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Abstract: The paper presents an ample account on author’s re-
sults, concerning the methods of estimating and testing of relations
(equivalence, tolerance, preference) and trees on the basis of multiple
pairwise comparisons with random errors, which are presented in a
new book, Klukowski (2021c). The book contains also main results
presented earlier in Klukowski (2011). The new content pertains
mainly to: the preference relation with incomparable elements, trees
and tests for verification of estimates of the relations. The estimators
and tests have good statistical properties; estimators - consistency
with good convergence, tests - known distributions of test statistics
(exact, limiting or approximate). Some properties of estimates (pre-
cision and convergence) have been determined using the simulation
approach. The results here reported gain in significance in view of
the renewed interest in practical application of pairwise comparisons
in various application domains, which give rise to various concrete
data analysis problems.

Keywords: pairwise comparisons with random errors, estima-
tion and testing of relations and trees, nearest adjoining order idea

1. Introduction

The present paper constitutes succinct account on the recent results, obtained
by the author in the area of estimating and testing of relations (the equivalence,
tolerance and preference relations) and of trees (the non-directed and directed
trees). The empirical basis for the respective considerations and results is here
constituted by the multiple pairwise comparisons with random errors. The
totality of these results is provided in an extended form in the author’s new

∗Submitted: October 2022; Accepted: November 2022.



502 L. Klukowski

book (Klukowski, 2021c). The book referred to contains many results that are
entirely new to the domain, especially concerning the preference relation with
incomparable elements and the trees.

Moreover, new, efficient tests for the verification of estimates of the relations
are also presented, while similar new tests can also be constructed for the trees.
The estimators developed and analysed are based on the idea of the nearest
adjoining order (NAO), i.e. the structure, minimizing the difference between
a relation or a tree on the one hand, and the results of the pairwise compar-
isons, with potential errors, on the other. The generic concept of NAO was
first introduced by Slater (1961) (see also David, 1988, or Bradley, 1976). The
estimates are obtained as optimal solutions of appropriately formulated discrete
programming problems (for the sets of elements of small or moderate cardinal-
ity) or from similarly oriented, in terms of their objective, heuristic algorithms
(for larger sets).

In the case of large sets (when application of heuristic algorithms is sug-
gested) it is also possible to obtain the estimates having good precision. This
can be done with the use of statistical procedures, providing for a significant
decrease of probabilities of comparison errors (see Klukowski, 2017). The re-
spective precision can be also evaluated on the basis of the criterion function of
the corresponding mathematical programming problem – its minimal value is
equal to zero.

The pairwise comparisons, constituting the input data, are assumed to take
on two basic forms – binary (e.g. direction of preference) and multivalent (e.g.
expressing the difference of ranks). The developed estimators and tests have
good statistical properties; the estimators display consistency with good con-
vergence, while tests – known distributions of test statistics (exact, limiting or
approximate). Some of the properties of estimates (precision and speed of con-
vergence) have been established also with the use of the simulation approach
(for the preference relation). The proposed general approach is fully formalized
and can be computerized, with moderate computational costs. The majority of
the results, presented in the book here mainly referred to, had been initially pre-
sented in the articles and conference papers of the author, see, e.g., Klukowski
(2017, 2021a, b).

The paper consists of four sections. The second section, following the present
one, introduces the theoretical basis of the estimation problem, namely the as-
sumptions about the distributions of errors of pairwise comparisons, as well as
the form of the estimators and their statistical properties. In the next, third
section the original tests are formulated for the estimates, based on the prop-
erties of the true relation, and the tests for the assumptions about comparison
errors and for the existence of a relation or a tree in the data set considered.
Last section of the paper summarizes the results.
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2. The estimation problem, assumptions about pairwise

comparisons, form of estimators and their properties

2.1. General formulation of the estimation problem

The estimation problem can be formulated, in its general form, as follows. We
are given a finite set of elements X = {x1, . . . , xm}, (3 ≤ m < ∞). There exists
in the set X one of the following structures of data:

- the equivalence relation R(e) (reflexive, transitive, symmetric),

- the tolerance relation R(τ) (reflexive, symmetric),

- the preference relation R(p) (alternative of the equivalence relation and
strict preference relation),

- the preference relation R(i) with incomparable elements,

- the non-directed tree or the directed tree.

Each complete relation (i.e. without incomparable elements) generates some

family of subsets χ
(h)∗
1 , . . . , χ

(h)∗
n (h ∈ {e, τ, p} ; n ≥ 2) .

The equivalence relation R(e) generates the family χ
(e)∗
1 , . . . , χ

(e)∗
n having

the following properties:

n⋃

q=1

χ(e)∗
q = X, (1)

χ∗(e)
r ∩ χ(e)∗

s = {0}, (2)

where:

0 − the empty set,

xi, xj ∈ χ(e)∗
r ≡ xi, xj - equivalent elements, (3)

(xi ∈ χ(e)∗
r ) ∧ (xj ∈ χ(e)∗

s ) ≡ xi, xj - non-equivalent elements for

i 6= j, r 6= s; (4)

The tolerance relation R(τ) generates the family χ
(τ)∗
1 . . . , χ

(τ)∗
n with the

property (1), i.e.
n⋃

q=1

χ
(τ)∗
q = X, and the properties:

∃ r, s, (r 6= s) such that χ
(τ)∗
r ∩ χ

(τ)∗
s 6= {0},

xi, xj ∈ χ(τ)∗
r ≡ xi, xj – equivalent elements, (5)
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(xi ∈ χ(τ)∗
r ) ∧ (xj ∈ χ(τ)∗

s ) ≡ xi, xj – non-equivalent elements for

i 6= j and (xi, xj) /∈ χ(τ)∗
r ∩ χ(τ)∗

s , (6)

each subset χ
(τ)∗
r (1 ≤ r ≤ n) includes an element xi such that

xi /∈ χ(τ)∗
s (s 6= r). (7)

The preference relation R(p) generates the family χ
(p)∗
1 . . . , χ

(p)∗
n with the pro-

perties (1), (2) and the property:

(xi ∈ χ(p)∗
r ) ∧ (xj ∈ χ(p)∗

s ) ≡ xi is preferred to xj for r < s. (8)

The relations, which are defined by the conditions (1) - (8) can be expressed,

alternatively, by the values T
(h)
c ((xi, xj) ((xi, xj) ∈ X ×X); h ∈ {p, e, τ}, c ∈

{b, µ}), where symbols b, µ correspond to – respectively – the binary and multi-
valent pairwise comparisons. These values are defined, respectively, as follows:

T
(e)

b (x
i
, xj) =

{
0 if there exists r such that (xi, xj) ∈ χ

(e)∗
r ,

1 otherwise;

}
(9)

• the values T
(e)

b (x
i
xj), describing the equivalence relation, being binary, ex-

press the fact that a pair (xi, xj) either belongs to a common subset or not;

T
(τ)

b (x
i
, xj) ={

0 if there exist r, s (r = s not excluded) such that (xi, xj) ∈ χ
(τ)∗
r ∩ χ

(τ)∗
s ,

1 otherwise;

(10)

• the values T
(τ)

b (x
i
, xj), describing the tolerance relation, being again binary,

express the fact that a pair (xi, xj) either belongs to any conjunction of subsets
(also to the same subset) or not; condition (8) guarantees the uniqueness of the
description;

T (τ)
µ (x

i
, xj) = #{Ω

(∗)
i ∩ Ω

(∗)
j }, (11)

where: Ω
(∗)
l – the set of the form Ω

(∗)
l = {s|xl ∈ χ

(τ)∗
s },

#{Ξ} – the number of elements of the set Ξ;

• the values T
(τ)
µ (xi, xj), describing the tolerance relation, being multivalent,

express the number of subsets of conjunction including both elements; condition
(8) guarantees the uniqueness of the description;

T
(p)

b (x
i
, xj) =





0 if there exists r such that (xi, xj) ∈ χ
(p)∗
r ,

−1 if xi ∈ χ
(p)∗
r , xj ∈ χ

(p)∗
s and r < s,

1 if xi ∈ χ
(p)∗
r , xj ∈ χ

(p)∗
s and r > s;





(12)
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• the values T
(p)

b (x
i
, xj), describing the preference relation, express the direction

of preference in a pair or the equivalence of its elements;

T (p)
µ (x

i
, xj) = dij ⇔ xi ∈ χ(p)∗

r xj ∈ χ(p)∗
s ,

dij = r − s(−(m− 1)≤ dij ≤ m− 1); dij = 0 ⇔ (xi, xj) ∈ χ(p)∗
r ; (13)

• the values T
(p)
µ (xi, xj), describing the preference relation, being multivalent,

express the difference of ranks of elements xi and xj ; the case of dij = 0 cor-
responds to the weak form of the relation, while the case of −1 ≥ dij ≥ 1
corresponds to the strict form of the relation.

The preference relation, including incomparable elements, and the trees
(non-directed and directed) cannot be expressed by a family of subsets and

are determined only with the use of values T
(·)
b (x

i
, xj) and T

(·)
µ (xi, xj).

The preference relation including incomparable elements:

T
(i)

b (x
i
, xj) =





−1 if xi precedes xj ,
1 if xj precedes xi,
2 if xi and xj incomparable;



 (14)

• the values T
(i)

b (x
i
, xj), describing the preference relation (without equivalent

elements) including incomparable elements, express the direction of preference
in a pair (xi, xj) or incomparability of the respective elements;

T (i)
µ (x

i
, xj) =

{
dij if elements xi and xj are comparable,
m if elementsxi and xj are incomparable;

}
(15)

• the values T
(i)
µ (xi, xj) express the difference of ranks of comparable elements

(−m < dij < m, m 6= 0) or incomparability of elements (dij = m); the differ-
ence of ranks of comparable elements can be presented through the digraph –
the respective digraph corresponds to the number of edges connecting the ele-
ments of a pair.

The non-directed tree:

T
(n)

b (x
i
, xj) =

{
1 if elements xi and xj are conected by an edge,
0 if elements xi and xj are not connected by an edge;

}
(16)

• the values T
(n)

b (x
i
, xj) express either the fact that two nodes xi and xj of a

tree are connected with an edge or that they are not.
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The directed tree:

T
(d)

b (x
i
, xj) =





−1 if there exists a path from a node xi to a node xj ,

1 if there exists a path from a node xj to a node xi,

2 if there does not exists a path between nodes xi and xj ;

(17)

• the values T
(d)

b (x
i
, xj) express either the fact that two nodes xi and xj of a

tree are connected with a path or that they are not, and show the direction of
the path.

The values T
(h)
c (xi, xj) (c ∈ {b, µ} , h ∈ {e, τ, p, i, n, d}) define the relations

and trees under consideration in a unique manner.

The form of a relation or a tree is a priori unknown and has to be estimated
on the basis of available multiple pairwise comparisons, in binary or multivalent
form, given with random errors. Any binary comparison, considered as datum,
assumes the values from the set {-1, 0, 1}; it can determine (for instance) the di-
rection of preference in the case of preference relation. Multivalent comparisons
assume the values from a broader set of values and can express (for instance)
the difference of ranks (the preference relation).

2.2. Assumptions concerning pairwise comparisons

Each relation and tree under consideration here is to be estimated on the basis
of N (N ≥ 1) comparisons of each pair (xi, xj) from the Cartesian product
X×X; any comparison

g
(h)

ck (x
i
, xj) (c ∈ {b, µ} , h ∈ {e, τ, p, i, n, d} , k = 1, . . . , N)

assesses the actual value of T
(h)
c (xi, xj) and can be disturbed by a random error.

The following assumptions are made with respect to the comparison errors of
the complete relations and non-directed trees (the assumptions concerning the
remaining structures of data are slightly different).

A1. The relation type (equivalence or tolerance or preference or preference
with incomparable elements) or the type of the tree (non-directed or directed)
is known, the number of subsets of each complete relation n is unknown (in the
case of strict preference relation n = m).

A2. Any comparison g
(h)

ck (x
i
, xj) is an evaluation of the value T

(h)
c (xi, xj),

disturbed by a random error. The probabilities of errors: g
(h)

ck (xi, xj)−T
(h)
c (xi, xj),
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h ∈ {e, τ, p, n} have to satisfy the following assumptions:

P (g
(h)

bk (x
i
, xj)− T

(h)

b (x
i
, xj) = 0 |T

(h)

b (x
i
, xj) = k

(h)

bij
) ≥ 1− δ

(k
(h)

bij ∈ {−1, 0, 1} , δ ∈ (0,
1

2
)), (18)

∑

r≤0

P (g
(h)

ck (x
i
, xj)− T (h)

c (xi, xj) = r |T (h)
c (xi, xj) = k

(h)

cij
) > 1/2,

(k
(h)
cij ∈ {0,±1, . . . ,±(m− 1)}, c ∈ {b, µ}), r − zero or integer number,

(19)

∑

r≥0

P (g
(h)

ck (x
i
, xj)− T (h)

c (xi, xj) = r |T (h)
c (xi, xj) = k

(h)

cij
) > 1/2,

(k
(h)
cij ∈ {0,±1, . . . ,±(m− 1)} , c ∈ {b, µ}) r − zero or integer number,

(20)

P (g
(h)

ck (x
i
, xj)− T (h)

c (xi, xj) = r |T (h)
c (xi, xj) = k

(h)
cij ) ≥

P (g
(h)

ck (x
i
, xj)− T (h)

c (xi, xj) = r + 1 |T (h)
c (xi, xj) = k

(h)
cij ),

(k
(h)
cij ∈ {0,±1, . . . ,±m} r > 0), (21)

P (g
(h)

ck (x
i
, xj)− T (h)

c (xi, xj) = r |T (h)
c (xi, xj) = k

(h)
cij ) ≥

P (g
(h)

ck (x
i
, xj)− T (h)

c (xi, xj) = r − 1 |T (h)
c (xi, xj) = k

(h)
cij ),

(k
(h)
cij ∈ {0,±1, . . . ,m} r < 0), (22)

A3. The (results of) comparisons,

g
(h)

ck (x
i
, xj) (c ∈ {b, µ} , h ∈ {e, τ, p, i, n, d} , k = 1, . . . , N)

are independent random variables.

The assumptions A1 - A3 make it possible to determine the distributions of
estimation errors of the estimators defined in the paper. However, determination
of the exact distributions of multidimensional errors, in an analytic way, is, in
fact, unrealizable.

The assumptions A2 – A3 reflect the following properties of distributions of
comparisons errors:
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• the probability of correct comparison is greater than of the incorrect one
- in the case of binary comparisons (inequality (18));

• zero is the median of each distribution of comparison error (inequalities
(19) – (20)), in a “sharp” way,

• zero is the mode of each distribution of comparison error (inequalities (18)
– (22));

• the set of all comparisons comprises the realizations of independent random
variables (the assumption A3);

• the expected value of any comparison error can differ from zero (except a
one value distribution); this fact is obvious for binary comparisons.

The assumptions, concerning the distributions of comparison errors are not
restrictive. Especially, any error can have non-zero expected value and the
probability of errorless result has to satisfy only the mode and median condition.
Such assumptions are generally satisfied by the results of statistical tests and
of other decision procedures with random errors. The main properties of the
estimators are valid under weaker assumptions, and so, especially, the condition
stipulating independence of all comparisons can be relaxed so that comparisons
of pairs including different elements are independent and comparisons of the
same pair (for N > 1) are independent.

2.3. The essential idea of estimation – minimization of absolute dif-

ferences with comparisons

The main idea of the NAO estimators, i.e. minimization of (absolute) differences

between the values T
(h)
c (xi, xj), expressing the model of data considered, and

the results of the pairwise comparisons g
(h)

ck (x
i
, xj) with random errors, refers

to a well-known statistical principle. However, in the case under consideration,
it does not indicate directly the analytical properties, because it is not based on
such criteria as maximization of the likelihood function or minimization of the
sum of error squares or equality of moments of distributions, etc. (some likeli-
hood properties of the NAO estimates are presented in Thompson and Remage,
1964, for strict preference relation and multiple independent comparisons). In
the case under consideration here, the properties of the estimators have been
obtained on the basis of differences between the properties of the errorless esti-
mate (i.e. the actual form of the relation or tree) and the estimates, which are
different from the errorless one. The properties have been demonstrated by the
author on the basis of: the well-known probabilistic inequalities (see Hoeffding,
1963, Chebyshev – for expected value and variance), properties of order statis-
tics (David, 1970) and the convergence of variances of the considered random
variables to zero.
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The theoretical properties have been also complemented through the simu-
lation survey, because speed of convergence of estimators depends on many fea-
tures of the problem, mainly on the number of elements considered, structure of
data (relation or tree), number of comparisons N , and variance of distribution
of comparison errors.

Two forms of estimators are examined, namely those based on the total sum

of absolute differences between comparisons g
(h)

ck (x
i
, xj) and values T

(h)
c (xi, xj),

and the sum of absolute differences between medians ǧ
(h)
c (xi, xj) from multiple

comparisons of each pair and values T
(h)
c (xi, xj). The second form allows for

the reduction of the number of variables of the discrete programming problem,
which has to be solved for obtaining of estimates; its efficiency is, however,
slightly lower.

The estimates based on the total sum of differences, denoted

T̂ (h)
c (xi, xj) (h ∈ {e, τ, p, i, n, d} , < i, j >∈ Rm)

or

χ̂
(h)
1 . . . , χ̂

(h)

n̂ (h ∈ {e, τ, p})

(for complete relations), are obtained as the optimal solutions of the minimiza-
tion problem:

min
F

(h)
X

=





∑

<i,j>∈Rm

N∑

k=1

∣∣∣g(h)ck (x
i
, xj)− t(h)c (xi, xj)

∣∣∣



 (23)

where:

F
(h)

X
− the feasible set, i.e. the set of all models of data (relations or trees)

of the hth type in the set X,

t
(h)
c (xi, xj) - the values describing any relation or tree of the hth type,

Rm − the set of the form Rm = {< i, j > |1 ≤ i, j ≤ m, j > i},

g
(h)

ck (x
i
, xj) − kth pairwise comparison of the pair (xi, xj).

The estimate, based on ǧ
(h)
c (xi, xj), i.e. the medians from the comparisons

g
(h)
c,1 (xi

, xj), . . . , g
(h)

cN (x
i
, xj)(N = 2ι + 1; ι ≥ 1), ι being an integer number,

denoted Ť
(h)
c (xi, xj) or χ̌

(e)
1 , . . . , χ̌

(e)
ň (h ∈ {e, τ, p}) (for complete relations), is

obtained as the optimal solution of the following minimization problem:

min
F

(h)
X

=





∑

<i,j>∈Rm

∣∣∣ǧ(h)c (xi, xj)− t(h)c (xi, xj)
∣∣∣



 , (24)
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where:

ǧ
(h)
c (xi, xj) - the median of comparisons g

(h)
c,1 (xi

, xj), . . . , g
(h)

cN (x
i
, xj).

The solutions of these problems can be obtained with the use of the discrete
mathematical programming procedures (see, e.g., Garfinkel and Nemhauser,
1972; Hansen, Jaumard and Sanlaville, 1994) or using appropriate heuristic
algorithms.

2.4. Properties of estimators - consistency

The analytical properties of the estimators have mainly asymptotic character,
i.e. for N → ∞ or/also for m → ∞. The properties guarantee the basic feature
of the estimators - consistency. It is clear that errorless estimates can be also
obtained for finite N , with probability close to one, because of the exponential
type of convergence of the estimators to the actual form of relation or tree.
The precision level is not the same for both estimators considered; in general,
the approach based on medians from comparisons is less efficient, but requires
lower computational effort of optimization algorithms. The simulation approach
allows to determine the minimal number of N , providing the necessary precision
of an estimate, for given relation form and distributions of comparison errors. It
can be also useful for verification of some hypotheses, concerning the estimates.

The analytical properties of the estimators are based on probabilistic proper-

ties of differences (random variables) between pairwise comparisons g
(h)

ck (x
i
, xj)

and (actual) values T
(h)
c (xi, xj). It has been proven that the variables corre-

sponding to the actual relation or tree (i.e. g
(h)

ck (x
i
, xj) − T

(h)
c (xi, xj)) have

different properties than the variables corresponding to any other relations or

trees T̃
(h)
c (xi, xj) (T̃

(h)
c (xi, xj) 6≡ T

(h)
c (xi, xj)). The following main results have

been obtained:

(i) the expected value of the sum of random variables∣∣∣g(h)ck (x
i
, xj)− T

(h)
c (xi, xj)

∣∣∣ (for k = 1, . . . , N and < i, j >∈ Rm),

corresponding to actual relation or tree is lower than the expected values

of the sum of variables
∣∣∣g(h)ck (x

i
, xj)− T̃

(h)
c (xi, xj)

∣∣∣ corresponding to any

other (incorrect) relations or trees;

(ii) the variances of the random variables expressing sum of (absolute) dif-
ferences between comparisons and the relation or tree, both actual and

different than actual (in the form T
(h)
c (xi, xj), T̃

(h)
c (xi, xj)), divided by

the number of comparisons N , in the case of the estimator (23) (in the
form of sum of differences), converge to zero for N → ∞;
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(iii) the probability of the event that the sum of random variables correspond-
ing to actual relation or tree assumes a value lower than any variable
corresponding to other than actual relation or tree converges to one as
N → ∞ (see Klukowski, 2011); the property guarantees the consistency
of the estimator; the speed of convergence, resulting from Hoeffding (1963)
inequalities, guarantees good efficiency of the estimates, e.g. for the esti-
mator of the equivalence relation the inequality assumes the form:

P (
∑

<i,j>∈Rm

N∑

k=1

∣∣∣g(e)bk (x
i
, xj)− T

(e)

b (x
i
, xj)

∣∣∣ <

<
∑

<i,j>∈Rm

N∑

k=1

∣∣∣g(e)bk (x
i
, xj)− T̃

(e)

b (x
i
, xj)

∣∣∣) ≥

≥ 1− exp{−2N(
1

2
− δ)2};

(iv) the estimator based on medians from multiple comparisons has similar
properties, but has slightly lower evaluation of the corresponding proba-
bility:

P (
∑

<i,j>∈Rm

∣∣∣ǧ(e)b (x
i
, xj)− T

(e)

b (x
i
, xj)

∣∣∣ <

<
∑

<i,j>∈Rm

∣∣∣ǧ(e)b (x
i
, xj)− T̃

(e)

b (x
i
, xj)

∣∣∣) ≥ 1− 2exp{−2N(
1

2
− δ)2};

the difference with respect to the evaluation from point (iii) above is in-
significant for large N and probability δ close to zero.

The properties (i) - (iv) provide for the reasonability of the estimators. They
have been further complemented with some properties valid for relaxed assump-
tions and results of simulation approach (see Klukowski, 2011). Especially, the
property of consistency can be proven also for the case of m → ∞, under some
additional assumptions.

2.5. Some examples

This short section provides a couple of illustrative examples, making the con-
siderations presented better understood.

• Binary comparisons {g
(p)

bk (x
i
, xj); (1 ≤ i, j ≤ 5; j 6= i) , N = 1} from the strict

preference relation have the following form (discussed in David, 1988, Section
2.2):
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g
(p)

b,1 (xi
, xj) x1 x2 x3 x4 x5

x1 × 1 -1 -1 -1
x2 -1 × -1 -1 1
x3 1 1 × -1 -1
x4 1 1 1 × -1
x5 1 -1 1 1 ×

The NAO solution (estimate) of the problem has the form:

χ̂
(p)
1 = {x1}, χ̂

(p)
2 = {x2}, χ̂

(p)
3 = {x3}, χ̂

(p)
4 = {x4}, χ̂

(p)
5 = {x5},

and the value of the criterion function equal to 1. The approach based on
other rules, especially scoring methods (see David, 1988, section 6.1), does not
indicate such solution and has no properties of the NAO estimator; moreover,
different scorings indicate different solutions.

•Medians from binary comparisons {ǧ
(p)

b (x
i
, xj); (1 ≤ i, j ≤ 4; j 6= i) , N =

15}, from strict preference relation, have the following form (discussed in David,
1988, section 6.3):

ǧ
(p)

b (x
i
, xj) x1 x2 x3 x4

x1 × 1 1 1
x2 -1 × -1 1
x3 -1 1 × 1
x4 -1 -1 -1 ×

The NAO solution (estimate) of the problem has the form:

χ̌
(p)
1 = {x4}, χ̌

(p)
2 = {x2}, χ̌

(p)
3 = {x3}, χ̌

(p)
4 = {x1},

and the value of the criterion function (24) equal to zero. The NAO approach
has properties corresponding to the evaluation of probability of the errorless
estimate based on Hoeffding inequality (see (iv) above) for the medians from 15
comparisons of each pair.

• Medians from three binary comparisons (based on results of three sta-

tistical tests) {ǧ
(τ)

b (xi, xj); (1 ≤ i, j ≤ 7; j 6= i) , N = 3}, from the tolerance
relation, have the form (see Klukowski, 2006):
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g
(p)

b,1 (xi
, xj) x1 x2 x3 x4 x5 x6 x7

x1 × 1 0 1 1 0 0
x2 × 0 1 0 1 0
x3 × 1 1 0 0
x4 × 1 1 1
x5 × 1 0
x6 × 1
x7 ×

The NAO estimate of the problem has the form of three relations with the
value of criterion function (23) equal two:

the first one χ̌
(τ,1)
1 = {x1, x3, x6, x7}, χ̌

(τ,1)
2 = {x2, x3, x5, x7}, χ̌

(τ,1)
3 = {x4},

the second χ̌
(τ,2)
1 = {x1, x3, x6, x7}, χ̌

(τ,2)
2 = {x2, x5, x7}, χ̌

(τ,2)
3 = {x4},

the third: χ̌
(τ,3)
1 = {x1, x3, x6}, χ̌

3
2 = {x2, x3, x5, x7}, χ̌

(τ,3)
3 = {x4}.

The first estimate has the maximal number of elements, x3, x7, included in

the intersection; the maximal intersection consists of two subsets, χ̌
(τ,l)
1 ∩ χ̌

(τ,l)
2

(l = 1, 2, 3) .

3. Verification of estimates and assumptions concerning

pairwise comparisons

3.1. General approach to verification of relations and trees

The estimates, obtained with the use of the NAO concept can be verified with
the use of statistical tests, based on assumptions relative to comparison errors,
i.e. A1 – A3 from Section 2. Typically, the null hypothesis states that the
estimate is the same as the true relation or tree, its alternative – that it is dif-
ferent. The tests, meant for such purposes are presented for different structures
of data, under different assumptions, in the literature of the subject, see, e.g.,
David (1988), or Gordon (1999).

All of the assumptions, A1, A2, A3, regarding the true data structure and
the distributions of comparison errors, can be also verified. First, it is neces-
sary to verify the assumptions concerning the distributions of comparison errors.
This can be done with the use of known tests for: independence of random vari-
ables, unimodal distribution of these variables and values of mode and median.
Verification of existence of relation type or tree can be done on the basis of prop-
erties of distributions of comparisons corresponding to the true relation. Test
statistics have to be appropriate to the data – binary or multivalent, i.e. having
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usually binomial, multinomial or limiting: Gaussian, t-Student and chi-square
distributions.

3.2. Verification of estimates of individual relation or tree

Let us illustrate these considerations by the examples of tests, constructed
mainly for complete relations:

• tests for relation type – equivalence or tolerance – for binary comparisons,
• tests for verification of estimate of equivalence relation for binary compar-
isons,

• tests for verification of estimate of tolerance relation for binary compar-
isons,

• tests for verification of estimate of tolerance relation for multivalent com-
parisons,

• tests for verification of estimate of preference relation for binary compar-
isons,

• tests for verification of estimate of the preference relation for multivalent
comparisons,

• tests for assumptions about comparisons and verification of existence of
relation or tree.

The tests for: equivalence relation and relation type (equivalence or toler-
ance), for binary comparisons, are based on the binomial distribution; for this
distribution there exists a randomized most powerful test.

The null hypothesis of the test for relation type states that equivalence
(tolerance) relation is true, an alternative - that tolerance (equivalence) relation
is true. The tests are based on the random variables

γ
(τ)

k (xi, xj) =
∣∣∣g(•)bk (xi, xj)− T̂

(e)

bN (xi, xj)
∣∣∣−

∣∣∣g(•)bk (xi, xj)− T̂
(τ)

bN (xi, xj)
∣∣∣

for

{(xi, xj)|T̂
(e)

bN (xi, xj) 6= T̂
(τ)

bN (xi, xj)}.

The properties of such variables have been determined for the case of errorless
estimate of relation (equivalence or tolerance). Under the null hypothesis that

the tolerance relation is true, the variable γ
(τ)

k (xi, xj) assumes values from the
set {−1, 1} with probabilities, respectively, δ and 1 − δ, i.e. it has the bino-
mial distribution. Under the alternative hypothesis, the probabilities have the
reversed values; thus the test based on the binomial distribution with two sim-
ple hypotheses can be applied. In the case of estimates with errors (i.e. not
errorless) the test may be not valid. Therefore, effective application of the tests
requires the value of probability of errorless estimate to be close to one. The



Estimating and testing relations and trees on the basis of pairwise comparisons 515

probability can be determined via the simulation approach or can be evaluated
analytically. This probability is applied for the correction of the probabilities
of the first type and the second type errors in binomial test. The corrected
probabilities of the test are higher than resulting from the true relation form,
i.e. the non-zero probability of incorrect estimation make the properties of the
tests worse. The tests presented in the book, Klukowski (2021c), are not the
same as those in the earlier approach, presented in Klukowski (2011).

The subsequent test, for the estimates of the tolerance relation, is proposed
in the form:

H0 : χ̂
(τ)
1 , . . . , χ̂

(τ)

n̂ ≡ χ
(τ)∗
1 , . . . , χ(τ)∗

n

and

H1 : χ̂
(τ)
1 , . . . , χ̂

(τ)

n̂ 6≡ χ
(τ)∗
1 , . . . , χ(τ)∗

n , (25)

and verified by the set of partial hypotheses:

H01 : χ̂
(τ)
1 = χ

(τ)∗
1 , H11 : χ̂

(τ)
1 6= χ

(τ)∗
1 , . . . , H0,̂n : χ̂

(τ)

1,n̂

= χ
(τ)∗
1,n . . . , H1,n̂ : χ̂

(τ)

1,n̂ 6= χ
(τ)∗
1,n . (26)

Each of the partial hypotheses is verified separately with the use of the
statistic having binomial distribution with known parameters or the limiting
Gaussian distribution. The proposed statistic has the form (for each partial

hypothesis, i.e. for any subset χ̂
(τ)
q (1 ≤ q ≤ n̂)):

ηq =

1

Nνq

∑

<i,j>∈Sq̂

N∑

k=1

g
(τ)

bk (x
i
, xj) +

1

Nυq

∑

(xi ∈ χ̂
(τ)
q ) ∧ (xj /∈ χ̂

(τ)
q )

N∑

k=1

(1− g
(τ)

bk (x
i
, xj)), (27)

where:

Sq̂ = {< i, j > |xi ∈ χ̂(τ)
q , xj ∈ χ̂(τ)

q (j > i)},

νq − number of comparisons for pairs of elements included in the subset χ̂
(τ)
q ,

υq − number of pairs (xi, xj) such, that xi ∈ χ̂
(τ)
q and T̂

(τ)

b (x
i
xj) = 1.

The second sum in (27) corresponds to these pairs, in which the first element

xi ∈ χ̂(τ)
q , while the second xj /∈ χ̂

(τ)
q . The expected value and variance of the

statistic assume, under the null hypothesis, the form:
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E(ηq) = δ, V ar(ηq) =
δ(1−δ)

N
( 1
νq

+ 1
υq
).

Under the alternative hypothesis the expected value is higher, that is, E(ηq) >
δ, while the variance is the same. The partial tests allow for rejecting the null
hypothesis (25) and show the subset(s) incorrectly estimated (the significance
level can be assumed separately for any partial hypothesis). The form of the
partial hypotheses can be modified, e.g. they can show in a more detailed man-
ner the source of estimation error, based on distribution of each sum in the
statistic (27) separately.

The tests for the tolerance relation, in the case of multivalent comparisons,
are based on multinomial distribution. The null and alternative hypotheses have
similar general form, as in the case of binary comparisons, namely:

H0 : χ̂
(τ)
1 , . . . , χ̂

(τ)

n̂ ≡ χ
(τ)∗
1 , . . . , χ(τ)∗

n and H1 : χ̂
(τ)
1 , . . . , χ̂

(τ)

n̂ 6≡ χ
(τ)∗
1 , . . . , χ(τ)∗

n .
(28)

This test is verified also by the set of partial hypotheses, in the form compatible
with the multivalent comparisons:

H00 : T (τ)
µ (xi, xj) = 0 for all pairs (xi, xj) satisfying the condition

T̂ (τ)
µ (xi, xj) = 0 (j > i),

H10 : T (τ)
µ (x

i
, xj) 6= 0 for at least one pair (xi, xj) satisfying the condition

T̂ (τ)
µ (xi, xj) = 0,

H01 : T (τ)
µ (xi, xj) = 1 for all pairs (xi, xj) satisfying the condition

T̂ (τ)
µ (xi, xj) = 1 (j > i),

H11 : T (τ)
µ (xi, xj) 6= 1 for at least one pair (xi, xj) satisfying the condition

T̂ (τ)
µ (xi, xj) = 1,

H02 : T (τ)
µ (xi, xj) = 2 for all pairs (xi, xj) satisfying the condition

T̂ (τ)
µ (xi, xj) = 2 (j > i), H12 : T (τ)

µ (xixj) 6= 2 for at least, one pair (xixj)

satisfying the condition

T̂ (τ)
µ (xixj) = 2,
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...

H0κ : T (τ)
µ (xi, xj) = κ for all pairs (xi, xj) satisfying the condition

T̂ (τ)
µ (xi, xj) = κ (j > i),

H1κ : T (τ)
µ (xi, xj) 6= κ for at least one pair (xi, xj) satisfying the condition

T̂ (τ)
µ (xi, xj) = κ, (29)

where: κ (κ ≤n̂)− maximum number of subsets in the intersection occurring in

an estimate χ̂
(τ)
1 , . . . , χ̂

(τ)

n̂ .

The verification of these hypotheses is based on two well-known tests, i.e.
the tests for the mode (see Domański, 1990) and median of multinomial distri-
bution. The test for mode requires the knowledge of distributions of comparison
errors, but can be also applied, in an approximate way, in the case of unknown
distributions. The actual distributions have to be replaced by an estimate (if
possible) or by the so called quasi-uniform distributions, with maximal possible
variance (see Klukowski, 2011). The test for median does not require the exact
form of distributions. The significance levels of both tests can be determined
separately for each partial hypothesis. The results of the partial tests confirm
the obtained estimate or indicate its incorrect elements.

The tests for an estimate of preference relation, for binary comparisons, are
constructed separately for the strict and weak forms. Moreover, a test has been
also developed that allows for detection of the proper relation form – strict or
weak.

For the strict form of the relation two tests have been developed:

• for verification of the null hypothesis that χ̂
(p)
1 , . . . , χ̂

(p)
n is the same as

χ
(p)∗
1 , . . . , χ

(p)∗
n (n = m), with H1 stating that it is not the same,

• for verification of null hypothesis that difference of ranks of any two ele-

ments (xi, xj) (j 6= i) is equal r − i (assuming xi ∈ χ̂
(p)
i (i = 1, . . . , n)).

The first hypothesis is verified with the use of random variables gk(xi, xj)+
gk(xm−i+1, xm−j+1) (j 6= i; k = 1, . . . , N)) having multinomial distributions
with the set of values {−2, 0, 2}. Three properties of these variables are ex-
amined: expected value equal to zero, median equal to zero and symmetry of
the distribution. The test for expected value is based on parameters (expected
value and variance) of multinomial or limiting Gaussian distribution. The tests
for median and symmetry are non-parametric. Rejection of the null hypothesis
indicates the incorrect elements of the obtained estimate, the opposite result
confirms an estimate.

The test for difference of ranks is based on the statistic having binomial
distribution, with parameters determined in Klukowski (2021c). Thus, exact
binomial or limiting Gaussian distribution can be applied. The test statistic is
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the average of zero-one random variables, depending on the parameter δ; the
expected value and variance of the average are equal, respectively:

(1− δ)2 + δ2 and 2
(m−2)N

δ(1− δ)((1− δ)2 + δ2).

It is rational to use the test for the fixed value of difference m
2
(m even) and

the sequential pairs of estimate x1, xm/2, . . . , xm/2, xm (xi ∈ χ̂i); it verifies the
whole form of the obtained estimate. Rejection of the null hypothesis indicates
incorrect value of difference of rank, the opposite result confirms the verified
value of differences.

The tests for an estimate of weak form of the preference relation are con-
structed on the basis of properties of the random variables (differences):

g
(p)

bk (xi, xj)−g
(p)

bk (xr, xj) (j 6= i, r; k = 1, . . . , N). (30)

The null hypothesis states that the estimate χ̂
(p)
1 , . . . , χ̂

(p)

n̂ is the same as the

true relation χ
(p)∗
1 , . . . , χ

(p)∗
n , the alternative – that it is not the same. In the

case when the elements xi and xr belong to the same subset, i.e. (xi, xr) ∈

χ
(p)∗
q (1 ≤ q ≤ n), the differences (30) have the following properties:

• multinomial distribution over the set {−2,−1, 0, 1, 2},

• expected value, mode and median equal to zero,

• symmetry of distribution around zero.

In the opposite situation (the two elements belong to different subsets),
the properties are not true. Thus, verification of an estimate examines the
properties. It can be done with the use of well-known tests based on the exact
or limiting or non-parametric distributions: binomial, multinomial, limiting t-
Student, Gaussian, chi -square. Acceptance of all null hypotheses validates of
an estimate, rejection – shows the questionable features.

Tests for detection of weak or strict form of the preference relation are useful
for the problem of selecting the best (single) element of the set. The idea of
these tests is close to that of the ones applied to equivalence and tolerance
relations in the case of binary comparisons. The test statistic is a function

of differences between the comparisons g
(p)

bk (xi, xj) and an estimate (based on

sum of inconsistencies) of both types of the relations: strict T̂
(ps)

b (xi, xj) or

weak T̂
(pw)

b (xi, xj). The results of comparisons g
(p)

bk (xi, xj) are assumed to
take on three values {−1, 0, 1} (with equivalency of elements), but under the
assumption that all probabilities of correct comparison are greater than 1

2
. The

strict form of the estimate is obtained as the optimal solution with the feasible
set satisfying the condition n = m. The weak form is obtained for n < m;
therefore, the two estimates are not the same. The test for the null hypothesis:
H0: the strict form is true vs H1: the weak form is true, is based on the random
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variables:

ζ
(ps)

ijk =

{
0 for T̂

(ps)

b (xi, xj) = g
(p)

bk (xi, xj) and T̂
(ps)

b (xi, xj) 6= T̂
(pw)

b (xi, xj) ;

1 for T̂
(ps)

b (xi, xj) 6= g
(p)

bk (xi, xj) and T̂
(ps)

b (xi, xj) 6= T̂
(pw)

b (xi, xj) .

}

having zero-one distributions with known parameters in the set

{(xi, xj)|T̂
(ps)

b (xi, xj) 6= T̂
(pw)

b (xi, xj)}.

Approval of the null hypothesis indicates the strict form of the relation, while
the opposite result – the weak form.

3.3. Tests for assumptions as to pairwise comparisons and existence

of relation or tree

The tests, related to the assumptions, concerning distributions of pairwise com-
parisons and verification of existence of relation or tree provide the basis of
rationality of the estimation. They allow for the rejection of these cases, when
comparisons have been generated in a random way or when some other data
structure characterizes them.

The following assumptions about comparison errors have to be verified:

• independence of the whole set of comparisons or its part (comparisons of
different pairs of elements, i.e. (xi, xj) and (xr, xs) (r 6= i, j; s 6= i, j)),

• unimodal distributions of comparison errors,

• mode and median of the distributions of errors equal zero.

These properties can be verified with the use of well-known tests; some lim-
itations concern only the independence of comparison errors in the case of mul-
tivalent comparisons with unknown distributions. However, such comparisons
can be transformed into the binary form.

Verification of existence of the relation or tree in the set X has to be done
after the positive results of the tests for verification of properties of distributions
of comparisons errors. Now, the null hypothesis H0 assumes the following form:
the relation or tree under consideration exists in the set X, the alternative hy-
pothesis H1 – the relation does not exist in the set X. The non-existence of the
relation can mean either randomness of comparisons or equivalence of all ele-
ments of the set or existence of some other data structure. The general approach
to verification of such hypothesis can be based on the differences between the

comparisons g
(h)

µk (xi
, xj) and the estimates T̂

(h)

b (x
i
, xj) and/or Ť

(h)

b (x
i
, xj).
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The basis for the null hypothesis for binary comparisons is constituted by
the sums of differences between comparisons and estimates, i.e.:

ˆ̺
(h)

b =
∑

<i,j>∈Rm

N∑

k=1

∣∣∣g(h)bk (xi, xj)− T̂
(h)

b (xi, xj)
∣∣∣ (31)

or

ˇ̺
(h)

b =
∑

<i,j>∈Rm

∣∣∣g(h)bk (xi, xj)− Ť
(h)

b (xi, xj)
∣∣∣ (32)

In the case of known δ and δme (δme – the error, corresponding to the median
from the comparisons of each pair), equal for each comparison, and the errorless

estimate ( T̂
(h)

b (xi, xj) or Ť
(h)

b (xi, xj)), the expected value and the variance of
the sums (31), (32) assume the forms:

E
(
ˆ̺
(h)

b

)
=

1

2
m(m− 1)Nδ, (33)

E
(
ˇ̺
(h)

b

)
=

1

2
m(m− 1)δme, (34)

V ar
(
ˆ̺
(h)

b

)
= m(m− 1)Nδ(1− δ), (35)

V ar
(
ˇ̺
(h)

b

)
= m(m− 1)δme(1− δme). (36)

The equalities (31) or (32), with properties (33) – (36), can be used as the basis
for the null hypothesis, confirming the assumed model of data; the test statistic
has the binomial or limiting Gaussian distribution. The probabilities of errors in
the test have to be corrected with the use of the probability of errorless estimate.
Approval of the null hypothesis confirms the assumed model of data, while its
rejection suggests the incorrect form.

In the case of individual relations, e.g. strict preference relation and multiple
comparisons, some other tests can be also applied. Especially, the positive cor-
relation of estimates of ranks of elements xi (i = 1, . . . ,m), obtained on the basis

of comparisons g
(p)

υk (xi, xj) and g
(p)

υl (xi, xj) (υ ∈ {b, µ} , k 6= l; < i, j >∈ Rm),
can be verified; significant positive correlation confirms the form of relation.
The basis for verification of this fact is the well-known Spearman test, with the
null hypothesis stating that the correlation of rankings for any k 6= l is equal
zero and the alternative hypothesis stating that it is positive. Moreover, it is
also possible to verify the hypothesis as to the positive correlation (concordance)
of the whole matrix of all ranks (see Raghavachari, 2004).

The tests for the assumptions and the existence of relations or trees allow
for a versatile and effective verification of the obtained estimates. In the case of
negative result of verification it is possible to detect the sources of errors or to
reject an incorrect element of the estimate.
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4. Summary and conclusions

The estimates, based on the idea of the nearest adjoining order, have good statis-
tical properties and can be efficiently determined. The estimates, which satisfy
all the tests, used in the validation process, ought to be considered as trust-
worthy and reliable. Moreover, the assumptions, concerning the distributions
of pairwise comparisons are weaker than those commonly used in the literature
of the subject.

An important feature of the approach to estimation and verification is the
simplicity of statistical tools, but with the necessary analytical basis; it broadens
the range of potential users. The approach, presented in the book, Klukowski
(2021c), and reported here, will be developed in the following directions: statis-
tical learning, estimation of more complex structures of data (e.g. hierarchical),
multidimensional (multi-criteria) pairwise comparisons, etc. An important field
is also constituted by the application of the estimators and tests developed.
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