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Abstract: In the paper, we consider an equilibrium problem for
a 2D elastic body with a thin elastic inclusion crossing an exter-
nal boundary. The elastic body has a defect which is characterized
by a positive damage parameter. The presence of a defect means
that the problem is formulated in a non-smooth domain. Non-linear
boundary conditions at the defect faces are imposed to prevent the
mutual penetration between the faces. Both variational and differ-
ential problem formulations are proposed, and existence of solutions
is established. We study an asymptotics of solutions with respect to
the damage parameter as well as with respect to a rigidity parame-
ter of the inclusion. Identification problems for finding the damage
parameter are investigated. To this end, existence of solutions of
optimal control problems is proven.

Keywords: thin inclusion, defect, damage parameter, non-penetration
boundary conditions, optimal control

1. Introduction

The analysis of equilibrium problems for composite materials with thin inclu-
sions based on high-level mathematical models leads to the need of finding solu-
tions in non-smooth domains. In the presence of delamination of thin inclusions
from the matrix, and the formation of defects in this way, it is necessary to ap-
propriately choose boundary conditions on the defect faces. From the point of
view of mechanics, the best boundary conditions should be considered as those
that ensure the mutual non-penetration of the opposite faces of the defect. At
the same time, the nature of the interaction of the opposite faces is characterized
by the damage parameter.

The paper deals with the equilibrium problem of an inhomogeneous anisotropic
elastic body containing a thin inclusion, in the presence of a defect. It is as-
sumed that the inclusion crosses the outer boundary of the elastic body. In
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this case, the thin inclusion is characterized by the rigidity parameter β > 0,
while the defect is characterized by the damage parameter δ > 0. The analysis
of the dependence of the solutions on the specified parameters is carried out. In
particular, the limiting models are investigated, corresponding to the values of
the parameter δ = 0, δ = ∞. If the value of the damage parameter is unknown,
then as an additional information, we can set the deflection of the outer part of
the thin inclusion. Thus, to identify the damage parameter, one can investigate
the optimal control problem, the solution of which allows for finding such a
damage parameter value that minimizes the difference between the deflection of
the outer part of the thin inclusion and the specified function. The solvability
of these optimal control problems is proven both in the case of the elastic and
the rigid inclusions.

General approaches to the formulation of boundary value problems for com-
posite materials can be found in a large number of publications, see, for example,
Kozlov and Maz’ya (1991), Nasser and Hassen (1987), Saccomandi and Beatty
(2001), Panasenko (2005), Yao (2015). The equilibrium problem for an elastic
body containing a defect with a damage parameter is investigated in Khludnev
(2018), see also Almi (2017), Perelmuter (2014). We also refer the reader to the
results concerning boundary problems for elastic bodies with cracks and thin
inclusions, see Khludnev and Sokolowski (1997), Khludnev and Kovtunenko
(2000), Khludnev (2010), Khludnev and Leugering (2011, 2014, 2015, 2016),
Lazarev and Rudoy (2011, 2014, 2015), Shcherbakov (2014a, b) and the refer-
ences therein.

2. Setting the problem

Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary Γ such that a0 ⊂ Ω,

a0 = (0, 1)× {0}, ae = (−1, 0)× {0}, ae 6⊂ Ω, a = a0 ∪ ae ∪ {(0, 0)}. Denote by
ν = (0, 1) a unit normal vector to a, and set Ω0 = Ω \ ā0, see Fig. 1.

In our considerations, the domain Ω0 represents a region with an elastic
material, and a corresponds to an elastic inclusion with specified properties
crossing the external boundary Γ. In particular, we consider a as an elastic
beam incorporated in the elastic body. Vertical displacements (along the axis
x2) of the inclusion should coincide with the vertical displacements of the elastic
body at a−0 . From the standpoint of geometry, the defect is located at a0. In
our model, inequality type boundary conditions will be considered to prevent
mutual penetration between the defect faces a±0 . Let B = {bijkl}, i, j, k, l = 1, 2,
be a given elasticity tensor with the usual properties of symmetry and positive
definiteness, bijkl ∈ L∞(Ω).

Denote by δ > 0 a damage parameter, which characterizes the defect. An
equilibrium problem for the body Ω0 and the elastic inclusion a in the presence
of the defect is formulated in the following manner. For the given external
forces g = (g1, g2) ∈ L2(Ω)2 , acting on the elastic body, we have to find a
displacement field uδ = (uδ

1, u
δ
2), a stress tensor σ = {σij}, i, j = 1, 2, defined
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in Ω0, and a thin inclusion displacement vδ defined on a such that

−div σ = g, σ −Bε(uδ) = 0 in Ω0, (1)

vδ,1111 = [σ22] on a0; v
δ
,1111 = 0 on ae, (2)

uδ = 0 on Γ; vδ,11 = vδ,111 = 0 for x1 = −1, 1, (3)

[uδ
2] ≥ 0,−σ+

22 +
1

δ
[uδ

2] ≥ 0, −σ±
12 +

1

δ
[uδ

1] = 0 on a0, (4)

vδ = uδ−
2 , [uδ

2](−σ+
22 +

1

δ
[uδ

2]) = 0 on a0, (5)

vδ(0) = 0, [vδ,1(0)] = [vδ,11(0)] = 0. (6)

Here, [p] = p+ − p− is a jump of a function p on a0, where p± are the traces
of p on the defect faces a±0 . The signs ± correspond to positive and negative
directions of ν; v,1 = dv

dx1
, (x1, x2) ∈ Ω; ε(u) = {εij(u)} is the strain tensor,

εij(u) = 1
2 (ui,j + uj,i), i, j = 1, 2. Functions defined on a we identify with

functions of the variable x1.

Relations (1) are the equilibrium equations for the elastic body and Hooke’s
law, respectively; (2) are equilibrium equations for the elastic inclusion parts
a0, ae. The right-hand side [σ22] in (2) corresponds to forces acting on the
inclusion from the surrounding elastic body. According to the first relation
of (5), the vertical displacement of the elastic body at a−0 coincides with the
inclusion displacement. The second group of boundary conditions (3) is related
to zero moments and zero transverse forces at the tip points of the inclusion
a. The first inequality in (4) ensures the mutual non-penetration between the
defect faces. Contact points between the defect faces are unknown a priori. If
there is no contact at a given point x0, i.e. [uδ

2(x0)] > 0, then by (5), we get
−σ+

22(x0) +
1
δ
[uδ

2(x0)] = 0. On the other hand, if −σ+
22(x0) +

1
δ
[uδ

2(x0)] > 0, we
obtain a contact condition [uδ

2(x0)] = 0. Relations (6) are junction conditions
at the point (0, 0).
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The problem (1)-(6) can be written in a variational form. To this end,
introduce the Sobolev spaces

H1
Γ(Ω0) = {φ ∈ H1(Ω0) |φ = 0 on Γ},

H2,0(a) = {w ∈ H2(a) |w(0) = 0}

and a set of admissible displacements

P = {(u, v) ∈ H1
Γ(Ω0)

2 ×H2,0(a) | u = (u1, u2); [u2] ≥ 0, u−

2 = v on a0}.

Consider the energy functional with σ(u) = Bε(u),

π(u, v) =
1

2

∫

Ω0

σ(u)ε(u)−

∫

Ω0

gu+
1

2

∫

a

v2,11 +
1

2δ

∫

a0

[u]2.

Here and below, for simplicity, we write σ(u)ε(u), gu instead of σij(u)εij(u), giui,

respectively. Summation convention over repeated indices is used.

For any fixed δ, the minimization problem:

find (uδ, vδ) ∈ P such that π(uδ, vδ) = inf
P

π (7)

has a solution satisfying the variational inequality

(uδ, vδ) ∈ P, (8)

∫

Ω0

σ(uδ)ε(ū− uδ)−

∫

Ω0

g(ū− uδ)+ (9)

+

∫

a

vδ,11(v̄,11 − vδ,11) +
1

δ

∫

a0

[uδ][ū− uδ] ≥ 0 ∀ (ū, v̄) ∈ P.

A coercivity of the functional π can be proven as that in Khludnev and
Leugering (2014). The set P is weakly closed, hence, the problem (7) indeed
has a solution.

The following statement takes place.

Theorem 1 Problem formulations (1)-(6) and (8)-(9) are equivalent, provided

that the solutions are quite smooth.

We omit the proof of this statement, since the proof basically reminds that
given in Khludnev (2015), where the equilibrium problem for an elastic body
with a thin inclusion is analyzed (without a damage parameter).
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3. Passage to the limit in (8)-(9) as δ → ∞

This section is concerned with a justification of the passage to the limit as
δ → ∞ in the problem (8)-(9). For any given δ, there exists a solution of the
problem (8)-(9). From (8)-(9) it follows that

∫

Ω0

σ(uδ)ε(uδ)−

∫

Ω0

guδ +
1

δ

∫

a0

[uδ]2 +

∫

a

(vδ,11)
2 ± α

∫

a0

(vδ)2 = 0 (10)

with α > 0. Thus, by Korn’s inequality, imbedding theorems and the first
boundary condition of (5), we have for a small α

1

2

∫

Ω0

σ(uδ)ε(uδ)− α

∫

a0

(vδ)2 ≥ 0.

Moreover, it is possible to prove that there exists a constant c0 > 0 such that

∫

a

(vδ,11)
2 + α

∫

a0

(vδ)2 ≥ c0‖v
δ‖2H2,0(a).

Hence, from (10), the following a priori estimate is obtained being uniform in δ,

‖uδ‖H1

Γ
(Ω0)2 + ‖vδ‖H2,0(a) ≤ c.

Thus, by imbedding theorems,

∫

a0

[uδ]2 ≤ c.

By these estimates, choosing a sequence, if necessary, we assume that as δ → ∞

uδ → u∞ weakly in H1
Γ(Ω0)

2, [uδ] → [u∞] weakly in L2(a0)
2, (11)

vδ → v∞ weakly in H2,0(a).

In view of (11), passing to the limit in (8)-(9) as δ → ∞ we obtain

(u∞, v∞) ∈ P,

∫

Ω0

σ(u∞)ε(ū− u∞)−

∫

Ω0

g(ū− u∞)+ (12)

+

∫

a

v∞,11(v̄,11 − v∞,11) ≥ 0 ∀ (ū, v̄) ∈ P.

We can provide an equivalent (for smooth solutions) differential formulation
of the problem (12). Namely, find a displacement field u∞ = (u∞

1 , u∞
2 ) and
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a stress tensor σ = {σij}, i, j = 1, 2, defined in Ω0, as well as a function v∞,
defined on a such that

−div σ = g, σ −Bε(u∞) = 0 in Ω0, (13)

v∞,1111 = [σ22] on a0; v
∞
,1111 = 0 on ae, (14)

u∞ = 0 on Γ; v∞,11 = v∞,111 = 0 for x1 = −1, 1, (15)

[u∞
2 ] ≥ 0, σ+

22 ≤ 0, σ±
12 = 0, σ+

22[u
∞
2 ] = 0 on a0, (16)

v∞ = u∞−

2 on a0, (17)

v∞(0) = 0, [v∞,1 (0)] = [v∞,11(0)] = 0. (18)

The problem (12) or (13)-(18) describes an equilibrium state of the elastic body
with the thin delaminated inclusion a and zero friction between a±0 . This model
was analyzed in Khludnev (2017).

Thus, we have proven the following statement.

Theorem 2 Solutions (uδ, vδ) of the problems (8)-(9) converge in the sense

(11) to the solution (u∞, v∞) of the problem (12) as δ → ∞.

4. Passage to the limit in (8)-(9) as δ → 0

In this section, we analyze a passage to the limit as δ → 0 in the problem (8)-(9).
For any fixed δ > 0, consider the problem (8)-(9). The solutions of this problem
satisfy the equality

∫

Ω0

σ(uδ)ε(uδ)−

∫

Ω0

guδ +
1

δ

∫

a0

[uδ]2 +

∫

a

(vδ,11)
2± (19)

±α

∫

a0

(vδ)2 = 0

with α > 0. Taking small α, it follows from (19) that the following estimates
hold

‖uδ‖H1

Γ
(Ω)2 + ‖vδ‖H2,0(a) ≤ c,

∫

a0

[uδ]2 ≤ cδ

and they are uniform in δ. By these estimates, we can assume that as δ → 0,

uδ → u0 weakly in H1
Γ(Ω0)

2, [uδ] → [u0] = 0 in L2(a0)
2, (20)

vδ → v0 weakly in H2(a).

It is clear that u0 ∈ H1
0 (Ω)

2, where

H1
0 (Ω) = {ϕ ∈ H1(Ω) | ϕ = 0 on Γ}.
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Denote

W = {(u, v) ∈ H1
0 (Ω)

2 ×H2,0(a) | u = (u1, u2); u2 = v on a0}.

We substitute in (9) a test function (ū, v̄) = (uδ, vδ) ± (ũ, ṽ), (ũ, ṽ) ∈ W. It
provides the relation

∫

Ω0

σ(uδ)ε(ũ)−

∫

Ω0

gũ+

∫

a

vδ,11ṽ,11 +
1

δ

∫

a0

[uδ][ũ] = 0. (21)

The last term of the left-hand side of (21) is zero, thus, by (20), it is possible
to pass to the limit in (21) as δ → 0. This yields

∫

Ω0

σ(u0)ε(ũ)−

∫

Ω0

gũ+

∫

a

v0,11ṽ,11 = 0 ∀(ũ, ṽ) ∈ W,

and, by [u0] = 0 on a0, we can replace Ω0 by Ω, which provides the identity

(u0, v0) ∈ W,

∫

Ω

σ(u0)ε(ũ)−

∫

Ω

gũ+ (22)

+

∫

a

v0,11ṽ,11 = 0 ∀(ũ, ṽ) ∈ W.

Consequently, the limit problem can be written in the form (22). Its equiv-
alent differential formulation is as follows. We have to find functions u0 =
(u0

1, u
0
2), σ = {σij}, i, j = 1, 2, defined in Ω, as well as a function v0, defined on

a such that

−div σ = g, σ −Bε(u0) = 0 in Ω0, (23)

v0,1111 = [σ22] on a0; v
0
,1111 = 0 on ae, (24)

u0 = 0 on Γ; v0,11 = v0,111 = 0 for x1 = −1, 1, (25)

[u0] = 0, v0 = u0
2, [σ12] = 0 on a0, (26)

v0(0) = 0, [v0,1(0)] = [v0,11(0)] = 0. (27)

We see that the limit problem (23)-(27) corresponds to the elastic body with
the thin inclusion a and without any defects. Remark that we find the functions
u0, σ in the smooth domain Ω. Nevertheless, the equilibrium equation is fulfilled
in the non-smooth domain Ω0.

To conclude, we formulate the result of this section.

Theorem 3 Solutions (uδ, vδ) of the problems (8)-(9) converge in the sense

(20) to the solution (u0, v0) of the problem (22) as δ → 0.
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5. Optimal control problem: case of elastic inclusion

This section concerns the analysis of the optimal control problem related to the
models (8)-(9), (12), (22) with the damage parameter being a control function.
For a given parameter δ > 0, we can find the solution of the problem (8)-(9).
For δ = ∞, δ = 0, it is also possible to find suitable solutions from (12), (22).

Let v∗ ∈ H2(ae) be a given function. For each δ ∈ (0,∞) we find a solution
(uδ, vδ) of the problem (8)-(9), and for δ = ∞ we find the solution (u∞, v∞) of
(12); for δ = 0 we find the solution (u0, l0) of (22). Define a cost functional for
δ ∈ [0,∞],

G(δ) = ‖vδ − v∗‖H2(ae).

The optimal control problem is formulated as follows

inf
δ∈[0,∞]

G(δ). (28)

The cost functional characterizes a displacement of the inclusion part ae. We see
that a solution of the optimal control problem (28) allows us to find a damage
parameter that minimizes a difference on ae, in a suitable sense, between the
solution vδ and the given function v∗. Note that we compare solutions of different
models corresponding to finite and infinite values of δ.

Theorem 4 There exists a solution of the optimal control problem (28).

Proof Let δn ∈ [0,∞] be a minimizing sequence. For any δn we can find
a unique solution of the problem like (8)-(9) provided δn is finite, or of the
problems (12), (22) for δ = ∞, δ = 0, respectively. We can assume that the
sequence is converging. There are three possible cases:

1. δn → δ∗, n → ∞, δn ∈ (0,∞), δ∗ ∈ R;
2. δn → ∞, n → ∞, δn ∈ (0,∞);
3. δn → 0, n → ∞, δn ∈ (0,∞).
If δn = +∞ for n ≥ n0, or δn = 0 for n ≥ m0, with some n0,m0, then a

solution of the problem (28) exists. We consider the three cases separately.
Case 1. Consider the case when δn → δ∗, n → ∞, δn ∈ (0,∞), δ∗ ∈ R. For

every n we find a solution of the problem

(un, vn) ∈ P, (29)∫

Ω0

σ(un)ε(ū− un)−

∫

Ω0

g(ū− un)+ (30)

+

∫

a

vn,11(v̄,11 − vn,11) +
1

δn

∫

a0

[un][ū− un] ≥ 0 ∀ (ū, v̄) ∈ P.

We check that it is possible to pass to the limit in (29)-(30) as n → ∞. Similarly
as in Section 3, from (29)-(30) it follows uniformly in n,

‖un‖2H1

Γ
(Ω0)2

+ ‖vn‖2H2,0(a) ≤ c. (31)
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Consequently, by (31), we can assume that as n → ∞

un → u weakly in H1
Γ(Ω0)

2, vn → v weakly in H2,0(a).

This convergence allows us to pass to the limit in (29)-(30) as n → ∞, which
yields

(u, v) ∈ P, (32)

∫

Ω0

σ(u)ε(ū − u)−

∫

Ω0

g(ū− u)+ (33)

+

∫

a

v,11(v̄,11 − v,11) +
1

δ∗

∫

a0

[u][ū− u] ≥ 0 ∀ (ū, v̄) ∈ P.

Relations (32)-(33) mean that (u, v) = (uδ∗ , vδ∗). Thus, we have

inf
δ∈[0,∞]

G(δ) = lim inf G(δn) = lim inf ‖vn − v∗‖H2(ae) ≥

≥ ‖v − v∗‖H2(ae) = G(δ∗) ≥ inf
δ∈[0,∞]

G(δ),

and the existence proof is complete in the case 1.
Case 2. Consider the second case, when δn → ∞, n → ∞, δn ∈ (0,∞). In

this situation, for any n, the solution (un, vn) satisfies (29)-(30). From (29)-(30)
we obtain the relation

∫

Ω0

σ(un)ε(un)−

∫

Ω0

gun +

∫

a

(vn,11)
2 +

1

δn

∫

a0

[un]2 = 0. (34)

By the arguments used to derive the estimates (31), from (34) we derive uni-
formly in n

‖un‖2H1

Γ
(Ω0)2

≤ c, ‖vn‖2H2,0(a) + ‖[un]‖L2(a0)2 ≤ c. (35)

In view of estimates (35), we assume that as n → ∞

un → u∞ weakly in H1
Γ(Ω0)

2, vn → v∞ weakly in H2,0(a), (36)

[un] → [u∞] weakly in L2(a0)
2. (37)

By (36)-(37), we pass to the limit in (29)-(30). It provides

(u∞, v∞) ∈ P,

∫

Ω0

σ(u∞)ε(ū− u∞)−

∫

Ω0

g(ū− u∞) +

∫

a

v∞,11(v̄,11 − v∞,11) ≥ 0 ∀ (ū, v̄) ∈ P.
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Thus, the limit functions u∞, v∞ from (36)-(37) correspond to the damage pa-
rameter δ = ∞; see Section 3. By this, we derive

inf
δ∈[0,∞]

G(δ) = lim inf G(δn) = lim inf ‖vn − v∗‖H2(ae) ≥

≥ ‖v∞ − v∗‖H2(ae) = G(∞) ≥ inf
δ∈[0,∞]

G(δ).

Case 3. Consider the last case, when δn → 0, n → ∞, δn ∈ (0,∞). Like
before, for any n, we find the solution (un, vn) of the problem (29)-(30). Again,
from the relation∫

Ω0

σ(un)ε(un)−

∫

Ω0

gun +

∫

a

(vn,11)
2 +

1

δn

∫

a0

[un]2 = 0. (38)

we derive the estimate uniform in n

‖un‖2H1

Γ
(Ω0)2

≤ c, ‖vn‖2H2,0(a) ≤ c. (39)

Moreover, from (38) it follows that
∫

a0

[un]2 ≤ cδn. (40)

Choosing a subsequence, if necessary, by (39), (40), we can assume that as
n → ∞

un → u0 weakly in H1
Γ(Ω0)

2, vn → v0 weakly in H2,0(a), (41)

[u0] = 0 on a0. (42)

Choosing a test function (ū, v̄) in (29)-(30) in the form (ū, v̄) = (un, vn)± (ũ, ṽ),
where (ũ, ṽ) ∈ W, and passing to the limit as n → ∞, we obtain

(u0, v0) ∈ W,

∫

Ω0

σ(u0)ε(ũ)−

∫

Ω0

gũ+

+

∫

a

v0,11ṽ,11 = 0 ∀(ũ, ṽ) ∈ W.

Thus, the limit functions u0, v0 from (41), (42) correspond to the zero value of
the damage parameter; see Section 4. Consequently,

inf
δ∈[0,∞]

G(δ) = lim inf G(δn) = lim inf ‖vn − v∗‖H2(ae) ≥

≥ ‖v0 − v∗‖H2(ae) = G(0) ≥ inf
δ∈[0,∞]

G(δ).

The proof of Theorem 4 is complete. �
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6. Rigidity parameter of thin inclusion tends to infinity

When analyzing the model (1)-(6) we assumed that the parameter, responsible
for the rigidity properties of the elastic inclusion, is equal to 1. In this section,
this parameter will be introduced into the model, and a passage to infinity
will be analyzed as the rigidity parameter goes to infinity. In so doing, we fix
the damage parameter δ. Moreover, we assume that a given force h ∈ L2(a) is
applied to the inclusion a.

Consider the equilibrium problem for the elastic body Ω0 with the elastic
inclusion a assuming that β > 0 is the rigidity parameter of the inclusion. We
have to find a displacement field uβ = (uβ

1 , u
β
2 ), a stress tensor σ = {σij}, i, j =

1, 2, defined in Ω0, and a thin inclusion displacement vβ , defined on a, such
that

−div σ = g, σ −Bε(uβ) = 0 in Ω0, (43)

βv
β
,1111 = [σ22] + h on a0; βv

β
,1111 = h on ae, (44)

uβ = 0 on Γ; vβ,11 = v
β
,111 = 0 for x1 = −1, 1, (45)

[uβ
2 ] ≥ 0,−σ+

22 +
1

δ
[uβ

2 ] ≥ 0, −σ±

12 +
1

δ
[uβ

1 ] = 0 on a0, (46)

vβ = u
β−
2 , [uβ

2 ](−σ+
22 +

1

δ
[uβ

2 ]) = 0 on a0, (47)

vβ(0) = 0, [vβ,1(0)] = [vβ,11(0)] = 0. (48)

The problem (43)-(48) admits the variational formulation

(uβ, vβ) ∈ P, (49)
∫

Ω0

σ(uβ)ε(ū − uβ)−

∫

Ω0

g(ū− uβ)−

∫

a

h(v̄ − vβ)+ (50)

+β

∫

a

v
β
,11(v̄,11 − v

β
,11) +

1

δ

∫

a0

[uβ][ū− uβ ] ≥ 0 ∀ (ū, v̄) ∈ P.

To analyze the passage to the limit as β → ∞ in (49)-(50) we first obtain a
priori estimates. The relations (49)-(50) imply with a small α > 0

∫

Ω0

σ(uβ)ε(uβ)−

∫

Ω0

guβ +
1

δ

∫

a0

[uβ ]2 + β

∫

a

(vβ,11)
2− (51)

−

∫

a

hvβ ± α

∫

a0

(vβ)2 = 0.

Taking into account the arguments used in Section 3, from (51) we obtain,
uniformly in β ≥ β0 > 0

‖uβ‖H1

Γ
(Ω0)2 + ‖vβ‖H2,0(a) ≤ c
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and, moreover,

∫

a

(vβ,11)
2 ≤

c

β
.

Choosing a subsequence, if necessary, we assume that as β → ∞,

uβ → u weakly in H1
Γ(Ω0)

2, vβ → v weakly in H2,0(a), (52)

v,11 = 0 on a,

thus

v(x1) = c0 + c1x1, x1 ∈ (−1, 1), c0, c1 ∈ R.

In view of the boundary condition v(0) = 0 this provides

v(x1) ≡ l0(x1) = c1x1, x1 ∈ (−1, 1).

Introduce the set of admissible displacements for the limit problem

P∞ = {(u, l) ∈ H1
Γ(Ω0)

2 × L(a) | u = (u1, u2); [u2] ≥ 0, u−

2 = l on a0},

where

L(a) = {l | l(x1) = cx1, x1 ∈ (−1, 1), c ∈ R}.

In the definitions of P∞, L(a), a function l and a constant c are arbitrary, re-
spectively.

Now we take (ū, l̄) ∈ P∞. Then (ū, l̄) ∈ P . Substituting (ū, l̄) as a test
function in (50), by (52), we can provide the passage to the limit as β → ∞.

The limit relation takes the form

(u, l0) ∈ P∞, (53)

∫

Ω0

σ(u)ε(ū − u)−

∫

Ω0

g(ū− u)− (54)

−

∫

a

h(l̄ − l0) +
1

δ

∫

a0

[u][ū− u] ≥ 0 ∀ (ū, l̄) ∈ P∞.

Thus, we have proven the following statement.

Theorem 5 Solutions (uβ , vβ) of the problems (49)-(50) converge in the sense

(52) to the solution (u, l0) of the problem (53)-(54) as β → ∞.
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The problem (53)-(54) can be written in the differential form: find a dis-
placement field u = (u1, u2), a stress tensor σ = {σij}, i, j = 1, 2, defined in
Ω0, and a thin inclusion displacement l0 ∈ L(a) such that

−div σ = g, σ −Bε(u) = 0 in Ω0, (55)

u = 0 on Γ; l0 = u−

2 on a0, (56)

[u2] ≥ 0,−σ+
22 +

1

δ
[u2] ≥ 0, −σ±

12 +
1

δ
[u1] = 0 on a0, (57)

[u2](−σ+
22 +

1

δ
[u2]) = 0 on a0, (58)∫

a0

[σ22]l +

∫

a

hl = 0 ∀l ∈ L(a). (59)

Note that the displacement l0 of the inclusion a corresponds to a thin rigid
inclusion.

It can be proven that problem formulations (53)-(54) and (55)-(59) are equiv-
alent for smooth solutions. We omit the arguments.

7. Passage to the limit in (53)-(54) as δ → ∞

Denote by (uδ, lδ) a solution of the problem (53)-(54) for a given δ, i.e.

(uδ, lδ) ∈ P∞, (60)

∫

Ω0

σ(uδ)ε(ū− uδ)−

∫

Ω0

g(ū− uδ)− (61)

−

∫

a

h(l̄ − lδ) +
1

δ

∫

a0

[uδ][ū− uδ] ≥ 0 ∀ (ū, l̄) ∈ P∞.

The aim of the arguments below is a justification of the passage to the limit as
δ → ∞ in the problem (60)-(61). First note that the solution uδ of (60)-(61)
satisfies the following relation with α > 0,

∫

Ω0

σ(uδ)ε(uδ)−

∫

Ω0

guδ +
1

δ

∫

a0

[uδ]2 −

∫

a

hlδ ± α

∫

a0

(lδ)2 = 0. (62)

By Korn’s inequality, the boundary condition uδ−
2 = lδ on a0 and the embedding

theorems, we have for a small α

1

2

∫

Ω0

σ(uδ)ε(uδ)− α

∫

a0

(lδ)2 ≥ 0.
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Then, from (62) it follows that

1

2

∫

Ω0

σ(uδ)ε(uδ)−

∫

Ω0

guδ +
1

δ

∫

a0

[uδ]2 −

∫

a

hlδ + α

∫

a0

(lδ)2 ≤ 0. (63)

Note that there exists a constant c0 > 0 such that

‖l‖L2(a0) ≥ c0‖l‖L2(a) ∀l ∈ L(a).

Consequently, from (63) we have uniformly in δ

‖uδ‖H1

Γ
(Ω0)2 ≤ c, ‖lδ‖L2(a) ≤ c,

and by the embedding theorems, it follows that∫

a0

[uδ]2 ≤ c.

By these estimates, choosing a sequence, we can assume that as δ → ∞,

uδ → u∞ weakly in H1
Γ(Ω0)

2, [uδ] → [u∞] weakly in L2(a0)
2, (64)

lδ → l∞ weakly in L2(a).

Passing to the limit as δ → ∞ in (60)-(61) on the basis of (64), we derive

(u∞, l∞) ∈ P∞,

(65)∫

Ω0

σ(u∞)ε(ū− u∞)−

∫

Ω0

g(ū− u∞)−

∫

a

h(l̄ − l∞) ≥ 0 ∀ (ū, l̄) ∈ P∞.

(66)

The following statement is proven.

Theorem 6 Solutions (uδ, vδ) of the problems (60)-(61) converge in the sense

(64) to the solution (u∞, l∞) of the problem (65)-(66) as δ → ∞.

An equivalent differential formulation of the problem (65)-(66) is as follows:
find a displacement field u∞ = (u∞

1 , u∞
2 ), a stress tensor σ = {σij}, i, j = 1, 2,

defined in Ω0, and a thin inclusion displacement l∞ ∈ L(a) such that

−div σ = g, σ −Bε(u∞) = 0 in Ω0, (67)

u∞ = 0 on Γ; l∞ = u∞−

2 on a0, (68)

[u∞
2 ] ≥ 0, σ+

22 ≤ 0, σ±

12 = 0, [u∞
2 ]σ+

22 = 0 on a0, (69)∫

a0

[σ22]l̄ +

∫

a

hl̄ = 0 ∀l̄ ∈ L(a). (70)

The model (67)-(70) describes an equilibrium problem for the elastic body Ω0

with the thin delaminated rigid inclusion a; the friction between the defect faces
a±0 is zero.
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8. Passage to the limit in (53)-(54) as δ → 0

In this section, we analyze the passage to the limit in (53)-(54) as δ → 0.
Again, denote by (uδ, lδ) a solution of the problem (53)-(54) corresponding to
the parameter δ. Hence, we consider the problem (60)-(61). Like in the previous
section, the following estimates take place, being uniform in δ,

‖uδ‖H1

Γ
(Ω0)2 ≤ c, ‖lδ‖L2(a) ≤ c.

Moreover, from (63) it follows uniformly in δ that
∫

a0

[uδ]2 ≤ cδ.

Consequently, we can assume that as δ → 0

uδ → u0 weakly in H1
Γ(Ω0)

2, [uδ] → [u0] = 0 weakly in L2(a0)
2, (71)

lδ → l0 weakly in L2(a).

Introduce the set of admissible displacements for the limit problem

W0 = {(u, l) ∈ H1
Γ(Ω0)

2 × L(a) | u = (u1, u2); [u] = 0, u2 = l on a0}.

The convergence (71) allows us to pass to the limit in (60)-(61) as δ → 0, which
yields

(u0, l0) ∈ W0, (72)∫

Ω0

σ(u0)ε(ū)−

∫

Ω0

gū−

∫

a

hl̄ = 0 ∀ (ū, l̄) ∈ W0. (73)

Since [u0] = 0 on a0 we can replace the domain Ω0 by Ω in (73). In fact, in the
definition of W0 it is possible to replace Ω0 by Ω.

Hence, the following statement is proven.

Theorem 7 Solutions (uδ, vδ) of the problems (60)-(61) converge in the sense

(71) to the solution (u0, l0) of the problem (72)-(73) as δ → 0.

To conclude this section, we write down an equivalent differential formulation
of the problem (72)-(73): find a displacement field u0 = (u0

1, u
0
2), a stress tensor

σ = {σij}, i, j = 1, 2, defined in Ω0, and a thin inclusion displacement l0 ∈ L(a)
such that

−div σ = g, σ −Bε(u0) = 0 in Ω0, (74)

u0 = 0 on Γ; [u0] = 0, l0 = u0
2, [σ12] = 0 on a0, (75)∫

a0

[σ22]l̄ +

∫

a

hl̄ = 0 ∀l̄ ∈ L(a). (76)
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The problem (74)-(76) describes an equilibrium state of the elastic body Ω0

with the rigid inclusion a and without any defects.
Remark that the Hooke’s law from (74) holds in the smooth domain Ω.

Meanwhile, the equilibrium equation holds in the non-smooth domain Ω0.

9. Optimal control problem: the case of rigid inclusion

As we know, it is possible to find a solution (uδ, lδ) of the problem (60)-(61) for
any fixed δ > 0. On the other hand, we have a solution (u∞, l∞) of the problem
(65)-(66), corresponding to δ = ∞, and a solution (u0, l0) of the problem (72)-
(73), corresponding to δ = 0. Let l∗ ∈ L(a) be a given function. For any
parameter δ ∈ [0,∞], define a cost functional

G(δ) = ‖lδ − l∗‖L2(ae),

where (uδ, lδ) are solutions of the problems mentioned above, δ ∈ [0,∞]. Con-
sider the optimal control problem

inf
δ∈[0,∞]

G(δ). (77)

A solution of the problem (77) minimizes the difference at ae between the dis-
placement lδ of the thin inclusion and the given function l∗. We should underline
that the problem formulations for finding lδ are different for δ ∈ (0,∞), δ =
∞, δ = 0.

The following statement takes place in this context.

Theorem 8 There exists a solution of the optimal control problem (77).

We omit the proof of this theorem since it basically reminds that of Theorem 4.
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