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Abstract: The convex linear combination of the controllabil-
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1. Introduction

The notion of controllability of linear control systems was introduced by Kalman
(Kalman, 1963) during the IFAC Congress in 1960 in Moscow. This notion and
the related concepts are the basic concepts of the modern mathematical control
theory (see Kaczorek, 1993; Kailath, 1980; Klamka, 1981, 2018). They have
been also extended to positive linear systems (Kaczorek, 2008, 2010, 2018). In
particular, the decomposition of the positive linear system has been addressed
in Kaczorek (2018). It is well known that from the topological point of view,
controllability of linear systems constitutes a generic property of the systems.
Therefore, a randomly chosen linear dynamical system is controllable. More-
over, the class of uncontrollable linear system is closed. If a dynamical system
is uncontrollable, then it can be decomposed into the controllable and uncon-
trollable parts. In this paper, the concept of convex linear combination of the
controllability pairs of linear continuous-time finite dimensional systems is in-
vestigated.

The paper is organized as follows. Section 1 contains a brief description
of the problem and the relationships to the previous results are pointed out.

∗Submitted: June 2021; Accepted: October 2021



542 T. Kaczorek and J. Klamka

In Section 2 the basic definition and theorem, concerning controllability, are
recalled. The notion of the convex linear combination of the linear controllable
systems and the main result of the paper are presented in Section 3. In the
proof of the main result pure algebraic methods, based on linear algebra, are
used. Moreover, the subsequent Section 4 contains illustrative examples, in
which different convex linear combination of the controllable and uncontrollable
pairs of linear control systems are investigated. Finally, concluding remarks and
a set of open problems are given in Section 5.

2. Mathematical model and basic definitions

The main purpose of this article is to present a compact review over the existing
algebraic controllability and observability conditions mainly for linear, finite-
dimensional, continuous-time and time-invariant control systems.

Controllability and observability are fundamental concepts in modern ma-
thematical control theory. They are qualitative properties of control systems and
are of particular importance in mathematical control theory. Systematic study
of controllability and observability was started at the beginning of the 1960s,
when the theory of controllability and observability, based on the description in
the form of state space for both time-invariant and time-varying linear control
systems was elaborated. Many dynamical systems display the property that
the control does not affect the complete state of the dynamical system but only
a part of it. On the other hand, very often, in real industrial processes it is
possible to observe only a certain part of the complete state of the dynamical
system. Therefore, it is very important to determine whether or not control and
observation of the complete state of the dynamical system are possible. Roughly
speaking, controllability generally means that it is possible to steer a dynamical
system from an arbitrary initial state to an arbitrary final state using the set of
admissible controls. Controllability plays an essential role in the development
of the modern mathematical control theory. There are important relationships
between different types of controllability, observability and stabilizability for
linear control systems. Controllability is also strongly connected with the theory
of minimal realization of linear time-invariant control systems. Moreover, it
should be pointed out that there exists a formal duality between the concepts
of controllability and observability.

The literature of the subject contains many different definitions of control-
lability, which strongly depend on the type of dynamical control system consid-
ered. The main purpose of this article is to present a compact review over the
existing algebraic controllability and observability conditions mainly for linear
continuous-time and time-invariant control systems. It should be pointed out
that for linear control systems controllability and observability conditions have
pure algebraic forms and are rather easily computable. These conditions require
verification of the rank conditions for the suitably defined constant controllabil-
ity and observability matrices.
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In the theory of linear time-invariant dynamical control systems the most
popular and the most frequently used mathematical model is given by the fol-
lowing linear ordinary differential state equation:

x′(t) = Ax(t) + bu(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ R is an input scalar admissible
control, A is a real nxn-dimensional matrix, and b is a real n–dimensional vector.

It is well known that for a given initial state x(0)∈ Rn and control u(t) ∈ R,
t ≥0, there exists a unique solution x(t;x(0),u) ∈ Rn of the state equation (1),
having the following form

x(t;x(0), u) = exp(At)x(0) +

t
∫

0

exp(A(t− s))bu(s)ds. (2)

Now, let us recall the most popular and most frequently used fundamental
definition of controllability for linear control systems with constant coefficients.

Definition 1 (Klamka, 1981, 2018) Dynamical system (1) is said to be con-
trollable if for every initial condition x(0) and every vector x1 ∈Rn, there exist
a finite time t1 and control u(t) ∈ R, t ∈[0,t1], such that x(t1;x(0),u) = x1.

This definition requires only of the system (1) that it can be steered from
any initial state x(0) to any final state x1 within a finite time interval. It should
be pointed out that the trajectory of the system (1) in the time interval [0,t1]
is not specified. Furthermore, there are no constraints imposed on the control
or the state variable.

In order to formulate easily the computable algebraic controllability criteria
let us introduce the so called controllability matrix W , defined as follows:

W = [b,Ab, A2b, ..., An−1b].

The controllability matrix W is an n×n-dimensional constant matrix, which
depends only on system parameters.

Now, let us recall the necessary and sufficient controllability conditions.

Theorem 1 (Klamka, 1981, 2018) The dynamical system (1) is controllable
if and only if

rankW = n.

Corollary 1 (Klamka, 1981, 2018) The dynamical system (1) is control-
lable if and only if the n× n-dimensional symmetric matrix WWT is nonsingu-
lar.

Since the controllability matrix W does not depend on time t1, then from
Theorem 1 and Corollary 1 it directly follows that, in fact, controllability of dy-
namical system does not depend on the length of the control interval. However,
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this is not true for dynamical systems with constraints on the state variables or
admissible controls.

Let P be an n×n constant nonsingular transformation matrix and let us de-
fine the equivalence transformation in the state space Rn, given by z(t) =Px (t).
Then, the differential state equation (1) becomes

z′(t) = Jz(t) + gu(t) (3)

where matrix J = PAP−1, and vector g = Pb.

Dynamical systems (1) and (3) are said to be equivalent and many of their
properties are invariant under the nonsingular equivalence transformations. For
example, nonsingular transformation preserves the controllability property.

Among the different nonsingular transformations, we shall use in this paper
the nonsingular transformation, which leads to the following nxn-dimensional
matrix Ac and the n-dimensional vector bc:

Ac = PAP−1 =















0, 0, 0, · · · 0,−a1,0
1, 0, 0, . . . 0,−a1,1
0, 1, 0, · · · 0,−a1,2

. . .

0, 0, 0, . . . 1,−a1,n−1















− bc =















1
0
0
...
0















. (4)

Suppose that the dynamical system (1) is controllable, then the dynamical
system remains controllable after the equivalence transformation. This is na-
tural and intuitively clear, because an equivalence transformation changes only
the basis of the finite dimensional state space. Therefore, we have the following
corollary:

Corollary 2 Controllability is invariant under any equivalence transforma-
tion

z(t) = Px(t).

Since controllability of a dynamical system is preserved under any equiv-
alence transformation, then it is possible to obtain a simpler controllability
criterion by transforming the differential state equation (1) into a special form
(3), (4).

It should be pointed out that if we transform the dynamical system (1) into
the Jordan canonical form, then controllability can be determined very easily,
almost by inspection (see Kalman, 1963, for more details).

Remark 1 It should be pointed out that for system (1), controllability does
not depend on the length of time interval [0,t1] and it depends only on system
parameters. Hence, the necessary and sufficient conditions for controllability
are purely algebraic.
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It is well nown that the controllability of linear systems is a generic property
of the systems. A randomly chosen dynamical system is controllable. Moreover,
the class of uncontrollable linear system is closed. If a dynamical system is un-
controllable, then it can be decomposed into the controllable and uncontrollable
parts.

The structure of the set of controllable systems (1) is rather complicated,
but it is possible to formulate a general result, which is given below.

Corollary 3 (Klamka, 1981) The set of controllable systems (1) is open
and dense in the set of all systems with the same dimensions of matrices A and
vectors b.

3. Controllability of the convex linear combination

Now, let us introduce the linear convex combination of linear finite-dimensional
dynamical systems, given in the form (1).

For the linear control systems (A1, b1) and (A2, b2) we define their linear
convex combination (A(q),b(q)) as follows:

A(q) = (1 − q)A1 + qA2, b(q) = (1 − q)b1 + qb2, 0 ≤ q ≤ 1 (5)

where q is a real number.

Now, using the general formula (4), we introduce for the pairs of matrices
(A1,b1) and (A2,b2) the following notations:

Ac
1 = P1A1P

−1
1 =















0, 0, 0, · · · 0,−a1,0
1, 0, 0, . . . 0,−a1,1
0, 1, 0, · · · 0,−a1,2

. . .

0, 0, 0, . . . 1,−a1,n−1















bc1 =















1
0
0
...
0















Ac
2 = P2A2P

−1
2 =















0, 0, 0, · · · 0,−a2,0
1, 0, 0, . . . 0,−a2,1
0, 1, 0, · · · 0,−a2,2

. . .

0, 0, 0, . . . 1,−a2,n−1















bc2 =















1
0
0
...
0















.

The main result of the present paper is stated in the following theorem, which
gives the sufficient condition for controllability of convex combination.

Theorem 2 Let the pairs (A1, b1) and (A2, b2) of linear control systems be
controllable. Then their linear convex combination

A(q) = (1 − q)A1 + qA2, b(q) = (1 − q)b1 + qb2, 0 ≤ q ≤ 1

is also controllable for all 0 ≤ q ≤ 1, if P = P1 = P2 is a nonsingular matrix.
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Proof Taking into account the assumption P = P1 = P2 and formula (5)
we have

A (q) = PA (q)P−1 = (1 − q)PAc
1P

−1 + qPAc
2P

−1 =

= (1 − q)















0, 0, 0, · · · 0,−a1,0
1, 0, 0, . . . 0,−a1,1
0, 1, 0, · · · 0,−a1,2

. . .

0, 0, 0, . . . 1,−a1,n−1















+ q















0, 0, 0, · · · 0,−a2,0
1, 0, 0, . . . 0,−a2,1
0, 1, 0, · · · 0,−a2,2

. . .

0, 0, 0, . . . 1,−a2,n−1















=















0, 0, 0, · · · 0,−a0
1, 0, 0, . . . 0,−a1
0, 1, 0, · · · 0,−a2

. . .

0, 0, 0, . . . 1,−an−1















,

b (q) = (1 − q)















1
0
0
...
0















+ q















1
0
0
...
0















=















1
0
0
...
0















,

where ak = (1-q)a1,k+qa2,k for k = 0,1,2,. . . ,n-1.

Upon computing the controllability matrix and its rank we obtain rank[b(q),

A(q)b(q), . . . , An−1

(q)b(q)] = rank















1, 0, 0, · · · 0
0, 1, 0, . . . 0
0, 0, 1, · · · 0

. . .

0, 0, 0, . . . . . . , 1















= n.

Therefore, the Kalman controllability condition is satisfied and the convex
linear combination of the pairs is controllable for all q, 0 ≤ q ≤1. ✷

4. Examples

In the here presented examples different cases of linear convex combinations of
linear control systems are discussed.

Example 1 Let us consider a system, characterized by the following matrix and
vector:

A =

[

A1 A2

0 A3

]

ǫRnxn : b =

[

b1
0

]

ǫRnxm,
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where b1 is an n-dimensional vector, A1 is an n1 x n1 matrix, A2 is an n1 x n2

matrix, and A3 is an n2 x n2 matrix, with n1 + n2 = n.

This system is uncontrollable for all values of the entries of the submatrices
A1, A2, A3, and vector b1. This follows directly from the equality:

rank [b, Ab,. . . ,An−1b] = rank

[

b1 A1b1
0 0

. . . An−1
1 b1

. . . 0

]

<n.

Now, let us consider two uncontrollable systems:

Ai =

[

Ai1 Ai2

0 Ai3

]

ǫRnxn; bi =

[

bi1
0

]

for i = 1, 2. (6)

Here, Ai1 is an n1 x n1 dimensional matrix, Ai2 is an n1x n2 dimensional
matrix, and Ai3 is an n2 x n2 dimensional matrix, where n1 + n2 = n.

Next, let us consider their convex linear combinations:

A(q) = (1 − q)A1 + qA2 =

[

(1 − q)A11 + qA21 (1 − q)A12+qA22

0 (1 − q)A13+qA23

]

b(q) = (1 − q)b1 + qb2 =

[

(1 − q) b11 + qb21
0

]

. (7)

In order to simplify our considerations let us introduce the following nota-
tions:

M = [(1 − q)A11 + qA21]

N = [(1 − q) b + qb21].

Using the well known Kalman controllability condition for the convex linear
combination (7) we obtain

rank [b(q), A(q)b(q), . . . , An−1b(q)] =

= rank

[

N MN M2N

0 0 0
. . . Mn−1N

0 0

]

< n.

This example shows that if a pair of systems contains uncontrollable systems,
then their convex linear combination (7) is also uncontrollable for 0 ≤ q ≤ 1.

Example 2 Consider the controllable pair

A1 =

[

0 1
1 2

]

, b1 =

[

1
0

]

(8)

and the uncontrollable pair

A2 =

[

1 0
2 1

]

, b2 =

[

0
1

]

. (9)
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The convex linear combination of the pairs (8) and (9) has the forms

A(q) = (1 − q)A1 + qA2 =

[

q 1 − q

1 + q 2 − q

]

,

b(q) = (1 − q)b1 + qb2 =

[

1 − q

q

]

(10)

where 0 ≤ q ≤ 1.

Using (10) and the Kalman controllability condition we obtain

rank[b(q), A(q)b(q)] = rank

[

1 − q 2q(1 − q)
q 1 + 2q − 2q2

]

< 2

for q = 1 and 1 + 2q − 4q2 = 0

since

det

[

1 − q 2q(1 − q)
q 1 + 2q − 2q2

]

= (q − 1)(1 + 2q − 4q2) = 0. (11)

Therefore, the convex linear combination of the controllable pair (8) and
uncontrollable pair (9) is uncontrollable for the positive root of the equation
(11) equal to q = 0.25(

√
5 + 1) < 1.

Generally, a convex combination of controllable and uncontrollable dynamical
systems may be uncontrollable.

Example 3 In general case, let the system, given by

A1 =

[

A11 A12

A21 A22

]

ǫRnxn; b1 =

[

b11
b12

]

(12)

be controllable,

and the system

A
′

2 =

[

A
′

11 A
′

12

0 A
′

22

]

ǫRnxn; b
′

2 =

[

b
′

21

0

]

(13)

be uncontrollable.

The convex linear combinations of (12) and (13) have the forms

A(q) = (1 − q)A1 + qA
′

2 =

[

(1 − q)A11 + qA
′

11 (1 − q)A12 + qA
,
2

(1 − q)A21 (1 − q)A22 + qA
′

22

]

ǫRnxn

(14)

B(q) = (1 − q)B1 + qB2 =

[

(1 − q) + B11 + qB
′

21

(1 − q)B12

]

ǫRnxm. (15)
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Since in this case the controllability matrix is square, therefore we have

det[b(q), A(q)b(q), . . . , An−1(q)b(q)] = anq
n + an−1q

n−1 + · · · + a1q + a0.

Let the equation

anq
n + an−1q

n−1 + · · · + a1q + a0 = 0

have in the interval [0,1] the real roots:

0<q1 < q2 < · · · < qk−1
<qk < 1; k ≤ n. (16)

Then the convex linear combination of (12) and (13) is uncontrollable for
parameters

0<q1<q2<. . .<qk−1
<qk<1.

If the pair (12) is controllable and the pair (13) is uncontrollable, then their
convex linear combination is uncontrollable for at most n values of parameter
q, given by (16).

Example 4 Let us consider two controllable control systems:

A1 =

[

0 1
1 0

]

b1 =

[

0
1

]

A2 =

[

1 0
0 0

]

b2 =

[

1
−1

]

.

The corresponding canonical forms and transformation matrices are as follows:

Ac
1 =

[

0 1
1 0

]

bc1 =

[

1
0

]

P1 =

[

0 1
1 0

]

Ac
2 =

[

0 0
1 1

]

bc2 =

[

1
0

]

P2 =

[

0 −1
1 1

]

A (q) = (1 − q)Ac
1 (q)+qAc

2 = (1 − q)

[

0 1
1 0

]

+q

[

0 0
1 1

]

=

[

0 1 − q

1 q

]

.

Similarly

b (q) = (1 − q) bc1 + qbc2 = (1 − q)

[

1
0

]

+ q

[

1
0

]

=

[

1
0

]

rank [b (q) , A (q) b (q)] =

[

1 0
0 1

]

= 2 .

Remark 2 Therefore, this example shows that the linear convex combination of
dynamical systems may be controllable also for different nonsingular transforma-
tion matrices. Hence, Theorem 2 is only sufficient, but not necessary condition
for controllability of a linear convex combination.
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5. Concluding remarks

The algebraic approach to the structure of the set of linear dynamical systems 
with the same dimension of state space was presented in this paper. Using 
controllability matrix the convex linear combination of the controllability pairs 
of linear continuous-time linear systems was defined and discussed.

In this paper only the most popular linear control systems are discussed. 
However, the considerations can be extended in many directions. For exam-
ple, controllability of convex linear combinations of discrete-time linear systems 
and fractional order linear continuous-time and fractional discrete-time linear 
systems may be considered.

Moreover, since observability of linear control systems is a dual concept 
with respect to controllability, then quite similar results may be obtained for 
the convex combination of the observability pairs.

Finally, it should be pointed out that the concept of convex combination is 
considered in theory of quantum systems. For example, convex combination of 
quantum channels and its properties have been recently studied in the paper by 
Jagadish, Srikanth and Patruccione (2020).
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