following question: What are the necessary and sufficient
conditions that ensure the existence of a Luenberger reduced order observer? As

∗Submitted: September 2023; Accepted: November 2023



182 K. H. Kiritsis

far as we know, the above question is still open. This fact motivates the present
study. In this paper, using basic notions and basic results from linear systems
and control theory as well as from the theory of matrices, explicit necessary and
sufficient conditions for the existence of Luenberger reduced order observer are
established. In particular, it is proven that for the given linear time-invariant
system of order n having p linearly independent outputs and m inputs a Lu-
enberger observer of order (n − p) can be constructed if and only if the given
system is detectable. Furthermore, a procedure is given for the construction of
the Luenberger observer of order (n− p).

2. Basic concepts and preliminary results

This section contains lemmas, which are needed to prove the main results of
this paper, as well as some basic notions from linear systems and control theory
and the theory of matrices that are used throughout the paper. Let R be the
field of real numbers. Also, let R[s] be the ring of polynomials with coefficients
in R. Further, let C be the field of complex numbers, also let C+ be the set of
complex numbers λ with Re(λ) ≥ 0. All nonzero finite real numbers are called
units of R[s]; see Mc Duffee (1946). A matrix, whose elements are polynomials
over R[s] is termed a polynomial matrix. A polynomial matrix U(s) over R[s]
of dimensions (k x k) is said to be unimodular if and only if

det[U(s)] = µ (1)

where µ is a unit of R[s]; therefore, every unimodular polynomial matrix has
a polynomial inverse. Every polynomial matrix M(s) of size (m × p) with
rank [M(s)] = r, can be expressed as, see Kucera (1991),

U1(s)M(s)U2(s) =

[

Mr(s) 0
0 0

]

. (2)

The non-singular polynomial matrix Mr(s) of size (r × r) in (2) is given by

Mr (s) = diag[a1(s), a2(s), · · · ., ar(s)]. (3)

The nonzero polynomials ai(s) for i =1,2,..., r are termed invariant polyno-
mials of M(s) and have the following property:

ai(s) divides ai+1(s), for i = 1, 2, · · · , r − 1. (4)

The relationship (2) with Mr(s) given by (3) is called Smith-McMillan form
of M(s) over R[s]. Since the matrices U1(s) and U2(s) are unimodular and the
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polynomial matrix Mr(s), given by (3), is non-singular, from (2) and (3) it
follows that

rank[M(s)] = rank[Mr(s)] = r. (5)

Let A(s) and B(s) be matrices over R[s] of appropriate dimensions. If there
is a matrix Q(s) over R[s] of appropriate size such that

A(s) = B(s)Q(s), (6)

then the matrix Q(s) is called a right divisor of the matrix A(s) and the matrix
A(s) is called a left multiple of the matrix Q(s), see Wolowich (1974). Let A(s)
and B(s) be matrices over R[s] of appropriate dimensions. If there are matrices
D(s), A1(s) and B1(s) over R[s] of appropriate dimensions, such that

A(s) = A1(s)D(s), B(s) = B1(s)D(s), (7)

then the polynomial matrix D(s) is called a common right divisor of polynomial
matrices A(s) and B(s), see Wolowich (1974). The greatest common right
divisor D(s) of two polynomial matrices A(s) and B(s) is a common right
divisor, which is a left multiple of every common right divisor of the matrices
A(s) and B(s), see Wolowich (1974) and Mc Duffee (1946), that is

A(s) = P(s)D(s) (8)

B(s) = Q(s)D(s) (9)

D(s) = F(s)C(s) (10)

where A(s), B(s), P(s), Q(s), F(s), as well as C(s) are matrices over R[s] of
appropriate dimensions, with C(s) being any greatest common right divisor of
the polynomial matrices A(s) and B(s).

Let A(s) and B(s) be the matrices over R of size (p×m) and (q×m), with
rank [A(s)] = m. Then, there always exists a unimodular matrix U(s) over
R[s], such that (see Wolowich, 1974)

[

A(s)
B(s)

]

= U(s)

[

V(s)
0

]

. (11)

The non-singular polynomial matrix V(s) of size (m×m) is a greatest common
right divisor of the polynomial matrices A(s) and B(s), see Wolowich (1974).

Definition 1 The nonzero polynomial c(s) over R[s] is said to be strictly Hur-
witz if and only if c(s) 6= 0, ∀s ∈ C+.

Definition 2 Let V(s) be a non-singular matrix over R[s], of size (nxn).
Further, let ci(s) for i =1,2, . . . ,n be the invariant polynomials of the polynomial
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matrix V(s). The polynomial matrix V(s) is said to be strictly Hurwitz if and
only if the polynomials ci(s) are strictly Hurwitz for every i =1,2,. . . ,n, or,
alternatively, if and only if det[V(s)] is a strictly Hurwitz polynomial.

Definition 3 The matrix A over R of size (nxn), is said to be Hurwitz stable
if and only if all eigenvalues of the matrix A have negative real parts or, alter-
natively, if and only if the characteristic polynomial of matrix A is a strictly
Hurwitz polynomial.

Definition 4 Let A and C be matrices over R of size (nxn) and (p xn),
respectively. Then the pair (A, C) is said to be detectable if and only if there
exists a matrix K over R of size (nx p) such that the matrix [A+KC] is Hurwitz
stable, see Wonham (1968).

Definition 5 Let A and C be matrices over R matrices of size (nxn) and
(p xn), respectively and C not zero. Then an eigenvalue λ of the matrix A is
said to be observable, see Tredelman, Stoorvogel and Hautus (2002), if and only
if the following condition holds:

rank

[

C
Inλ−A

]

= n .

Let A be a real matrix of size (n × n). The spectrum of the matrix A is
the set of all its eigenvalues and is denoted by σ(A). An eigenvalue λ of A is
called a stable eigenvalue if and only if Re(λ) < 0. Otherwise, the eigenvalue λ

of the matrix A is said to be unstable. The following Lemma 1 is taken from
Tredelman, Stoorvogel and Hautus (2002).

Lemma 1 Let A and C be matrices over R of size (nxn) and (p xn), respec-
tively, and C not zero. Further, let σ(A) be the spectrum of the matrix A. Then
the pair (A, C) is observable if and only if the following condition holds:

(a) rank

[

C
Inλ−A

]

= n , ∀λ ∈ σ(A).

Lemma 2 Let A and C be matrices over R of size (nxn) and (p xn), respec-
tively, and C not zero. Further, let σ(A) be the spectrum of the matrix A. The
pair (A, C) is detectable, see Zhou, Doyle and Glover (1996), if and only if one
of the following equivalent conditions holds:

(a) rank

[

C
Ins−A

]

= n , ∀s ∈ C+

(b) rank

[

C
Inλ−A

]

= n , ∀λ ∈ σ(A) with Re(λ) ≥0.
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From condition (b) of Lemma 2 it follows that the pair (A, C) is detectable
if and only if all unstable eigenvalues of the matrix A are observable, see Zhou,
Doyle and Glover (1996).

Lemma 3 Let A and C be matrices over R of size (n × n) and (p × n),
respectively. Then the pair (A, C) is observable if and only if for every monic
polynomial c (s) over R[s] of degree n there exists a matrix K over R of size
(n× p), such that the matrix [A+KC] has the characteristic polynomial c(s),
see Kucera (1991).

The standard decomposition of unobservable systems, given in the following
lemma, was first published by Kalman (1963) and can also be found in any
standard book on linear systems theory.

Lemma 4 Let A and C be matrices over R of size (n x n) and (p x n), respec-
tively. Further, let the pair (A, C) be unobservable and C not zero. Then there
exists a non-singular matrix T of size (nxn) such that

T−1AT =

[

A11 0
A21 A22

]

CT = [C1,0].

The pair (A11, C1) is observable and the eigenvalues of the matrix A22 are
the unobservable eigenvalues of the pair (A,C).

Lemma 5 Let A and C be matrices over R of size (n x n), (p x n), respectively,
and C not zero. Further, let

A = T

[

A11 0
A21 A22

]

T−1, C = [C1,0]T
−1

with A11, C1) observable. If the pair (A, C) is detectable, then the matrix A22

is Hurwitz stable (i.e., all eigenvalues of the matrix A22 are stable), see Zhou,
Doyle and Glover (1996).

The following lemma and its proof are based on the results of Kucera (1991).

Lemma 6 Let A and C be matrices over R of size (n x n), (p x n), respectively,
and C not zero. Further, let the pair (A, C) be detectable. Then there exists
a matrix K over R of size (n × p) such that the matrix [A + KC] is Hurwitz
stable.

Proof Let the pair (A, C) be detectable. Detectability of the pair (A, C)
implies that the pair (A, C) is either observable or unobservable with stable
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unobservable eigenvalues. If the pair (A, C) is observable, then from Lemma 3
it follows that there exists a matrix K of appropriate size over R such that

det[Ins−A−KC] = c(s) (12)

where c (s) is an arbitrary monic, strictly Hurwitz polynomial overR[s] of degree
n. Since the notion of observability is a dual of controllability (i.e., observability

of the pair (A, C) implies controllability of the pair (A
T
, CT )), Luenberger

(1971), the matrix K can be calculated using known methods for the solution
of pole assignment problem by state feedback, see Kucera (1991). From the
relationship (12) and Definition 3 it follows that the matrix [A+KC] is Hurwitz
stable.

If the pair (A, C) is unobservable with stable unobservable eigenvalues, then
from Lemmae 4 and 5 it follows that there exists a matrix T such that

A = T

[

A11 0
A21 A22

]

T−1, C = [C1,0]T
−1. (13)

The pair (A11, C1) is observable and the matrix A22 is Hurwitz stable.
Hurwitz stability of the matrix A22 and Definition 3 imply that the polynomial
χ (s), given by

det [ Is−A22] = χ (s) (14)

is a strictly Hurwitz polynomial. Observability of the pair (A11, C1) and Lemma
3 imply the existence of a matrix K1 over R of appropriate dimensions, such
that

det[Is−A11−K1C1]=ϕ(s) (15)

where ϕ(s) is an arbitrary monic, strictly Hurwitz polynomial overR[s] of appro-
priate degree. Since the notion of observability is a dual of controllability (i.e.,

observability of the pair (A11, C1) implies controllability of the pair (A
T

11, C
T
1 )),

the matrix K1 can be calculated using known methods for the solution of pole
assignment problem by the state feedback, see Kucera (1991). Let

K = T

[

K1

0

]

. (16)

Using (13) and (16), we obtain that

A +KC = T

[

A11 0
A21 A22

]

T−1+T

[

K1

0

]

[C1,0]T
−1 =

= T =

[

A11+K1C1 0
A21 A22

]

T−1. (17)
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From (14), (15) and (17) we obtain

det[(Is−A−KC ] = ϕ(s)χ(s). (18)

Since by (14) and (15) the polynomials χ (s) andϕ(s) are strictly Hurwitz, the
polynomialϕ(s)χ(s) is also a strictly Hurwitz polynomial and therefore, from
(18) and Definition 3 it follows that matrix [A+KC] is Hurwitz stable. This
completes the proof.

Lemma 7 Let A and C be matrices over R matrices of size (nxn) and (p xn),
respectively, and C not zero. Further, let the pair (A, C) be detectable. Also,
let V(s) be a greatest common right divisor of polynomial matrices [Is−A] and
C of size (nxn). Then the following condition holds:

(a) The polynomial matrix V(s) is strictly Hurwitz.

Proof Let the pair (A, C) be detectable. Then, from Definition 4 it follows
that the matrix [A + KC] is Hurwitz stable, that is

det [Is−A−KC] = c(s) (19)

where c(s) is a monic and strictly Hurwitz polynomial over R[s] of degree n.
Since, by the assumption, the polynomial matrix V(s) is the greatest common
right divisor of the polynomial matrices [Is-A] and C, from (8) and (9) it follows
that

[Is−A] = X(s)V(s) (20)

C = Y(s)V(s) (21)

for polynomial matrices X(s) and Y(s) over R[s] of appropriate dimensions.
Using (20) and (21) and after simple algebraic manipulations, the relationship
(19) can be rewritten as

det [Is−A−KC] = det[X(s)−KY(s)]detV(s) = c(s). (22)

From relationship (22) it follows that

det[V(s)]divides (c (s)). (23)

Since, by assumption, c (s) is a monic and strictly Hurwitz polynomial over
R[s] of degree n, from (23) it follows that det [V(s)] is a strictly Hurwitz polyno-
mial over R[s]; therefore, by Definition 2, the polynomial matrix V(s) is strictly
Hurwitz. This is condition (a) of the Lemma and the proof is complete.

Lemma 8 Let V(s) be a non-singular and strictly Hurwitz matrix over R[s] of
size (m×m). Then, for any matrix X(s) over R[s] of size (p xm), all invariant

polynomials of the polynomial matrix

[

V(s)
X(s)

]

are strictly Hurwitz.
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Proof Let U1(s), U2(s) be unimodular matrices such that

[

V(s)
X(s)

]

= U1(s)

[

Vm(s)
0

]

U2(s). (24)

The non-singular polynomial matrix Vm (s) of size (m×m) in (24) is given
by

Vm(s) = diag[v1(s), v2(s), · · · , vm(s)]. (25)

The nonzero polynomials vi(s) for i = 1, 2, ...,m are the invariant poly-

nomials of

[

V(s)
X(s)

]

and the relationship (24) with Vm (s), given by (25), is

the Smith-McMillan form of

[

V(s)
X(s)

]

over R[s]. Since, by assumption, the

polynomial matrix V(s) is a non-singular and strictly Hurwitz matrix and the
polynomial matrix U1(s) is unimodular, from (11) and (24) it follows that the
matrix [Vm (s)U2(s)] is a greatest common right divisor of the polynomial ma-
trices V(s) and X(s); therefore, according to (8), there is a polynomial matrix
P(s) such that

V(s) = P(s)[Vm (s)U2(s)]. (26)

From (25) and (26) we have:

det[V(s)] =

= det[P(s)]det[Vm (s)]det[U2(s)] = det[P(s)]det[U2(s)][Π
m
ι=1vi(s)] (27)

From (27) it follows that

[Πm
ι=1vi(s)] divides {det[V(s)]}. (28)

Since, by assumption, matrix V(s) is a strictly Hurwitz polynomial ma-
trix, from Definition 2 it follows that the polynomial det [V(s)] is strictly Hur-
witz polynomial over R[s]; therefore, from (28) it follows that the polynomial
[Πm

ι=1vi(s)] is also a strictly Hurwitz polynomial over R[s]. Since [Π
m

ι=1vi(s)] is
a strictly Hurwitz polynomial over R[s], all polynomials vi(s) for i = 1, 2, ...,m
must be strictly Hurwitz.

From the above it follows that polynomials vi(s) for i = 1, 2, ...,m, which

are the invariant polynomials of

[

V(s)
X(s)

]

, are all strictly Hurwitz. This proves

the claim and so the proof is complete.



On the existence of Luenberger reduced order observer 189

Let A and C be matrices over R matrices of size (n × n) and (p × n),
respectively, with rank[C] = p. Then there exists a non-singular matrix L over
R of size (n× n) such that

CL = C1 (29)

L−1AL = A1. (30)

The matrices C1 and A1 are given by

C1 = [Ip,0] (31)

A1=

[

A11 A12

A21 A22

]

(32)

where Ip is the identity matrix of size (p× p), and A11, A12, A21 and A22 are
matrices over R of dimensions

(p× p), (p× (n− p)), ((n− p)× p) and ((n− p)× (n− p)),
respectively.

The following Lemma plays a central role in the proof of the main results of
this paper.

Lemma 9 Let A and C be matrices over R of size (n×n), (p×n), respectively,
with rank[C] = p. The pair (A, C) is detectable if and only if the following
condition holds:

(a) The pair (A22, A12) is detectable.

Proof Let the pair (A, C) be detectable. Then, from condition (a) of Lemma
2 it follows that

rank

[

C
Ins−A

]

= n , ∀s ∈ C+. (33)

From (29), (30), (31) and (32) we have that

C = [Ip,0]L
−1 = C1L

−1 and A = LA1L
−1 = L

[

A11 A12

A21 A22

]

L−1.

(34)

Using (34) and performing some simple algebraic manipulations, (33) can
be expressed as follows:

rank

[

C
Ins−A

]

= rank [diag[IpL]

[

C1

Ins−A1

]

L−1] =

= rank [diag[Ip,L]





Ip 0
Ips−A11 −A12

−A21 In−ps−A22



L−1] = n , ∀s ∈ C+. (35)
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Since the matrices diag[In,L] and L−1 are non-singular, from (35) it follows
that

rank





Ip 0
Ips−A11 −A12

−A21 In−ps−A22



 = n, ∀s ∈ C+. (36)

Since the n columns of the matrix on the left-hand side of (36) are linearly
independent over C, ∀s ∈ C+, a subset of these columns, consisting of the
last (n − p) columns must also be linearly independent over C, ∀s ∈ C+; and
therefore

rank





0
−A12

In−ps−A22



 = rank

[

−A12

In−ps−A22

]

= rank

[

A12

In−ps−A22

]

=

= (n− p), ∀s ∈ C+. (37)

Relationship (37) and condition (a) of Lemma 2 imply that the pair (A22,
A12) is detectable. This is the condition (a) of the Lemma.

Now, to prove sufficiency, we assume that the pair (A22, A12) is detectable.
Let Γ(s) be a greatest common right divisor of polynomial matrices [In−ps−A

22
]

and A12. Then, from (11) it follows that there exists a unimodular matrix U(s)
of size (n× n) such that

[

A12

In−ps−A22

]

= U(s)

[

Γ(s)
0

]

. (38)

We define the following matrices
[

Ips−A11

−A21

]

= U(s)

[

E(s)
Z(s)

]

(39)

V(s) =

[

Ip 0
E(s) Γ(s)

]

(40)

X(s) = [Z(s),0] (41)

whereV(s), E(s) and Z(s) are polynomial matrices of sizes, respectively, (n×n),
((n− p)× p), (p× p). Using (31), (32), (38), (39), (40) and (41) we obtain:

[

C1

Is−A1

]

=





Ip 0
Ips−A11 −A12

−A21 In−ps−A22



 = diag[Ip,U (s)]

[

V(s)
X(s)

]

.

(42)
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Let U1(s), U2(s) be unimodular matrices such that

[

V(s)
X(s)

]

= U1(s)

[

Vn(s)
0

]

U2(s). (43)

The non-singular polynomial matrix Vn (s) of size (nxn) in (43) is given by

Vn(s) = diag[v1(s), v2(s), · · · , vn(s)]. (44)

The nonzero polynomials vi(s) for i = 1, 2, ..., n are the invariant polynomials

of

[

V(s)
X(s)

]

. The relationship (43) with Vn (s), given by (44), is the Smith-

McMillan form of

[

V(s)
X(s)

]

overR[s]. By substituting (43) into (42), we obtain:

[

C1

Is−A1

]

= diag[Ip, U (s)] U1(s)

[

Vn(s)
0

]

U2(s). (45)

Since the polynomial matrices [diag [Ip, U (s)]U1(s)] and U2(s) are unimo-
dular matrices, from (45) it follows that

rank

[

C1

Is−A1

]

= rank

[

Vn(s)
0

]

= rank [Vn (s)] = n. (46)

Since, by assumption, the pair (A22, A12) is detectable, from Lemma 7 it
follows that the matrix Γ(s) in (38) is a strictly Hurwitz polynomial matrix.
From (40) it follows that

det[V(s)] = det[Γ(s)]. (47)

Since the matrix Γ(s) is strictly Hurwitz, from Definition 2 it follows that the
det [ Γ(s)] is a strictly Hurwitz polynomial and therefore from (47) and Definition
2 it follows that the polynomial matrix V(s) is strictly Hurwitz. Since V(s) is
a strictly Hurwitz matrix over R[s], from Lemma 8 it follows that the invariant
polynomials (i.e., the polynomials vi(s) for i = 1, 2, ...,m) of the polynomial

matrix

[

V(s)
X(s)

]

are all strictly Hurwitz; therefore, from Definition 1 it follows

that

vi(s)) 6= 0, ∀s ∈ C+, ∀ i = 1, 2, · · · , n. (48)

From (44) and (48) it follows that

rank[Vn(s)] = rank[diag[v1(s), v2(s), · · · , vn(s)]} = n, ∀s ∈ C+. (49)
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From (46) and (49) it follows that

rank

[

C1

Is−A1

]

= n, ∀s ∈ C+. (50)

Relationship (50) and condition (a) of Lemma 2 imply that the pair (A1, C1)
is detectable. Since the pair (A1, C1) is detectable and the detectability is
invariant under similarity transformation, see Zhou, Doyle and Glover (1996),
from (34) it follows that the pair (A, C) is detectable. This completes the proof.

3. Main results

Theorem 1, provided in this section, is the main result of this paper and it gives
the explicit necessary and sufficient conditions for the existence of a Luenberger
reduced order observer.

Consider a linear time-invariant system described by the following state-
space equations

ẋ (t) = Ax(t) +Bu(t) (51)

y(t) = Cx(t) (52)

where A, B and C are real matrices of size (n × n), (n × m) and (p × n),
respectively, x(t) is the state vector of dimensions (n× 1), u(t) is the vector of
inputs of size (m× 1), and y(t) is the vector of outputs of size (p× 1). In what
follows, we assume without any loss of generality that

rank[C] = p. (53)

Relationship (53) implies the existence of a non-singular matrix M over R,
having size (n× n), such that

CM = [Ip,0]. (54)

By introducing the following similarity transformation

x(t) = Mz(t) (55)

and taking into account (54) and (55), the state-space equations (51) and (52)
of the given system can be expressed as

[

ż1(t)
ż2(t)

]

=

[

A11 A12

A21 A22

] [

z1(t)
z2(t)

]

+

[

G1

G2

]

u(t) (56)

y(t) = [Ip,0]

[

z1(t)
z2(t)

]

(57)



On the existence of Luenberger reduced order observer 193

where
[

A11 A12

A21 A22

]

= M−1AM, M−1B =

[

G1

G2

]

and

z(t) = M−1x (t)=

[

z1(t)
z2(t)

]

(58)

while A11, A12, A21 and A22 are matrices over R of dimensions, respectively,
(p× p), (p× (n− p)), ((n− p)× p) and ((n− p)× (n− p)), and z1 (t) and z2(t)
are vectors of dimensions (p× 1) and ((n− p)× 1))), respectively. From (54) it
is obvious that z1(t) denotes the states that are measurable and z2(t) denotes
the states that are not measurable. Using (58), equations (56) and (57) can be
rewritten as, see Shafai and Saif (2015):

ż1(t) = A11z1(t) +A12z2(t) +G1u(t) (59)

ż2(t) = A21z1(t) +A22z2 (t) + G2 u(t) (60)

y(t) = z1(t). (61)

From (61) we have that

ẏ(t) = ż1(t). (62)

Upon substituting (61) and (62) into (59) and (60) and after some algebraic
manipulations we obtain, see Shafai and Saif (2015),

ż2(t) = A22z2(t) +Du1(t) (63)

y1(t) = A12z2(t). (64)

The vectorsu1(t), y1(t) and the matrix D are given by

u1(t) =

[

y(t)
u(t)

]

(65)

y1(t) = ẏ(t)A11y(t)G1u(t) (66)

D = [A21,G2]. (67)

Consider also a linear time-invariant system, described by the following state-
space equations

˙̂z2(t) = [A22 −KA12]ẑ2(t) +Ky1 (t) +Du1(t). (68)

Theorem 1 The system (68) is a Luenberger observer of order (n−p) of system
(51) and (52) if and only if the following condition holds:

(a) The pair (A, C) is detectable.
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Proof Let the system (68) be a Luenberger observer of order (n− p) of system
(51) and (52). Further, let ẑ2(t) be an estimate of z2 (t). We define the state
estimation error e(t) as follows

e(t) = z2 (t)− ẑ2(t). (69)

Then, by taking the derivative of (69) and using (63), (64), (68) and (69),
we obtain

ė (t) = [A22z2(t) +Du1(t)]− {[A22 −KA12]ẑ2(t) +Ky1(t) +Du1(t)}

= [A22z2(t) +Du1(t)]− {[A22 −KA12]ẑ2(t) +KA12z2(t) +Du1(t)}

= [A22 −KA12]z2 (t)− [A22 −KA12]ẑ2(t)

= [A22 −KA12][z2(t)− ẑ2(t)] = [A22 −KA12]e(t). (70)

The solution of the system of differential equations (70) is given by

e(t) = e[A22−KA12]te(0). (71)

The estimation error e(t), given by (71), approaches zero in the sense of
limt 7→+∞ e(t) = 0 if and only if all the eigenvalues of the matrix [A22−KA12]
are stable, equivalently, according to Definition 3, if and only if the matrix [A22−
KA12] is Hurwitz stable, see Trinh and Fernando (2012). Hurwitz stability of
the matrix [A22 − KA12] and Definition 4 imply the detectability of the pair
(A22, A12). Detectability of the pair (A22, A12) and Lemma 9 imply the
detectability of the pair (A, C). This is condition (a) of the Theorem.

In order to prove sufficiency, we assume that the pair (A, C) is detectable.
Detectability of the pair (A, C) and Lemma 9 imply detectability of the pair
(A22, A12). Since the pair (A22, A12) is detectable, from Lemma 6 it follows
that there exists a real matrix K of appropriate dimensions such that the matrix
[A22−KA12] is Hurwitz stable. The matrix K can be calculated as in the proof
of Lemma 6. Now, since the matrix [A22 −KA12] is by construction Hurwitz
stable, from (71) we obtain

limt 7→+∞e(t) = 0 (72)

for any e(0). Hence, from (69) and (72) it follows that ẑ2(t) is an estimate
of z2(t). The vector ẑ2(t) can be calculated by solving the system of differen-
tial equations, given by (68) (i.e., the state-space equations of the Luenberger
observer of order (n− p)).

Using relationships (55) and (61) one can always find an estimate x̂ (t) of
the state vector x(t) of the system (51) and (52) as follows

x̂ (t) = M

[

y(t)
ẑ2(t)

]

(73)
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This completes the proof.

The sufficiency part of the proof of Theorem 1 provides a construction of
the matrices K and D of Luenberger observer of order (n− p) (68). The major
steps of this construction are given below.

Construction

Given: A, B and C

Find : K and D

Step 1: Check condition (a) of Theorem 1. If this condition is satisfied, go
to Step 2. If condition (a) is not satisfied, then construction of the Luenberger
observer of order (n− p) is impossible.

Step 2: Find a non-singular matrix M over R of dimensions (n × n) such
that

CM = [Ip, 0].

Step 3: Calculate the following real matrices

M−1AM =

[

A11 A12

A21 A22

]

,

[

G1

G2

]

= M−1B, D = [A21, G2 ].

Step 4: Detectability of the pair (A, C) and Lemma 9 imply detectability
of the pair (A22, A12). Since the pair (A22, A12) is detectable, from Lemma 6
it follows that there exists a real matrix K such that the matrix

[A22 −KA12]

is Hurwitz stable. The matrix K can be calculated as in the proof of Lemma 6.

4. Computational examples

Example 1 Consider a linear system with state-space equations given by (51)
and (52), specified by:

A =









1 0 1 0
0 1 0 1
0 0 0 1
0 0 0 0









, B =









1 0
0 1
1
0

0
0









,

and C =

[

1 0 0 0
0 1 0 0

]

,

with n = 4, m = 2, p = 2 and rank[C] = 2.

The task is to find the matrices K and D of the Luenberger reduced observer
of order (n− p), which estimates the state vector of the given system.
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We shall follow the steps of the construction procedure, provided in the
preceding section. The eigenvalues of the matrix A of the given system are:
λ1 = λ2 = 1 and λ3 = λ4 = 0. In order to execute Step 1 of the construction
procedure, we form the following matrices

[

C
I2λ1 −A

]

=

















1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1
0 0 1 −1
0 0 0 1

















[

C
I2λ2 −A

]

=

















1 0 0 0
0 1 0 0

−1 0 0 0
0 −1 0 0

−1 0 0 −1
0 −1 0 0

















.

We have the following:

rank

[

C
I2 λ1 −A

]

= rank

















1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1
0 0 1 −1
0 0 0 1

















= 4

rank

[

C
I2λ3 −A

]

= rank

















1 0 0 0
0 1 0 0

−1 0 −1 0
0 −1 0 −1
0 0 0 −1
0 0 0 0

















= 4.

The last relationships and the Definition 5 imply that the unstable eigen-
values λ1, λ2, λ3 and λ4 are observable; therefore, according to the condition
(b) of Lemma 2, the given system is detectable. Detectability of the pair (A,
C) and Theorem 1 imply the existence of Luenberger reduced observer of order
(n− p), which estimates the state vector of the given system.

In order to carry out Step 2 set

M = I4

where I4 is the identity matrix of size (4 x 4).
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Step 3, for M = I4, yields

A11 =

[

1 0
0 1

]

, A12 =

[

1 0
0 1

]

, A21 =

[

0 0
0 0

]

andA22 =

[

0 1
0 0

]

,

G1 =

[

1 0
0 1

]

, G2 =

[

1 0
0 0

]

and D =

[

0 0 1 0
0 0 0 0

]

.

Detectability of the pair (A, C) and Lemma 9 imply detectability of the pair
(A22, A12). The matrix K, given by

K =

[

0 0
1 2

]

produces [A22 −KA12] in companion form, see Kucera (1991),

[A22 −KA12] =

[

0 1
−1 −2

]

with characteristic polynomial c(s) = s2 + 2s + 1. Since the roots s1,2 = −1
of the polynomial c(s) have negative real parts, the polynomial c(s) is strictly
Hurwitz and therefore, according to Definition 3, the matrix [A22 −KA12] is
Hurwitz stable. This completes Step 4.

Example 2 Consider a linear system with state-space equations given by (51)
and (52), specified by:

A =





1 0 0
0 1 0
0 1 1



 , B =





1 0
0 1
0 0



 and C =

[

1 0 0
0 1 0

]

with n = 3, m = 2, p = 2 and rank [C] = 2.

The task is to find the matrices K and D of the Luenberger reduced observer
of order (n− p), which estimates the state vector of the given system.

We shall follow the steps of the construction procedure, given in the preced-
ing section. For executing Step 1, we form the following matrix

[

C
I3s−A

]

=













1 0 0
0 1 0

s− 1 0 0
0 s− 1 0
0 −1 s− 1













.

For s =1 we have that

rank

[

C
I3 −A

]

= rank













1 0 0
0 1 0
0 0 0
0 0 0
0 −1 0













= 2 < 3.
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The last relationship and condition (a) of Lemma 2 imply that the given
system is not detectable; therefore, according to Theorem 1, the construction
of Luenberger reduced observer of order (n− p) is impossible.

5. Conclusions

In this paper, the explicit necessary and sufficient conditions for the existence of
Luenberger reduced order observer are established. The proof of the main results
is constructive and furnishes a procedure for the construction of the Luenberger
reduced order observer. The main results obtained for linear continuous-time
systems also hold for linear discrete-time systems.
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