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Abstract: In this paper we deal with an optimal control prob-
lem in coefficients for the system of two coupled elliptic equations,
also known as the thermistor problem, which provides a simulta-
neous description of the electric field u = u(x) and temperature
θ(x). The coefficients of the operator div (B(x)∇ θ(x)) are used as
the controls in L∞(Ω). The optimal control problem is to minimize
the discrepancy between a given distribution θd ∈ Lr(Ω) and the

temperature of thermistor θ ∈ W 1,γ
0 (Ω) by choosing an appropriate

anisotropic heat conductivity matrix B. Basing on the perturbation
theory of extremal problems and the concept of fictitious controls,
we propose an “approximation approach” and discuss the existence
of the so-called quasi-optimal and optimal solutions to the given
problem.
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1. Introduction

1.1. The settings

In a bounded open domain Ω ⊂ R
N , N ≥ 2, with sufficiently smooth boundary

∂Ω = ΓD ∪ ΓN , where ΓD and ΓN are the disjoint parts of the boundary ∂Ω
with positive (N − 1)-dimensional measures, we consider, as a control object,
a boundary value problem describing the coupling between the electric field
with potential u and the temperature θ in an anisotropic thermistor, where

∗Submitted: January 2019; Accepted: April 2019
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its anisotropic heat conductivity is given by a matrix of positive coefficients
B = [bi j(x)]i, j=1,...,N . This model, also known as thermistor problem, is based
on rational mechanics of electrorheological fluids, which takes into account the
complex interactions between the electromagnetic fields and the moving liquid.
In particular, the electrorheological fluids have the interesting property that
their viscosity depends on the electric field in the fluid. In this paper, we deal
with the following optimization problem:

Minimize

{
J(B, u, θ) =

∫

Ω

|θ(x) − θd(x)|
r dx

}
(1)

subject to the constraints

div
(
|∇u|p−2∇u

)
= div g in Ω,

u = 0 on ΓD, |∇u|p−2∂νu = 0 on ΓN , (2)

− div (B∇θ) = |∇u|p in Ω, θ|∂Ω = 0, (3)

p(·) = σ(θ(·)) a.e. in Ω, B ∈ Bad, (4)

Bad =
{
B ∈ BV (Ω)N×N : m1I ≤ B(·) ≤ m2I,

∫

Ω

|Dbij | ≤ µ ∀ i, j = 1, N

}
.

(5)

where r ∈
(
1, N

N−2

)
if N > 2 and r ∈ (1,+∞) for N = 2 is a given value, m1

and m2 are constants such that 0 < m1 ≤ m2 < +∞, I is the identity matrix in
R

N×N , the inequalities (5) are in the sense of the quadratic forms, defined by
(Bξ, ξ)

RN for ξ ∈ R
N , θd ∈ Lr(Ω) and g ∈ L∞(Ω)N are given distributions such

that (g, ν)RN = 0 HN−1 = 0-a.e. on ΓN , σ is a continuous function such that
α ≤ σ(y) ≤ β for all y ∈ R, and the constants α and β satisfy the condition

1 < α ≤ β < α∗ =

{
+∞, if α ≥ N,
αN
N−α , if α < N.

(6)

Here we also use the following notation: ν is the outward unit normal vector to
∂Ω, HN−1 is the (N − 1)-D Hausdorff measure on ΓN , Bad stands for the class
of admissible controls, µ is a given positive value, which is assumed to be large
enough, Dbij denotes the R

N -valued finite Radon measure such that

∫

Ω

bij divϕdx = −

∫

Ω

(ϕ, d [Dbij ])RN = −
N∑

k=1

∫

Ω

ϕk d [(Dbij)k] , ∀ϕ ∈ C1
0 (Ω)

N ,

and
∫
Ω |Dbij | stands for the total variation of bij in Ω, which can be defined as

follows
∫

Ω

|Dbij | = sup

{∫

Ω

bij divϕdx : ϕ ∈ C1
0 (Ω)

N , |ϕ| ≤ 1

}
.
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A great deal of attention has been paid by many authors to the study
of the thermistor problem during the last two decades (see Antontsev and
Chipot, 1994; Howison, Rodrigues, and Shillor, 1993; Baranger and Mikelić,
1995; Ru̇z̆ic̆ka, 2000; Antontsev and Rodrigues, 2006). The search for the least
assumptions on σ(θ), ensuring the (weak) solvability of the system (2)–(4), has
been on the agenda of experts for decades. Earlier, existence theorems were
proven only under Dirichlet boundary conditions for the potential u and some
smallness conditions, e.g., in the case of a sufficiently small Lipschitz constant
for the function σ(θ). For the survey of this kind of results, we refer to Zhikov
(2008b). However, the most essential progress in the study of existence and
qua-litative properties of solutions to the boundary value problem like (2)–(4)
with homogeneous Dirichlet conditions for u was achieved by Zhikov (2011).
It has been shown there that the solvability of these systems can be obtained
in the multi-dimensional case without any smallness requirements on the func-
tion σ(θ) via a regularization approach and further passing to the limit over
the parameter of regularization. Another extension of the thermistor problem,
which is related to the solid-state devices, can be found in Kuttler, Shillor and
Fernandez (2008).

However, as for the optimal control problem (1)–(6), to the best of the
author’s knowledge, the existence of optimal solutions for the above thermistor
problem remains an open question. Only very few articles deal with optimal
control for the thermistor problem (see Hömberg, Meyer, Rehberg and Ring,
2010; Hrynkiv, 2009, for the two dimensional case; Meinlschmidt, Meyer and
Rehberg, 2016 for three spatial dimensions, and the recent papers of Hrynkiv
and Koshkin, 2018; D’Apice, De Maio and Kogut, 2018, 2019, for the multi-
dimensional case). There are several reasons for this:

• it is unknown whether the set of feasible points to the problem (1)–(6) is
nonempty and weakly closed in the corresponding functional space;

• we have no a priori estimates for the weak solutions to the boundary value
problem (2)–(4) under conditions (6);

• the asymptotic behaviour of a minimizing sequence to the cost functional
(1) is unclear in general;

• the optimal control problem (1)–(6) is ill-posed and relations (2)–(4) re-
quire some relaxation (see, for instance, D’Apice, De Maio, and Kogut,
2010).

To circumvent the problems listed above, we propose the so-called indirect
approach to the solvability of the optimal control thermistor problem in coeffi-
cients. Basing on the perturbation theory of extremal problems and the concept
of fictitious controls (see, for instance, Horsin and Kogut, 2016; Kogut, 2014;
Kogut, Manzo and Putchenko, 2016; Kogut and Leugering, 2011), we prove the
existence of the so-called quasi-optimal and optimal solutions to the problem
(1)–(6) and show that they can be attained by the optimal solutions of some
appropriate approximations for the original optimal control problem. The main
idea of our approach is based on the fact that weak solutions to the Dirichlet-
Neumann boundary value problem (2)–(4) can be attained through a special
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regularization of the exponent p = p(x) and an approximation of the operator
A(u) = div

(
|∇u|p−2∇u

)
, using its perturbation by the ε∆β-Laplacian, and the

right-hand side of (3) by its transformation to

div
[(

|∇u|σ(θ)−2∇u− g
)
u
]
+ (g,∇u)

RN .

Here, by attainability of a weak solution (u, θ), we mean the existence of a se-
quence {(uε, θε)}ε>0, where (uε, θε) are the solutions of “more regular” bound-
ary value problems, such that (uε, θε) → (u, θ) in some appropriate topology as
ε tends to zero.

When comparing these and other characteristic features of the optimization
problem (1)–(6) and our approach in this paper with the results of the recent pa-
pers by D’Apice, De Maio and Kogut (2018, 2019), we can indicate the following
differences:

• in this paper we deal with the mixed Dirichlet-Neumann quasi-linear cou-
pling of the elliptic PDEs with BV -matrix valued controls in coefficients,
whereas in D’Apice, De Maio and Kogut (2019) the thermistor problem wa
considered with homogeneous Dirichlet boundary conditions and with a
special class of admissible controls in coefficients, namely, a control func-
tion is admissible if it is an absolutely continuous scalar function with
Lq-bounded generalized partial derivatives;

• in contrast to the paper of D’Apice, De Maio and Kogut (2019), in this
paper we essentially extend the class of feasible solutions to the above
optimal control problem, involving in the consideration not only duality
solutions to the thermistor problem (2)–(4), but also the so-called weak
solutions in the sense of distributions.

• in order to prove the existence of quasi-optimal and optimal solutions to
the original optimization problem (1)–(6), we consider another family of
approximation problems.

Before proceeding further, we recall the well known facts for nonlinear elliptic
problems with variable exponent. Assuming that the temperature θ = θ(x) is
known for some admissible control B(x), we introduce the Sobolev-Orlicz space

W
1,p(·)
0 (Ω; ΓD)

:=

{
u ∈ W 1,1(Ω) :

∫

Ω

|∇u(x)|p(x) dx < +∞, u = 0 on ΓD

}
(7)

and equip it with the norm ‖u‖
W

1,p(·)
0 (Ω;ΓD)

= ‖∇u‖Lp(·)(Ω)N , where p(x) =

σ(θ(x)). Here, | · | denotes the Euclidean norm | · |RN in R
N , and Lp(·)(Ω)N

stands for the set of all measurable functions f : Ω → R
N such that∫

Ω
|f(x)|p(x) dx < +∞. It is well known that (see, for instance, Diening, Har-

julehto, Hästö and Ru̇ẑiĉka, 2011; Zhikov, 2011), unlike in classical Sobolev

spaces, smooth functions are not necessarily dense in W =W
1,p(·)
0 (Ω; ΓD). Let

C∞

0 (RN ; ΓD) =
{
ϕ ∈ C∞

0 (RN ) : ϕ = 0 on ΓD

}
. Hence, with variable expo-
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nent p = p(x) (1 < α ≤ p(·) ≤ β) another Sobolev space can be associated,

H = H
1,p(·)
0 (Ω; ΓD) as the closure of the set C∞

0 (Ω; ΓD)

in W
1,p(·)
0 (Ω; ΓD)-norm.

Defnition 1 We say that a function u ∈ W
1,p(·)
0 (Ω; ΓD) is a weak solution of

the problem (2) if

∫

Ω

(
|∇u|p−2∇u,∇ϕ

)
RN dx =

∫

Ω

(g,∇ϕ)
RN dx, ∀ϕ ∈ C∞

0 (Ω; ΓD), (8)

and we say that u is the H-solution of problem (2), if u ∈ H
1,p(·)
0 (Ω; ΓD) and

the integral identity (8) holds for any test function ϕ ∈ H
1,p(·)
0 (Ω; ΓD).

Since we can fail with the density of the set C∞

0 (Ω; ΓD) inW
1,p(·)
0 (Ω; ΓD) for

some (irregular) variable exponents p(x), it follows that a weak solution to the
problem (2) is not unique, in general. To clarify this inference, let us associate
with the Dirichlet problem (2) the Carathéodory vector-valued function Ap :
Ω × R

N → R
N , given by the rule Ap(x, ξ) = |ξ|p(x)−2ξ. Then, it is easy to see

that the following strict monotonicity, coercivity, and boundedness conditions
hold:

(Ap(x, ξ) −Ap(x, η), ξ − η)
RN > 0, ∀ ξ 6= η, (9)

(Ap(x, ξ), ξ)RN ≥ |ξ|p(x) a.e. in Ω, ∀ ξ ∈ R
N , (10)

|Ap(x, ξ)|
p′(x) ≤ |ξ|p(x) a.e. in Ω, ∀ ξ ∈ R

N , where p′(x) =
p(x)

p(x)− 1
.

(11)

Typically, such conditions are referred to as p(x)-monotonicity conditions. Let

V be a closed subspace of W
1,p(·)
0 (Ω; ΓD). Then, for a given u ∈ V we can

determine an element Apu ∈ V ∗ as follows

(Apu, v) =

∫

Ω

(Ap(x,∇u(x)),∇v(x) dx

=

∫

Ω

(
|∇u(x)|p(x)−2∇u(x),∇v(x)

)
dx. (12)

Since

|(Ap(x,∇u),∇v)| ≤
1

p′(x)
|Ap(x,∇u)|

p′(x)
+

1

p(x)
|∇v|p(x) ≤ |∇u|p(x)+|∇v|p(x)

by the Young inequality and condition (10), it follows that the given definition
of Apu ∈ V ∗ is valid and the operator Ap : V → V ∗ is bounded. To verify
that this operator is strictly monotone, coercive, and semicontinuous, we refer
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to Theorem 2.1 in Zhikov (2011). Hence, the existence and uniqueness of a weak
solution to the problem (2) in V -subspace is a direct consequence of monotone
operator theory (see, for instance, Roub́ıček, 2013). Thus, the H-solution exists,
it is unique and satisfies the energy equality

∫

Ω

|∇u(x)|p(x) dx =

∫

Ω

(g(x),∇u(x))
RN dx (13)

which immediately follows from (8) and density of C∞

0 (Ω; ΓD) in H
1,p(·)
0 (Ω; ΓD).

As for the second equation (3), its right-hand side |∇u|p with p(·) = σ(θ(·)),
a priori belongs to the space L1(Ω). So, f = |∇u|p is not an element of the
dual space H−1(Ω) and, hence, we cannot expect that the weak distributional
solution of the Dirichlet problem (3) belongs to H1

0 (Ω). Moreover, the classi-
cal counterexample due to Serrin shows that the solution of (3) in the sense
of distribution is not unique in general. Thus, in order to get both existence
and uniqueness results it is necessary to make use of other notions of solution.
Classical L1-theory of the Dirichlet problem for the Laplace operator by Stam-
pacchia and others says that the boundary value problem (3) admits a unique
so-called duality solution.

Defnition 2 A function θ ∈ L1(Ω) is a duality solution to problem (3) if
∫

Ω

θϕ dx =

∫

Ω

|∇u|pv dx, ∀ϕ ∈ L∞(Ω),

where v ∈ H1
0 (Ω) ∩ L

∞(Ω) is the weak solution of

− div (B∇v) = ϕ in Ω v = 0 on ∂Ω.

It is, however, imperative to note that while every duality solution of (3)
is also a distributional solution, i.e., satisfies the equation when tested with
C∞

0 (Ω) functions, the converse is in general false, because of the non-uniqueness
of distributional solutions for equations with L1(Ω) right hand sides (see Meyer,
Panizzi and Schiela, 2011; Prignet, 1995). At the same time, every duality
solution possesses the so-called SOLA-property (here, the abbreviation SOLA
stands for the solution obtained as a limit of approximations): If θ ∈ L1(Ω) is
a duality solution of (3), then for any sequence {fn}n∈N

⊂ L∞(Ω) such that
fn → |∇u|p strongly in L1(Ω) and

‖fn‖L1(Ω) ≤ ‖|∇u|p‖L1(Ω) for all n ∈ N,

we have θn → θ strongly in L1(Ω) and weakly in W 1,γ
0 (Ω) for all γ ∈ [1, N

N−1 ),

where θn ∈ H1
0 (Ω) ∩ L

∞(Ω) is the weak solution of

− div (B∇θn) = fn in Ω θn = 0 on ∂Ω.

The main result, concerning the existence of a duality solution to the prob-
lem (3), can be stated as follows (see, for instance, Theorems 3.3 and 4.1
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Orsina, 2011): if Ω is a bounded domain with sufficiently smooth boundary
and |∇u|p(·) ∈ L1(Ω), then the Dirichlet problem (3) has the unique duality
solution θ ∈ W 1,γ

0 (Ω) with γ ∈ [1, N
N−1); moreover, there exists a constant

C = C(γ), independent of f = |∇u|p(·), such that

‖θ‖W 1,γ
0 (Ω) ≤ C(γ)‖f‖L1(Ω) = C(γ)

∫

Ω

|∇u(x)|p(x) dx. (14)

Remark 1 In fact, if the datum f = |∇u|p is more regular, say f ∈ L1+δ(Ω)
for some δ > 0, we have the following result (see Theorem 4.4 in Orsina, 2011):
if |∇u|p ∈ L1+δ(Ω), 0 < δ < N−2

N+2 then the unique duality solution of (3) belongs

to W 1,q
0 (Ω) with q = N(1+δ)

N−1−δ = 1 + δ + (1+δ)2

N−1−δ .

The optimal control problem we consider in this paper is to minimize the
discrepancy between a given distribution θd ∈ Lr(Ω) and the temperature of
thermistor θ ∈W 1,γ

0 (Ω) by choosing an appropriate anisotropic heat conductiv-

ity matrix B ∈ Bad. It is assumed here that r ∈
(
1, N

N−2

)
, where the choice of

such range is motivated by Sobolev Embedding Theorem. Namely, in view of
the fact that the embedding W 1,γ

0 (Ω) →֒ Lq(Ω) is compact for all q ∈ [1, N
N−2 ),

the exponents γ and r can be related as follows: γ = Nr
N+r . As a result, for a

given r ∈
(
1, N

N−2

)
we have γ ∈

[
1, N

N−1

)
.

Since for a “typical” measurable or even continuous function σ(θ) with

properties (6), the set C∞

0 (Ω; ΓD) is not dense in W
1,p(·)
0 (Ω; ΓD), and, hence,

no uniqueness of weak solutions to (2)–(4) can be expected, the mapping
B 7→ (u, θ), where (u, θ) is a weak solution to the boundary value problem
(2)–(4), can be multi-valued in general. In view of this, we introduce the set of
feasible solutions to the OCP (1)–(6) as follows:

Ξ0 =




(B, u, θ, p)

∣∣∣∣∣∣∣∣∣∣

B ∈ Bad, u ∈ H
1,p (·)
0 (Ω; ΓD), θ ∈W 1,γ

0 (Ω),
p ∈ L∞(Ω), γ = Nr

N+r ,

p(·) = σ(θ(·)) a.e. in Ω,
u is the H-solution of (2),

θ is a distributional solution to (3).





(15)

It is clear that J(B, u, θ, p) < +∞ for all (B, u, θ, p) ∈ Ξ0.

Remark 2 The characteristic feature of the OCP (1)–(6) is the fact that a pri-
ori it is unknown whether the set Ξ0 is nonempty. Using the assumption (6) and
basing on a special technique of the weak convergence of fluxes to a flux, it was
established in Zhikov (2011) that the thermistor problem (2)–(4) with Dirichlet
condition and for B = ξI, with ξ ∈ [m1,m2], and for any measurable function

σ(θ) admits a weak solution u ∈W
1,p(·)
0 (Ω). However, in this case the inclusion

u ∈ H
1,p(·)
0 (Ω) is by no means obvious even for the diagonal constant matrix

B ∈ Bad (see Section 7 in Zhikov, 2011). Hence, the OCP (1)–(6) requires
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some relaxation. The idea that we push forward in this paper is to consider
the function p(·) as a fictitious control with some more regular properties and
interpret the fulfilment of equality p(·) = σ(θ(·)) with some accuracy.

1.2. Relaxation of the original OCP

We consider the following extension of the set of feasible solutions to the original
OCP. Let k0 > 0 and τ ≥ 0 be given constants.

Defnition 3 We say that a tuple (B, u, θ, p) is quasi-feasible to the OCP (1)–

(6) if (B, u, θ, p) ∈ Ξ̂0(τ), where

Ξ̂0(τ) =




(B, u, θ, p)

∣∣∣∣∣∣∣∣∣∣

B ∈ Bad, u ∈ H
1,p(·)
0 (Ω; ΓD), θ ∈W 1,γ

0 (Ω), p ∈ Sad,

‖p− σ(θ)‖L2(Ω) ≤ τ, γ = Nr
N+r ,

u is the H-solution of (2),

θ is a distributional solution to (3).




,

(16)

Sad =

{
q ∈ C(Ω)

∣∣∣∣∣
|q(x)− q(y)| ≤ ω(|x− y|), ∀x, y,∈ Ω, |x− y| ≤ 1/2,

ω(t) = k0/ log(|t|−1), 1 < α ≤ q(·) ≤ β in Ω.

}
.

(17)

We also say that

(B0, u0, θ0, p0) ∈ BV (Ω)N×N ×H
1,p (·)
0 (Ω; ΓD)×W 1,γ

0 (Ω)× C(Ω)

is a quasi-optimal solution to the problem (1)–(6) if

(B0, u0, θ0, p0) ∈ Ξ̂0(τ) and J(B0, u0, θ0, p0) = inf
(B,u,θ,p)∈Ξ̂0(τ)

J(B, u, θ, p),

and this tuple is called optimal if p0(·) = σ(θ0(·)) a.e. in Ω.

Remark 3 It is clear that Ξ̂0(τ) ⊂ Ξ0 for τ = 0 and, moreover, as we will see

later on, the set Ξ̂0(τ) is nonempty if only τ ≥
√
|Ω|(β − α). It is also worth

emphasizing that the condition p ∈ Sad implies that p(·) has some additional
regularity. Moreover, in view of the obvious relation limt→0 |t|δ log(|t|) = 0 with
δ ∈ (0, 1), it is clear that p ∈ C0,δ(Ω) implies p ∈ Sad. Because of this, p ∈ Sad

is often called a locally log-Hölder continuous exponent (see Definition 2.2 in
Cruz-Uribe and Fiorenza, 2013). Another point, regarding the benefit from the
choice of the subset Sad is related to the following properties: (i) Sad is a
compact subset in C(Ω) and thus provides uniformly convergent subsequences;
(ii) Every cluster point p of a sequence {pk}k∈N

⊂ Sad is a regular exponent

(i.e. in this case the set C∞

0 (Ω; ΓD) is dense in W
1,p(·)
0 (Ω; ΓD)), which plays
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a key role in the situation of Propositions 2 and 3; (iii) Because of the log-
Hölder continuity of the exponent p ∈ Sad, the corresponding weak solution u ∈

W
1,p(·)
0 (Ω; ΓD) to the variational problem (8) is such that |∇u|(1+δ)p(·) ∈ L1(Ω)

for some δ > 0 and satisfies the estimate

∫

Ω

|∇u(x)|(1+δ)p(x) dx ≤ C

∫

Ω

|g(x)|(1+δ)p′(x) dx+ C, (18)

where δ > 0 and C > 0 depend only on Ω, α, N , k0, and
∫
Ω
|g|p

′

dx. For the

proof of the higher integrability of |∇u|p(·), we refer to Theorem 16.4 in Zhikov
(2011) and Lemma 3.3 in Zhikov and Pastukhova (2008). As it is shown in
Section 4, the property (18) is crucial for the proof of existence of quasi-optimal
solutions to the problem (1)–(6).

Remark 4 It is easy to show that if (g, ν)RN = 0 HN−1 = 0-a.e. on ΓN , and

if u ∈ W
1,p(·)
0 (Ω; ΓD) is a solution to

div(A(u)∇u) = div g in Ω,

u = 0 on ΓD, A(u)∂νu = 0 on ΓN

in the sense of distributions, then

(
A(u)∇u,∇u

)
RN = div

(
(A(u)∇u − g)u

)
+ (g,∇u)

RN ,

also in [C∞

0 (Ω; ΓD)]∗, where

A(u) = |∇u(x)|p(x)−2 or A(u) = |∇u|p(x)−2 + ε|∇u|β−2

and p(·) is a regular exponent. As a result, this allows for deducing the existence
of the unique weak solution to the variational problem

− div (B∇θ) = div
(
(A(u)∇u − g)u

)
+ (g,∇u)RN in D′(Ω)

which is also a distributional solution to the Dirichlet BVP

− div (B∇θ) = |
(
A(u)∇u,∇u

)
RN | in Ω, θ|∂Ω = 0.

Our main goal in this paper is to present the “approximation approach”,
based on the perturbation theory of extremal problems and the concept of fic-
titious controls. With that in mind, we make use of the following family of
approximated problems

Minimize Jε,τ (B, u, θ, p) =∫

Ω

|θ − θd|
r dx+ ε

∫

Ω

|∇θ|̺ dx +
1

ε
µτ

(∫

Ω

|p− σ(θ)|2 dx

)
(19)
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subject to the constraints

div
(
|∇u|p(x)−2∇u+ ε|∇u|β−2∇u

)
= div g in Ω, (20)

u = 0 on ΓD,
[
|∇u|p−2 + ε|∇u|β−2

]
∂νu = 0 on ΓN , (21)

− div (B∇θ) = div
[(

|∇u|p(x)−2∇u + ε|∇u|β−2∇u− g
)
u
]

+ (g,∇u)
RN in Ω, θ|∂Ω = 0, (22)

B ∈ Bad, p ∈ Sad, ̺ = max

{
2N − 1

2(N − 1)
,
Nr

N + r

}
. (23)

Here, the function µτ : R+ → R+ is defined as follows

µτ (s) = 0 if 0 ≤ s ≤ τ2, and µτ (s) = s− τ2 if s > τ2.

There are several principal points in the statement of approximated prob-
lem (19)–(23) that should be emphasized. The first one is related to ε∆β-
regularization of p(·)-Laplacian. Though this is a standard trick, meant to
establish the existence of H-solution to the Dirichlet problem (20) with a given
exponent p(·) (see Theorems 3.1–3.3 in Zhikov, 2011), it does not allow for ar-

riving at the existence of a weak solution (u, θ) ∈ H
1,p(·)
0 (Ω; ΓD) ×W 1,γ

0 (Ω) to
the thermistor problem (2)–(4) (see Theorem 7.2 in Zhikov, 2011). This can be
done only if the exponent p(·) = σ(θ(·)) is regular, i.e. if the set C∞

0 (Ω; ΓD) is

dense in W
1,p(·)
0 (Ω; ΓD), and the energy density |∇u(·)|p(·) belongs to the space

L1+δ(Ω) for some δ > 0, so that the equation (22) holds in the sense of the
distributions. With that in mind we consider the condition p ∈ Sad as an ad-
ditional option for the regularization of the original OCP. Another point that
should be indicated is related to some relaxation of the equation (3). Namely,
it is easy to see that after the formal transformations, the equation (3) can be
rewritten as follows

− div (B∇θ) = div
[(

|∇u|σ(θ)−2∇u− g
)
u
]
+ (g,∇u)

RN in D′(Ω). (24)

The benefit of such representation and condition p ∈ Sad is the fact that, due
to the estimate (18), the expression

(
|∇u|σ(θ)−2∇u− g

)
u under the divergence

sign in (24) is integrable with degree greater than 1. As follows from our further
analysis, this property plays an important role in the study of OCP (1)–(6) and
we consider the representation (24) as some relaxation of the relation (3).

1.3. Main results

The main result of this paper is Theorem 1, in which we claim that if the
OCP (1)–(6) has a sufficiently regular feasible point, then there exist optimal
solutions to the OCP and some of them are the limit as ε ց 0 of optimal
solutions to (19)–(23).
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Theorem 1 Let Ω be an open bounded domain in R
N with a sufficiently smooth

boundary. Assume that Ξ̂0(τ) 6= ∅ for τ = 0, i.e. there exist a matrix B̂ ∈ Bad,
an exponent p̂ ∈ Sad, and a weak solution to the thermistor problem (2)–(4)

(û, θ̂) ∈ W
1,σ(θ̂(·))
0 (Ω; ΓD) ×W 1,γ

0 (Ω) with γ = Nr
N+r and B(·) = B̂(·) such that

p̂ = σ(θ̂) almost everywhere in Ω. Then, OCP (1)–(6) has a non-empty set of
optimal solutions and some of them can be attained in the following way

B0
ε

∗
⇀ B0 in BV (Ω)N×N , u0ε ⇀ u0 in W 1,α

0 (Ω), (25)

θ0ε ⇀ θ0 in W 1,γ
0 (Ω), p0ε → p0 uniformly on Ω, (26)

as ε → 0, where (B0
ε , u

0
ε, θ

0
ε , p

0
ε) are the solutions to the approximated problems

(19)–(23) with τ = ε in (19).

We prove this theorem further on at the end of Section 4.

Remark 5 It is clear that the condition p̂ = σ(θ̂) in the statement of Theorem 1,
where p̂ has logarithmic modulus of continuity, imposes some additional and
rather special constraint on the function σ ∈ C(R). The principal point here is

the fact that this relation has to be valid for a particular function θ̂ and it is
not required that the function σ(θ(·)) be at least continuous for every solution
θ ∈ W 1,γ

0 (Ω) of (3). It is rather a delicate problem to guarantee the fulfilment

of the equality p̂ = σ(θ̂) by the direct description of function σ ∈ C(R) even if
we make use of the “typical” assumption (see, for instance, Hömberg, Meyer,
Rehberg and Ring, 2010; Hrynkiv, 2009; Howison, Rodrigues and Shillor, 1993):
σ is a Lipschitz continuous function.

Since it is unknown whether OCP (1)–(6) is solvable or the main assumptions
of Theorem 1 are satisfied, it is reasonable to show that this problem admits
the quasi-optimal solutions and they can be attained (in some sense) by optimal
solutions to special approximated problems. We prove in Section 4 the following
result.

Theorem 2 Let
{
(B0

ε , u
0
ε, θ

0
ε , p

0
ε)
}
ε>0

be an arbitrary sequence of optimal solu-

tions to the approximated problems (19)–(23). Assume that either there exists
a constant C∗ > 0 satisfying condition

lim sup
ε→0

inf
(B,u,θ,p)∈Ξ̂ε

Jε,τ (B, u, θ, p) ≤ C∗ < +∞

or τ ≥
√
|Ω|(β − α), where Ξ̂ε stands for the set of feasible solutions to the

problem (19)–(23). Then, any cluster tuple
(
B0, u0, θ0, p0

)
in the sense of con-

vergence (25)–(26) is a quasi-optimal solution of the OCP (1)–(6). Moreover,
in this case the following variational property holds

lim
ε→0

inf
(B,u,θ,p)∈Ξ̂ε

Jε,τ (B, u, θ, p) = J
(
B0, u0, θ0, p0

)
= inf

(B,u,θ,p)∈Ξ̂0(τ)
J(B, u, θ, p).
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2. Preliminaries and some auxiliary results

2.1. On Orlicz spaces

Let p(·) be a measurable exponent function on Ω such that 1 < α ≤ p(x) ≤ β <

∞ a.e. in Ω, where α and β are given constants. Let p′(·) = p(·)
p(·)−1 be the cor-

responding conjugate exponent. It is clear that β′ ≤ p′(·) ≤ α′ a.e. in Ω, where
β′ and α′ stand for the conjugates of constant exponents. Denote by Lp(·)(Ω)N

the set of all measurable functions f(x) on Ω such that
∫
Ω |f(x)|p(x) dx < ∞.

Then, Lp(·)(Ω)N is a reflexive separable Banach space with respect to the Lux-
emburg norm (see Cruz-Uribe and Fiorenza, 2013; Diening, Harjulehto, Hästö
and Ru̇ẑiĉka, 2011; Rădulescu and Repovš, 2015, for the details)

‖f‖Lp(·)(Ω)N = inf
{
λ > 0 : ρp(λ

−1f) ≤ 1
}
,

where ρp(f) :=

∫

Ω

|f(x)|p(x) dx. (27)

As for the infimum in (27), it is obviously attained if ρp(f) > 0; moreover

‖f‖Lp(·)(Ω)N = λ > 0 ⇔ ρp(λ
−1f) = 1. (28)

The dual of Lp(·)(Ω)N with respect to L2(Ω)-inner product will be denoted
by Lp′(·)(Ω)N . The following estimates are well-known (see, for instance, Zhikov,
2008a; Cruz-Uribe and Fiorenza, 2013; Rădulescu and Repovš, 2015): if f ∈
Lp(·)(Ω)N then

‖f‖αLp(·)(Ω)N ≤

∫

Ω

|f(x)|p(x) dx ≤ ‖f‖β
Lp(·)(Ω)N

, if ‖f‖Lp(·)(Ω)N > 1, (29)

‖f‖β
Lp(·)(Ω)N

≤

∫

Ω

|f(x)|p(x) dx ≤ ‖f‖αLp(·)(Ω)N , if ‖f‖Lp(·)(Ω)N < 1,

‖f‖Lp(·)(Ω)N =

∫

Ω

|f(x)|p(x) dx, if ‖f‖Lp(·)(Ω)N = 1,

‖f‖αLp(·)(Ω)N − 1 ≤

∫

Ω

|f(x)|p(x) dx ≤ ‖f‖β
Lp(·)(Ω)N

+ 1, (30)

‖f‖Lα(Ω)N ≤ (1 + |Ω|)1/α ‖f‖Lp(·)(Ω)N . (31)

Moreover, due to the duality method, it can be shown that

‖f‖Lp(·)(Ω)N ≤ (1 + |Ω|)1/β
′

‖f‖Lβ(Ω)N , β′ =
β

β − 1
, ∀ f ∈ Lβ(Ω)N . (32)

We make use of the following results.

Lemma 1 (Lemma 13.3 in Zhikov, 2011) If a sequence {fk}k∈N
is bounded

in Lp(·)(Ω) and fk ⇀ f in Lα(Ω) as k → ∞, then f ∈ Lp(·)(Ω) and fk ⇀ f in
Lp(·)(Ω), i.e.

lim
k→∞

∫

Ω

fkϕdx =

∫

Ω

fkϕdx, ∀ϕ ∈ Lp′(·)(Ω).
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Lemma 2 Let {pk}k∈N
⊂ Sad and p ∈ Sad be such that pk(·) → p(·) uniformly

in Ω as k → ∞. If a sequence
{
‖fk‖Lpk(·)(Ω)

}
k∈N

is bounded and fk ⇀ f in

Lα(Ω) as k → ∞, then f ∈ Lp(·)(Ω).

Proof By analogy with the proof of Lemma 1 (see p. 536 in Zhikov, 2011),
to deduce the inclusion f ∈ Lp(·)(Ω), it is enough to note that

∫

Ω

|f(x)|p(x) dx ≤ lim inf
k→∞

∫

Ω

|fk(x)|
pk(x) dx (33)

by the semicontinuity of convex functionals with respect to the weak convergence
in Lα(Ω). �

2.2. On the weak convergence of fluxes to flux

A typical situation, arising in the study of most of the optimization problems
and which is of fundamental importance in many other areas of nonlinear ana-
lysis, can be stated as follows: we have the weak convergence uk ⇀ u in some
Sobolev space W 1,α(Ω) with α > 1 and we have the weak convergence of fluxes
Ak(·,∇uk) ⇀ z in the Lebesgue space Lδ(Ω), δ > 1, where by flux we mean
the vector under the divergence sign in an elliptic equation (in our case it is
Ak(·,∇uk) = |∇uk|pk(·)−2∇uk or Ak(·,∇θk) = Bk(·)∇θk). Then, the problem
is to show that z = A(·,∇u), although the validity of this equality is by no
means obvious at this stage.

Assume that the fluxes Ak(x, ξ) satisfy the following conditions:

Ak : Ω× R
N → R

N are Carathéodory vector-valued functions, (34)

(Ak(x, ξ) −Ak(x, η), ξ − η)
RN ≥ 0, Ak(x, 0) = 0,

for a.e. x ∈ Ω and ∀ξ, η ∈ R
N , (35)

|Ak(x, ξ)|
β′

≤ C1|ξ|
β + C2, lim

k→∞

Ak(x, ξ) = A(x, ξ)

for a.e. x ∈ Ω and∀ ξ ∈ R
N . (36)

Let {vk}k∈N
and {Ak(·, vk)}k∈N

be weakly convergent sequences in L1(Ω)N ,
and let v and z be their weak L1-limits, respectively. In order to clarify the
conditions, under which the equality z = A(x, v) holds and the fluxes Ak(·, vk)
weakly converge to the flux A(·, v), we cite the following result.

Theorem 3 (Theorem 4.6 in Zhikov, 2011) Assume that {uk}k∈N
and

{Ak(·,∇uk)}k∈N
are the sequences such that conditions (35)–(36) hold true and

(i) uk ⇀ u in W 1,α(Ω) and uk ∈ W 1,β(Ω) for all k ∈ N;
(ii) supk∈N ‖Ak(·,∇uk)‖Lβ′(Ω)N < +∞;

(iii) supk∈N
‖ (Ak(·,∇uk),∇uk)RN ‖L1(Ω) < +∞;

(iv) the exponents α and β are related by the condition

1 < α ≤ β <

{
+∞, if α ≥ N − 1,
α(N−1)
N−1−α , if α < N − 1.

(37)
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Then, up to a subsequence, the fluxes weakly converge to the flux

Ak(·,∇uk)⇀ A(·,∇u) in Lβ′

(Ω)N .

It is worth to note that in the case of equality α = β, Theorem 3 becomes
the well-known result of Tartar and Murat (1978), also known as the div-curl
Lemma.

3. On approximated optimal control problems in coeffi-
cients and their properties

This section deals with the description of the structure of the approximated
optimal control problems with respect to the original one (1)–(6), and with the
study of their main variational properties.

Let ε be a small parameter. Assume that the parameter ε varies within a
strictly decreasing sequence of positive real numbers, which converges to 0. Let
τ ≥ 0 be a given constant. We consider the collection of approximated optimal
control problems in coefficients for nonlinear elliptic equations (19)–(23). For

every ε > 0 we denote by Ξ̂ε the set of all feasible points to the problem (19)–
(23).

Defnition 4 We say that (B, u, θ, p) is a feasible solution to the problem (19)–

(23) if B ∈ Bad, p ∈ Sad, and u ∈ W 1,β
0 (Ω; ΓD) and θ ∈ W 1,γ

0 (Ω) are the
solutions to the following variational problems

div
(
|∇u|p(x)−2∇u+ ε|∇u|β−2∇u

)
= div g in [C∞

0 (Ω; ΓD)]
∗
, (38)

[
|∇u|p−2 + ε|∇u|β−2

]
∂νu = 0 in D′(ΓN ), (39)

− div (B∇θ) = div
[(

|∇u|p(x)−2∇u+ ε|∇u|β−2∇u− g
)
u
]
+(g,∇u)

RN (40)

in D′(Ω).

We begin with the following lemma, reflecting the consistency of approxi-
mated optimal control problem (19)–(23).

Lemma 3 Let θd ∈ Lr(Ω) with r ∈
(
1, N

N−2

)
and g ∈ L∞(Ω)N be given dis-

tributions such that (g, ν)RN = 0 HN−1 = 0-a.e. on ΓN . Let σ ∈ C(R) be a
function satisfying conditions (6), and let τ be an arbitrary non-negative value.
Then, the approximated optimal control problem (19)–(23) is consistent for each

ε > 0, i.e. Ξ̂ε 6= ∅.

Proof Let us define the control functions B̂ and p̂ as follows: p̂(·) = β and

B̂(·) = ξI, where ξ ∈ [m1,m2]. It is clear that B̂ ∈ Bad, p̂ ∈ Sad, and the
variational problem (38) becomes a well-posed problem for the ∆β-Laplacian

and it admits a unique solution ûε ∈ W 1,β
0 (Ω; ΓD). Let us show that there
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exists a unique element θ̂ ∈ W 1,γ
0 (Ω) for γ ∈ [1, N

N−1), satisfying variational
equality (40). Indeed, as follows from (40), we see that the identity

ξ

∫

Ω

(
∇θ̂,∇ϕ

)
RN

dx

=

∫

Ω

(g,∇û)
RN ϕdx− (1 + ε)

∫

Ω

(
|∇û|β−2∇û− g,∇ϕ

)
RN ûdx (41)

holds for all ϕ ∈ C∞

0 (Ω) and k ∈ N. Since û is a solution to (38), it leads us to
the following relations

(1 + ε)

∫

Ω

(
|∇û|β−2∇û,∇(ϕû)

)
RN dx =

∫

Ω

(g,∇(ϕû))
RN dx, ∀ϕ ∈ C∞

0 (Ω).

Hence,

(1 + ε)

∫

Ω

|∇û|βϕdx = (1 + ε)

∫

Ω

(
∇ϕ, g − |∇û|β−2∇û

)
RN û dx

+

∫

Ω

(g,∇û)
RN ϕdx, ∀ϕ ∈ C∞

0 (Ω).

Combining this equality with (41), we arrive at the integral identity

ξ

∫

Ω

(
∇θ̂,∇ϕ

)
RN

dx = (1 + ε)

∫

Ω

|∇û|βϕdx ∀ϕ ∈ C∞

0 (Ω). (42)

Thus, θ̂ is the distributional solution to the Dirichlet problem

−ξ div (∇θε,k) = (1 + ε)|∇û|β in Ω, θ̂
∣∣∣
∂Ω

= 0. (43)

Since the domain Ω is smooth enough and the operator −ξ div (∇θ) = −ξ∆θ
admits maximal elliptic regularity on W−1,p0(Ω) for some p0 > N (see Section
6 in Disser, Kaiser and Rehberg, 2015), it follows that distributional solution
and duality solution to the problem (43) are the same (see Meyer, Panizzi and
Schiela, 2011). Hence, by the Stampacchia theorem the duality solution exists,
it is unique in W 1,γ

0 (Ω) for every γ ∈ [1, N
N−1 ), and it can be found via approxi-

mation of |∇û|β ∈ L1(Ω) by L∞(Ω)-functions. Moreover, there exists a constant
C = C(γ), independent of |∇û|β , such that (see Theorem 4.1 in Orsina, 2011)

∫

Ω

|∇θ̂|γ dx ≤ C(γ)‖|∇û|β‖γL1(Ω), ∀ γ <
N

N − 1
.

Thus, θ̂ ∈W 1,γ
0 (Ω) and the tuple (ξI, û, θ̂, β) is a feasible solution to the problem

(19)–(23). �

The subsequent results are crucial for our further analysis.

Lemma 4 The set of fictitious controls Sad is convex, bounded and compact
with respect to the strong topology of C(Ω).
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Proof Let {pk(·)}k∈N
⊂ Sad be an arbitrary sequence of fictitious controls.

Since maxx∈Ω |pk(x)| ≤ β and each element of this sequence has the same modu-
lus of continuity ω, it follows that the sequence {pk(·)}k∈N

is uniformly bounded
and equi-continuous. Hence, by Arzelà–Ascoli Theorem the set {pk}k∈N

is rel-

atively compact with respect to the strong topology of C(Ω). Taking into ac-
count that the set Sad is closed with respect to the uniform convergence, we
can deduce: there exists an element p ∈ Sad such that, up to subsequences,
pk(·) → p(·) uniformly in Ω as k → ∞. The convexity and boundedness of the
set Sad obviously follows from its definition. �

Lemma 5 Let ε > 0 be a fixed value, and let {(Bε,k, uε,k, θε,k, pε,k)}k∈N
⊂ Ξ̂ε

be a minimising sequence for OCP (19)–(23). Then, the flux Aε,k(x, ξ) :=
|ξ|pε,k(x)−2ξ + ε|ξ|β−2ξ satisfies the properties (35)–(36).

Proof The monotonicity property (35) is a direct consequence of the well-
known inequalities:

(
|ξ|p−2ξ − |η|p−2η, ξ − η

)
RN ≥ 22−p|ξ − η|p for 2 ≤ p < +∞,

(
|ξ|p−2ξ − |η|p−2η, ξ − η

)
RN ≥ (|ξ|+ |η|)p−2 |ξ − η|2 for 1 < p < 2,

whereas the boundedness condition (35)1 is ensured by inclusion pε,k ∈ Sad,

|Aε,k(x, ξ)| ≤ |ξ|pε,k(x)−1 + ε|ξ|β−1 ≤ (1 + ε)|ξ|β−1 + 1 a.e. in Ω.

It remains to establish the pointwise convergence (36)2. Due to Lemma 4, we
can suppose that there exists an element pε ∈ Sad such that, up to subsequences,
pε,k(·) → pε(·) uniformly in Ω as k → ∞. As a result, we have

Aε,k(x, ξ) := |ξ|pε,k(x)−2ξ + ε|ξ|β−2ξ
k→∞
−→ |ξ|pε(x)−2ξ + ε|ξ|β−2ξ

=: Aε(x, ξ) a.e. in Ω.

�

Lemma 6 Let {(Bε,k, uε,k, θε,k, pε,k)}k∈N
⊂ Ξ̂ε be an arbitrary sequence. Then

there exist a distribution uε ∈ W 1,β
0 (Ω; ΓD), an exponent pε ∈ Sad, and a

subsequence of {uε,k}k∈N
, still denoted by the suffix (ε, k), such that

ε‖uε‖
β

W 1,β
0 (Ω)

≤ 2α
′+1

(∫

Ω

|g|α
′

dx+ |Ω|

)
, (44)

uε,k ⇀ uε in W 1,β
0 (Ω; ΓD) as k → ∞, (45)

uε ∈W
1,pε(·)
0 (Ω). (46)

Proof To prove this result, we apply the line of reasoning coming from the
paper of Zhikov (2009). Since (Bε,k, uε,k, θε,k, pε,k) ∈ Ξ̂ε for each k ∈ N, it

follows that uε,k ∈W 1,β
0 (Ω; ΓD) and the integral identity

∫

Ω

(
|∇uε,k|

pε,k−2∇uε,k + ε|∇uε,k|
β−2∇uε,k,∇ϕ

)
RN dx =

∫

Ω

(g,∇ϕ)
RN dx
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(47)

holds for all ϕ ∈ C∞

0 (Ω). Hence, by density of C∞

0 (Ω) in W 1,β
0 (Ω; ΓD), we

obtain the energy equality
∫

Ω

(
|∇uε,k|

pε,k + ε|∇uε,k|
β
)
dx =

∫

Ω

(g,∇uε,k)RN dx. (48)

By the Young inequality, we have

∫

Ω

(g,∇uε,k)RN dx ≤
2α

′

β′

∫

Ω

|g|p
′

ε,k dx+
1

α2α

∫

Ω

|∇uε,k|
pε,k dx

≤ 2α
′

∫

Ω

|g|p
′

ε,k dx+
1

2

∫

Ω

|∇uε,k|
pε,k dx,

where α′ = α/(α−1). Then, it is easy to derive from (48) the following estimates

∫

Ω

(
|∇uε,k|

pε,k + ε|∇uε,k|
β
)
dx ≤ 2α

′+1

∫

Ω

|g|p
′

ε,k dx

≤ 2α
′+1

(∫

Ω

|g|α
′

dx+ |Ω|

)
. (49)

Thus, the sequence {uε,k}k∈N
is relatively compact with respect to the weak

topology of W 1,β
0 (Ω; ΓD). Without loss of generality, we assume that the weak

convergence uε,k ⇀ uε takes place in W 1,β
0 (Ω; ΓD). Then it follows from (48)

that

lim
k→∞

∫

Ω

(
|∇uε,k|

pε,k + ε|∇uε,k|
β
)
dx =

= lim
k→∞

∫

Ω

(g,∇uε,k)RN dx =

∫

Ω

(g,∇uε)RN dx,

ε

∫

Ω

|∇uε|
β dx ≤

∫

Ω

(g,∇uε)RN dx (50)

because, according to the property of lower semicontinuity of ‖ · ‖W 1,β
0 (Ω;ΓD)-

norm with respect to the weak convergence, we have

lim
k→∞

∫

Ω

|∇uε,k|
β dx ≥ lim inf

k→∞

∫

Ω

|∇uε,k|
β dx ≥

∫

Ω

|∇uε|
β dx. (51)

Thus, the estimate (44) immediately follows from (49)–(51). �

Lemma 7 Let {(Bε,k, uε,k, θε,k, pε,k)}k∈N
⊂ Ξ̂ε be an arbitrary sequence, and let

pε ∈ Sad and uε ∈ W 1,β
0 (Ω; ΓD) be such that

pε,k(·) → pε(·) uniformly in Ω and uε,k ⇀ uε in W 1,β
0 (Ω; ΓD)

as k → ∞. (52)
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Then, up to a subsequence, we have the weak convergence of fluxes to a flux:

|∇uε,k|
pε,k−2∇uε,k + ε|∇uε,k|

β−2∇uε,k

⇀ |∇uε|
pε−2∇uε + ε|∇uε|

β−2∇uε in Lβ′

(Ω)N . (53)

Proof In order to prove the convergence (53), we show that all conditions
of Theorem 3 are fulfilled. Taking into account Lemma 5 and the fact that
αN
N−α < α(N−1)

N−1−α , we focus on the verification of conditions (ii)–(iii). Indeed, in

view of the weak convergence uε,k ⇀ uε in W 1,β
0 (Ω) and

‖A1,k(·,∇uε,k)‖Lβ′(Ω)N

by (31)

≤ (1 + |Ω|)1/β
′

‖A1,k(·,∇uε,k)‖
L

p′
ε,k

(·)
(Ω)N

by (30)

≤ (1 + |Ω|)1/β
′

(∫

Ω

|A1,k(x,∇uε,k(x))|
p′

ε,k(x) dx+ 1

)1/β′

= (1 + |Ω|)1/β
′

(∫

Ω

|∇uε,k(x)|
pε,k(x) dx+ 1

)1/β′

≤ (1 + |Ω|)1/β
′

(∫

Ω

|∇uε,k(x)|
β dx+ |Ω|+ 1

)1/β′

< +∞, (54)

‖A2,k(·,∇uε,k)‖Lβ′(Ω)N =

(∫

Ω

|∇uε,k(x)|
β dx

)1/β′

, (55)

where

Aε,k(x,∇uε,k) := A1,k(x,∇uε,k) + εA2,k(x,∇uε,k),

A1,k(x,∇uε,k) := |∇uε,k|
pε,k(x)−2∇uε,k,

A2,k(x,∇uε,k) := |∇uε,k|
β−2∇uε,k,

we see that the fluxes Aε,k(·,∇uε,k) are bounded in Lβ′

(Ω)N . To check the
condition (iii) of Theorem 3, it is enough to apply the estimate (44) and note
that

‖ (Aε,k(·,∇uε,k),∇uε,k)RN ‖L1(Ω) =

∫

Ω

|∇uε,k|
pε,k dx+ ε

∫

Ω

|∇uε,k|
β dx

≤ (1 + ε) sup
k∈N

(∫

Ω

|∇uε,k|
β dx

)
+ |Ω|.

(56)

Thus, the weak convergence of fluxes to a flux (53) follows from Theorem 3. �

Lemma 8 Let pε ∈ Sad and uε ∈ W 1,β
0 (Ω; ΓD) be as in Lemma 7. Then uε is

the unique weak solution to the Dirichlet problem

div
(
|∇u|pε(x)−2∇u+ ε|∇u|β−2∇u

)
= div g in Ω,

u = 0 on ΓD,
[
|∇u|pε(x)−2 + ε|∇u|β−2

]
∂νu = 0 on ΓN . (57)
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Proof Since {(Bε,k, uε,k, θε,k, pε,k)}k∈N
are feasible points to OCP (19)–(23),

it follows that the integral identity (47) holds true for all ϕ ∈ C∞

0 (Ω; ΓD) and
for all k ∈ N. Then, (53) implies that

∫

Ω

(
|∇uε|

pε(x)−2∇uε + ε|∇uε|
β−2∇uε,∇ϕ

)
RN

dx

= lim
k→∞

∫

Ω

(
|∇uε,k|

pε,k(x)−2∇uε,k + ε|∇uε,k|
β−2∇uε,k,∇ϕ

)
RN

dx

=

∫

Ω

(g,∇ϕ)
RN dx, ∀ϕ ∈ C∞

0 (Ω; ΓD). (58)

Hence, uε is a weak solution to the boundary value problem (57). In view of the

strict monotonicity of the operator Aε : W 1,β
0 (Ω; ΓD) → W−1,β′

(Ω; ΓD), given
by the equality

(Aεu, v) =

∫

Ω

(
|∇u|p(x)−2∇u+ ε|∇u|β−2∇u,∇v

)
RN

dx,

∀ v ∈ W 1,β
0 (Ω; ΓD), (59)

this solution is unique. �

The next results are based on the compactness property of the set of matrices
Bad with respect to the weak-∗ topology of BV (Ω)N×N . For motivation of
BV -choice for the set of admissible controls, we refer to Buttazzo and Kogut
(2011), Casas, Kogut and Leugering (2016), D’Apice, De Maio and Kogut (2010,
2012), Horsin and Kogut (2015), Kogut and Leugering (2013). We recall that
a sequence {fk}∞k=1 converges weakly∗ to f in BV (Ω) if and only if the two
following conditions hold (see Ambrosio, Fusco and Pallara, 2000): fk → f

strongly in L1(Ω) and Dfk
∗
⇀ Df weakly∗ in the space of Radon measures

M(Ω;RN ). It is well known that each uniformly bounded set in BV -norm
is relatively compact in L1(Ω) with respect to the strong L1-topology of this
space. Moreover, if {fk}∞k=1 ⊂ BV (Ω) converges strongly to some f in L1(Ω)
and satisfies supk∈N

∫
Ω |Dfk| < +∞, then (see, for instance, Ambrosio, Fusco

and Pallara, 2000; Giusti, 1984)

(i) f ∈ BV (Ω) and

∫

Ω

|Df | ≤ lim inf
k→∞

∫

Ω

|Dfk|; (ii) fk
∗

⇀ f in BV (Ω). (60)

Since the set
{
B ∈ L∞(Ω;RN×N ) : m1I ≤ B ≤ m2I, a.e. in Ω

}
is closed

with respect to the pointwise convergence almost everywhere, the following prop-
erty of the class of admissible controls Bad holds true.

Proposition 1 For any given m1 > 0, m2 > m1, and µ > 0, the set Bad is
nonempty, uniformly bounded, convex, and sequentially compact with respect to
the weak-∗ topology of BV (Ω)N×N .
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Lemma 9 Let {(Bε,k, uε,k, θε,k, pε,k)}k∈N
⊂ Ξ̂ε be a sequence such that Bε,k

∗
⇀

Bε in BV (Ω)N×N and θε,k ⇀ θε in W 1,γ
0 (Ω) for some γ ∈ [1, N

N−1 ). Then we
have

lim
k→∞

∫

Ω

(Bε,k∇θε,k,∇ϕ)RN dx =

∫

Ω

(Bε∇θε,∇ϕ)RN dx, ∀ϕ ∈ C∞

0 (Ω). (61)

Proof Since Bε,k → Bε in L1(Ω)N×N and {Bε,k}k∈N is bounded in
L∞(Ω)N×N , we infer Bε,k → Bε strongly in Lr(Ω)N×N for every 1 ≤ r < +∞.

In particular, Bt
ε,k∇ϕ→ Bt

ε∇ϕ in Lγ′

(Ω)N with γ′ = γ
γ−1 and ∇θε,k ⇀ ∇θε in

Lγ(Ω)N . Hence, it is immediate to pass to the limit and to deduce (61). �

The next lemma is crucial for our further analysis and it reveals some com-
pactness properties of the set of feasible solutions Ξ̂ε.

Lemma 10 Let {(Bε,k, uε,k, θε,k, pε,k)}k∈N
⊂ Ξ̂ε be a sequence of feasible points

for OCP (19)–(23). Then, there exist δ > 0 and distributions pε ∈ Sad, uε ∈

W 1,β
0 (Ω; ΓD), θ̂ε,k ∈ W 1,γ

0 (Ω), θε ∈ W 1,γ
0 (Ω) for γ ∈ [1, N

N−1 ), and a matrix

Bε ∈ Bad such that |∇uε|β ∈ L1+δ(Ω),
(
Bε,k, uε,k, θ̂ε,k, pε,k

)
∈ Ξ̂ε for all

k ∈ N, and, up to subsequences,

pε,k(·) → pε(·) uniformly in Ω, uε,k ⇀ uε in W 1,β
0 (Ω; ΓD), (62)

Bε,k
∗
⇀ Bε in BV (Ω)N×N , θ̂ε,k ⇀ θε in W 1,γ

0 (Ω), (63)

where θε is a distributional solution to the Dirichlet problem

− div (Bε∇θ)

= div
[(

|∇uε|
pε(x)−2∇uε + ε|∇uε|

β−2∇uε − g
)
uε

]
+ (g,∇uε)RN , (64)

θ|∂Ω = 0, (65)

which satisfies the integral identity
∫

Ω

(Bε∇θε,∇ϕ)RN dx =

∫

Ω

(
|∇uε|

pε(x) + ε|∇uε|
β
)
ϕdx,

∀ϕ ∈ C∞

0 (Ω). (66)

Moreover, if N > 2, then θε ∈ W 1,q
0 (Ω) for q = N(1+δ)

N−1−δ = N
N−1

(
1 + Nδ

N−1−δ

)

provided δ ∈
(
0, N−2

N+2

)
.

Proof To begin with, we note that the convergence (63)1 and inclusion
Bε ∈ Bad is a direct consequence of Proposition 1, whereas (62) follows from
Lemmas 4, 5, and 6. Moreover, by the higher integrability of the gradient (see
Remark 3 for the details), we have

|∇uε,k|
pε,k(x)+ ε|∇uε,k|

β ∈ L1+δ(Ω) for some δ > 0 independent of k. (67)
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In view of the initial assumptions, for each k ∈ N, the function θε,k is the weak
solution to (22) in the sense of distributions, i.e. the identity

∫

Ω

(Bε,k∇θε,k,∇ϕ)RN dx =

∫

Ω

(g,∇uε,k)RN ϕdx

−

∫

Ω

(
|∇uε,k|

pε,k(x)−2∇uε,k + ε|∇uε,k|
β−2∇uε,k − g,∇ϕ

)
RN

uε,k dx

(68)

holds for all ϕ ∈ C∞

0 (Ω) and k ∈ N. Hence, arguing as in the proof of Lemma 3,
we deduce that the integral identity

∫

Ω

(Bε,k∇θε,k,∇ϕ)RN dx =

∫

Ω

(
|∇uε,k|

pε,k(x) + ε|∇uε,k|
β
)
ϕdx (69)

holds for every ϕ ∈ C∞

0 (Ω). Hence, θε,k is the distributional solution to the
Dirichlet problem

− div (bε,k∇θε,k) = |∇uε,k|
pε,k(x) + ε|∇uε,k|

β in Ω, θε,k|∂Ω = 0. (70)

In view of the condition (67), this Dirichlet boundary value problem admits

a unique duality solution θ̂ε,k. Then,
{(
Bε,k, uε,k, θ̂ε,k, pε,k

)}
k∈N

are feasible

points to OCP (19)–(23). By the Stampacchia theorem, θ̂ε,k is the duality
solution to the problem (70) and it can be found via approximation of fε,k ∈
L1(Ω) by L∞(Ω)-functions, where fε,k :=

(
|∇uε,k|pε,k(x) + ε|∇uε,k|β

)
∈ L1(Ω).

Moreover, it can be shown that in this case θ̂ε,k belongs to W 1,γ
0 (Ω), for every

γ ∈ [1, N
N−1 ), and there exists a constant C, independent of fε,k and k, such

that (for the details, we refer to Theorem 4.1 in Orsina, 2011)
∫
Ω
|∇θ̂ε,k|γ dx ≤

C‖fε,k‖
γ
L1(Ω). In fact, the constant C depends only on N , γ, and m1. Since

∫

Ω

|fε,k| dx =

∫

Ω

(
|∇uε,k|

pε,k(x) + ε|∇uε,k|
β
)
dx

by (56)

≤

(
(1 + ε) sup

k∈N

(∫

Ω

|∇uε,k|
β dx

)
+ |Ω|

)
,

it follows that

‖θ̂ε,k‖W 1,γ
0 (Ω) ≤ C

1
γ

(
(1 + ε) sup

k∈N

(∫

Ω

|∇uε,k|
β dx

)
+ |Ω|

)
,

∀ k ∈ N. (71)

Thus, the weak convergence (63)2 immediately follows from the estimate
(71). It remains to show that the limit function θε is a weak solution to the
problem (10) and that it satisfies the identity (66). With that in mind, we note
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that

|∇uε,k|
pε,k−2∇uε,k + |∇uε,k|

β−2∇uε,k − g ⇀ |∇uε|
pε−2∇uε

+ε|∇uε|
β−2∇uε − g in Lβ′

(Ω)N ,

uε,k → uε in Lβ(Ω),

(g,∇uε,k)RN → (g,∇uε)RN in Lβ(Ω)

by Lemma 7 and compactness of the embedding W 1,β
0 (Ω) →֒ Lβ(Ω). Hence,

(
|∇uε,k|

pε,k−2∇uε,k + ε|∇uε,k|
β−2∇uε,k − g

)
uε,k

⇀
(
|∇uε|

pε−2∇uε + ε|∇uε|
β−2∇uε − g

)
uε in L1(Ω).

Taking these facts and Lemmas 4 and 9 into account, we can pass to the limit
in (68) as k → ∞. As a result, we obtain

∫

Ω

(Bε∇θε,∇ϕ)RN dx =

∫

Ω

(g,∇uε)RN ϕdx

−

∫

Ω

(
|∇uε|

pε−2∇uε + ε|∇uε|
β−2∇uε − g,∇ϕ

)
RN uε dx,

(72)

i.e.

− div (Bε∇θε) = div
[(

|∇uε|
pε(x)−2∇uε + ε|∇uε|

β−2∇uε − g
)
uε

]
+(g,∇uε)RN

in the sense of distributions. In order to establish the integral identity (66),

it is enough to observe that uε ∈ W 1,β
0 (Ω) is the unique weak solution to the

Dirichlet problem (57) (see Lemma 8) and apply then the transformations that
we used in the proof of Lemma 3, to the identity (72). As for the inclusions

|∇uε|β ∈ L1+δ(Ω) for N ≥ 2 and θε ∈ W 1,q
0 (Ω) for N > 2 and q = N(1+δ)

N−1−δ ,
we should apply the arguments of the higher integrability of the gradient (see
Remark 3 for the details) and Theorem 4.4 from Orsina (2011). �

To conclude this section, we give the existence result for the approximated
OCP (19)–(23).

Theorem 4 Let θd ∈ Lr(Ω) with r ∈
[
1, N

N−2

)
and g ∈ L∞(Ω)N be given

distributions, such that (g, ν)RN = 0 HN−1 = 0-a.e. on ΓN . Let σ ∈ C(R) be
a function satisfying the conditions (6), and let τ be an arbitrary non-negative
value. Then the optimal control problem (19)–(23) admits at least one solution
for each ε > 0.

Proof Since the set Ξ̂ε is nonempty (see Lemma 3) and the cost functional

Jε,τ is bounded from below on Ξ̂ε, it follows that there exists a minimizing
sequence

{(Bε,k, uε,k, θε,k, pε,k)}k∈N
⊂ Ξ̂ε
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to problem (19)–(23), i.e.

inf
(B,u,θ,p)∈Ξ̂ε

Jε,τ (B, u, θ, p) = lim
k→∞

[∫

Ω

|θε,k(x)− θd(x)|
r dx+ ε

∫

Ω

|∇θε,k|
̺ dx

+
1

ε
µτ

(∫

Ω

|pε,k(x)− σ(θε,k(x))|
2 dx

)]
< +∞.

Hence, in view of Lemma 6 and definition of the sets Bad and Sad, the
minimizing sequence {(Bε,k, uε,k, θε,k, pε,k)}k∈N

is bounded in BV (Ω)N×N ×

W 1,β
0 (Ω; ΓD) ×W 1,̺

0 (Ω) × C(Ω). From (45) and Lemmas 4, 8, 9, and 10, we
deduce the existence of a subsequence, that we denote in the same way, and
a tuple

(
B0

ε , u
0
ε, θ

0
ε , p

0
ε

)
∈ Ξ̂ε such that Bε,k

∗
⇀ B0

ε in BV (Ω)N×N , uε,k ⇀ u0ε
in W 1,β

0 (Ω; ΓD), θε,k ⇀ θ0ε in W 1,̺
0 (Ω), and pε,k(·) → p0ε(·) uniformly in Ω.

Then, taking into account the compact embedding W 1,̺
0 (Ω) →֒ Lq(Ω) for all

q ∈ [1, N̺
N−̺), where ̺ = max

{
2N−1
2(N−1) ,

Nr
N+r

}
, we have

q ∈

{
[1, r), if r > r∗ := 2N−1

2(N−1) ,[
1, 2N2

−N
2N2−4N+1

)
, if 1 ≤ r ≤ r∗.

Therefore,

θε,k(·) → θ0ε(·) in Lr̂(Ω) for 1 ≤ r̂ < r, and θε,k(·)⇀ θ0ε(·) in Lr(Ω)

for the given r ∈ (1, N
N−2 ). So, we can suppose that θε,k(·) → θ0ε(·) almost

everywhere in Ω. Hence, in view of the fact that µτ ∈ Cloc(R+), we have

lim inf
k→∞

∫

Ω

|pε,k(x)− σ(θε,k(x))|
2 dx ≥

∫

Ω

|p0ε(x) − σ(θ0ε(x))|
2 dx,

lim inf
k→∞

∫

Ω

|θε,k(x) − θd(x)|
r dx ≥

∫

Ω

|θ0ε(x) − θd(x)|
r dx,

lim inf
k→∞

∫

Ω

|∇θε,k|
̺ dx ≥

∫

Ω

|∇θ0ε |
̺ dx.

As a result, we finally infer

inf
(B,u,θ,p)∈Ξ̂ε

Jε,τ (B, u, θ, p) = lim
k→∞

Jε,τ (Bε,k, uε,k, θε,k, pε,k) ≥ Jε,τ
(
B0

ε , u
0
ε, θ

0
ε , p

0
ε

)
.

Thus,
(
B0

ε , u
0
ε, θ

0
ε , p

0
ε

)
is a solution of the approximated OCP (19)–(23). �

Remark 6 As follows from the proof of Lemma 7 and Theorem 3, the existence
result for approximated OCPs (19)–(23) in the form of Theorem 4 remains valid
even if we omit the condition (23) on the parameters α and β, because in this
case, instead of Theorem 3, we can apply the celebrated div-curl Lemma of Tartar
and Murat (1978).
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4. Asymptotic analysis of the approximated OCP (19)–
(23) as ε → 0

Our main intention in this section is to show that quasi-optimal solutions to
the OCP (1)–(6) can be attained (in some sense) by optimal solutions to the
approximated problems (19)–(23). In order to do it, we do not use the concept
of variational convergence of constrained minimization problems (see Kogut and
Leugering, 2011) but rather apply the direct analysis to the study of asymptotic
behaviour of optimal solutions for OCPs (19)–(23) as ε→ 0.

Proposition 2 Let
{
(B0

ε , u
0
ε, θ

0
ε , p

0
ε) ∈ Ξ̂ε

}
ε>0

be a sequence of optimal solu-

tions to the approximated problems (19)–(23) when the small parameter ε > 0
varies in a strictly decreasing sequence of positive numbers which converges to
0. Assume there exists a constant C∗ > 0 such that

lim sup
ε→0

inf
(B,u,θ,p)∈Ξ̂ε

Jε,τ (B, u, θ, p) ≤ lim sup
ε→0

Jε,τ (B
0
ε , u

0
ε, θ̂

0
ε , p

0
ε) ≤ C∗ < +∞,

(73)

where θ̂0ε ∈ W 1,γ
0 (Ω), γ ∈ [1, N

N−1), is the duality solution to the Dirichlet bound-
ary value problem

− div
(
B0

ε∇θ
)
= |∇u0ε|

p0
ε(x) + ε|∇u0ε|

β in Ω, θ|∂Ω = 0. (74)

Then, there is a subsequence of
{
(B0

ε , u
0
ε, θ

0
ε , p

0
ε)
}
ε>0

, still denoted by the suffix

ε, and distributions B0 ∈ Bad, p
0 ∈ Sad, u

0 ∈W 1,α
0 (Ω; ΓD), and θ0 ∈W 1,̺

0 (Ω),
such that

B0
ε

∗
⇀ B0 in BV (Ω)N×N , u0ε ⇀ u0 in W 1,α

0 (Ω; ΓD), (75)

θ0ε ⇀ θ0 in W 1,̺
0 (Ω), p0ε(·) → p0(·) uniformly on Ω, (76)

‖p0 − σ(θ0)‖L2(Ω) ≤ τ. (77)

Proof Having applied the estimates (44) and (49) to elements of the sequence
of optimal solutions, we obtain

∫

Ω

|∇u0ε|
α dx

by (31)

≤ (1 + |Ω|) ‖∇u0ε‖
α

Lp0ε(·)(Ω)N

by (30)

≤ (1 + |Ω|)

(∫

Ω

|∇u0ε|
p0
ε dx+ 1

)

by (3)

≤ (1 + |Ω|)

(
2α

′+1

∫

Ω

|g|(p
0
ε)

′

dx+ 1

)

≤ (1 + |Ω|)

(
2α

′+1

(∫

Ω

|g|α
′

dx+ |Ω|

)
+ 1

)
, (78)

ε

∫

Ω

|∇u0ε|
β dx ≤ 2α

′+1

(∫

Ω

|g|α
′

dx+ |Ω|

)
. (79)
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Hence, the sequence
{
u0ε

}
ε>0

is relatively compact with respect to the weak

topology of W 1,α
0 (Ω). Therefore, we can suppose that the convergence (75)2 is

valid. Moreover, in view of estimates (78)–(79), it is easy to conclude that the
right-hand side of the equation (74) is L1-bounded. In view of (71), the duality

solution θ̂0ε to this equation is unique and obeying the estimate

‖θ0ε‖W 1,γ
0 (Ω) ≤ C(γ)

∫

Ω

(
|∇u0ε|

p0
ε(x) + ε|∇u0ε|

β
)
dx

by (78)–(79)

≤ C(γ)2α
′+2

(∫

Ω

|g|α
′

dx+ |Ω|

)
. (80)

Since (B0
ε , u

0
ε, θ̂

0
ε , p

0
ε) ∈ Ξ̂ε for all ε > 0, and

Jε,τ (B
0
ε , u

0
ε, θ

0
ε , p

0
ε) ≤ Jε,τ (B

0
ε , u

0
ε, θ̂

0
ε , p

0
ε), (81)

it follows from (73) that the sequence
{
θ0ε
}
ε→0

is bounded in W 1,̺
0 (Ω). Indeed,

relations (80)–(81) and Hölder inequality imply that

ε‖θ0ε‖
̺

W 1,̺
0 (Ω)

≤ ε‖θ̂0ε‖
̺

W 1,̺
0 (Ω)

≤ Cε‖θ̂0ε‖
̺

W 1,γ
0 (Ω)

by (80)
< +∞.

Thus, supε>0 ‖θ
0
ε‖W 1,̺

0 (Ω) < +∞ and, hence, there exists a distribution θ0 ∈

W 1,̺
0 (Ω) and a subsequence of

{
θ0ε
}
ε→0

, still denoted by the same index, such
that the property (76)1 holds true. Therefore, up to a subsequence, we have the
pointwise convergence

σ(θ0ε) → σ(θ0) a.e. in Ω as ε→ 0. (82)

By Lemma 4, the family {pε,k}k∈N
⊂ Sad is relatively compact in C(Ω). Hence,

there exists an element p0 ∈ Sad such that, up to a subsequence, p0ε → p0 uni-
formly in Ω and, in view of (82), the sequence

{
p0ε − σ(θ0ε )

}
ε>0

weakly converges

in L2(Ω) to p0 − σ(θ0) as ε→ 0. Taking this fact into account, we have

lim inf
ε→0

‖p0ε − σ(θ0ε)‖
2
L2(Ω) ≥ ‖p0 − σ(θ0)‖2L2(Ω). (83)

At the same time, the condition (73) implies that

µτ

(∫

Ω

|p0ε(x)− σ(θ0ε(x))|
2 dx

)
≤ εC∗. (84)

Hence, ‖p0ε−σ(θ
0
ε)‖L2(Ω) ≤ τ for ε small enough. Combining this fact with (83),

we arrive at the desired property (77).
It remains to note that the existence of a matrix B0 ∈ Bad with property

(75)1 is a direct consequence of Proposition 1. �

The next step of our analysis is to show that the tuple
(
B0, u0, θ0, p0

)
is a

quasi-feasible point to the original OCP (1)–(6).
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Proposition 3 Assume the condition (73) holds. Let
(
B0, u0, θ0, p0

)
∈

BV (Ω)N×N × W 1,β
0 (Ω; ΓD) × W 1,̺

0 (Ω) × Sad be a cluster tuple (in the
sense of convergence (75)–(76)) of a given sequence of optimal solutions{
(B0

ε , u
0
ε, θ

0
ε , p

0
ε) ∈ Ξ̂ε

}
ε>0

. Then,
(
B0, u0, θ0, p0

)
is an element of Ξ̂0(τ) and

∫

Ω

|∇u0ε|
p0
ε dx+ ε

∫

Ω

|∇u0ε|
β dx→

∫

Ω

|∇u0|p
0

dx, (85)

∫

Ω

|∇u0|p
0

dx =

∫

Ω

(
g,∇u0

)
RN dx, (86)

u0 ∈ H
1,p0(·)
0 (Ω; ΓD) is the unique H-variational solution of the Dirichlet-

Neumann problem

div
(
|∇u|p

0
−2∇u

)
= div g in Ω, u = 0 on ΓD, |∇u|p

0
−2∂νu = 0 on ΓN ,

(87)

and θ0 ∈ W 1,̺
0 (Ω) is a distributional solution to the Dirichlet problem with

L1-data

− div
(
B0∇θ

)
= |∇u0|p

0

in Ω, θ|∂Ω = 0. (88)

Proof In order to conclude the energy equality (86), we apply the following
reasoning. At the first step, let us show that distribution u0 is a weak solution
to the problem (87). With that in mind we have to pass to the limit as ε → 0
in integral identity

∫

Ω

(
|∇u0ε|

p0
ε(x)−2∇u0ε + ε|∇u0ε|

β−2∇u0ε,∇ϕ
)
RN

dx

=

∫

Ω

(g,∇ϕ)
RN dx, (89)

where ϕ ∈ C∞

0 (Ω).

Taking into account the estimate (79), we see that the sequence{
ε|∇u0ε|

β−2∇u0ε
}
ε>0

is bounded in Lβ′

(Ω)N , and, in addition, for any vector-

valued function ψ ∈ C∞

0 (Ω)N , we have (see Lemma 3.8 in Zhikov, 2011)

∫

Ω

(
ε|∇u0ε|

β−2∇u0ε, ψ
)
RN dx ≤

ε

∫

Ω

|∇u0ε|
β−1|ψ| dx ≤ ε

(∫

Ω

|∇u0ε|
β dx

)1/β′

‖ψ‖Lβ(Ω)N

≤ ε
1− 1

β′

(
ε

∫

Ω

|∇u0ε|
β dx

)1/β′

‖ψ‖Lβ(Ω)N

by (79)

≤ Cε
1− 1

β′ → 0.
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Hence,

ε|∇u0ε|
β−2∇u0ε ⇀ 0 in Lβ′

(Ω)N . (90)

It remains to show the weak convergence of fluxes to a flux:

|∇u0ε|
p0
ε−2∇u0ε ⇀ |∇u0|p

0
−2∇u0 in Lβ′

(Ω)N . (91)

Since αN
N−α < α(N−1)

N−1−α , u
0
ε ⇀ u0 in W 1,α

0 (Ω; ΓD),

∫

Ω

(
|∇u0ε|

p0
ε−1

)β′

dx

by (54)

≤ (1 + |Ω|)

(∫

Ω

|∇u0ε|
p0
ε dx+ 1

)

by (3)

≤ (1 + |Ω|)

(
2α

′+1

(∫

Ω

|g|α
′

dx + |Ω|

)
+ 1

)
< +∞,

and the sequence
{
|∇u0ε|

p0
ε

}
ε>0

is L1-bounded (see estimate (49)), the conver-

gence property of fluxes (91) follows from Theorem 3. Thus, in view of the
properties (90)–(91), the limit passage in (4) as ε→ 0 immediately leads to the
relation

∫

Ω

(
|∇u0|p

0
−2∇u0,∇ϕ

)
RN

dx =

∫

Ω

(g,∇ϕ)
RN dx, ∀ϕ ∈ C∞

0 (Ω; ΓD). (92)

Since the inclusion u0 ∈W
1,p0(·)
0 (Ω; ΓD) is guaranteed by Lemma 2 and conver-

gence (75)2, it follows that u
0 is a weak solution to the boundary value problem

(87).

Taking into account the fact that u0 ∈ W
1,p0(·)
0 (Ω; ΓD) and ω(t) =

k0/ log(|t|−1) is a modulus of continuity of the exponent p0 ∈ Sad, it fol-

lows that the set C∞

0 (Ω) is dense in W
1,p0(·)
0 (Ω; ΓD) (see Theorem 13.10 in

Zhikov, 2011). Hence, we can consider ϕ = u0 in the identity (92) as
a test function. As a result, we arrive at the energy equality (86). The

fact that u0 ∈ W
1,p0(·)
0 (Ω) is the unique variational solution to the Dirichlet

problem (87) follows from the strict monotonicity of the nonlinear operator

Ap0 :W
1,p0(·)
0 (Ω; ΓD) →

(
W

1,p0(·)
0 (Ω; ΓD)

)∗

given by the equality (12).

As for the property (85), we have

lim
ε→0

(∫

Ω

|∇u0ε|
p0
ε dx+ ε

∫

Ω

|∇u0ε|
β dx

)
by (4)
= lim

ε→0

(∫

Ω

(
g,∇u0ε

)
RN dx

)

by (75)2
=

∫

Ω

(
g,∇u0

)
RN dx

by (86)
=

∫

Ω

|∇u0|p
0

dx.

It remains to establish the relation (88). To this end, we have to pass to the
limit in the integral identity (72) as ε → 0. By Sobolev Embedding Theorem,
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the conditions (6) and the weak convergence (75)2 imply the strong convergence
u0ε → u0 in Lβ(Ω). Combining this fact with the properties (90) and (91), we
obtain

∫

Ω

(
|∇u0ε|

p0
ε−2∇u0ε + ε|∇u0ε|

β−2∇u0ε,∇ϕ
)
RN

dx

→

∫

Ω

(
|∇u0|p

0
−2∇u0,∇ϕ

)
RN

dx,

∫

Ω

(
g,∇u0ε

)
RN dx→

∫

Ω

(
g,∇u0

)
RN dx,

and B0
ε∇θ

0
ε ⇀ B0∇θ0 in L1(Ω)N by Lemma 9. Thus, the limit passage in (72)

leads to the equality

− div
(
B0∇θ0

)
= div

[(
|∇u0|p

0
−2∇u0 − g

)
u0

]
+
(
g,∇u0

)
RN in D′(Ω). (93)

Since the set C∞

0 (Ω; ΓD) is dense in W
1,p0(·)
0 (Ω; ΓD), we can apply the transfor-

mations that we used in Lemma 3, to show that

div
[(

|∇u0|p
0
−2∇u0 − g

)
u0

]
+
(
g,∇u0

)
RN = |∇u0|p

0

in the sense of distributions. Thus, θ0 ∈ W 1,̺
0 (Ω) is a duality solution to the

boundary value problem (88). �

Proposition 4 Let τ ≥
√
|Ω|(β − α). Then, there exists a constant C∗ > 0

such that estimate (73) holds true.

Proof For an arbitrary ξ ∈ [m1,m2], we set B̂(·) = ξI. Then, due to the fixed
point principle, by analogy with Zhikov (2011) (see p.495), it can be shown that
the system

div
(
|∇u|σ(θ)−2∇u+ ε|∇u|β−2∇u

)
= div g in Ω, (94)

u = 0 on ΓD,
[
|∇u|σ(θ)−2 + ε|∇u|β−2

]
∂νu = 0 on ΓN , (95)

− ξ div (∇θ) = |∇u|σ(θ) + ε|∇u|β in Ω, θ|∂Ω = 0 (96)

has at least one solution (uε, θε) ∈ W 1,β
0 (Ω; ΓD) ×

(
W 2,1+δ(Ω) ∩W 1,1+δ

0 (Ω)
)

for all ε > 0 with some positive δ > 0. Moreover, there exists a constant C > 0
such that

sup
ε>0

‖uε‖W 1,α
0 (Ω;ΓD) ≤ C, sup

ε>0
‖θε‖W 2,1+δ(Ω) ≤ C for some δ > 0, and

uε ⇀ u in W 1,α
0 (Ω; ΓD) and θε ⇀ θ in W 2,1+δ(Ω) as ε→ 0, (97)
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where (u, θ) satisfies (in the sense of distributions) the following relations

div
(
|∇u|σ(θ)−2∇u

)
= div g,

u = 0 on ΓD, |∇u|σ(θ)−2∂νu = 0 on ΓN ,

−ξ div (∇θ) = div
[(

|∇u|σ(θ)−2∇u − g
)
u
]
+ (g,∇u)

RN .

We set p̂ε,λ = Tλ(σ(θε)), where Tλ are smoothing operators, satisfying the
properties

Tλ(σ(θε)) → σ(θε) in L2(Ω) as λ→ 0, (98)

α ≤ Tλ(σ(θε)) ≤ β, Tλ(σ(θε)) ∈ C1
loc(R)

∀ ε ∈ (0, λ(ε)) with some λ(ε) > 0. (99)

As an example of such operators, we can take the following one

Tλ(σ(θε)) = max {α,min {σ(θε) ∗ ρλ, β}} ,

where {ρλ}λ>0 is any rescaled family of smooth mollifiers such that supp ρλ ∈
B(0, λ).

Let (ûε,λ(ε), θ̂ε,λ(ε)) ∈W 1,β
0 (Ω; ΓD)×W 1,1+δ

0 (Ω) be a unique solution to the
system

div
(
|∇u|pε,λ(ε)(x)−2∇u+ ε|∇u|β−2∇u

)
= div g in Ω, (100)

u = 0 on ΓD,
[
|∇u|pε,λ(ε)(x)−2 + ε|∇u|β−2

]
∂νu = 0 on ΓN , (101)

− ξ div (∇θ) = |∇u|pε,λ(ε)(x) in Ω, θ|∂Ω = 0 (102)

(here, we consider θ̂ε,λ(ε) as the duality solution of (102), for the details we refer
to the proof of Lemma 3).

We note that, in view of the estimate (14), the sequence
{
θ̂ε,λ(ε)

}
ε>0

is

bounded in W 1,γ
0 (Ω) for all γ ∈ [1, N

N−1 ). Since

|∇ûε,λ(ε)|
p̂ε,λ(ε) =

= div
[(

|∇ûε,λ(ε)|
p̂ε,λ(ε)−2∇ûε,λ(ε) + ε|∇ûε,λ(ε)|

β−2∇ûε,λ(ε) − g
)
ûε,λ(ε)

]

+
(
g,∇ûε,λ(ε)

)
RN

in the sense of distributions (see Lemma 10), it follows that(
B̂, ûε,λ(ε), θ̂ε,λ(ε), p̂ε,λ(ε)

)
∈ Ξ̂ε for all ε > 0. Then, by Lemmas 8, 9, and 10

and definition of the set Bad, the sequence
{(
B̂, ûε,λ(ε), θ̂ε,λ(ε), p̂ε,λ(ε)

)}
ε>0

is

bounded in BV (Ω)N×N ×W 1,α
0 (Ω; ΓD)×W 1,γ

0 (Ω)× C(Ω) and

‖p̂ε,λ(ε) − σ(θ̂ε,λ(ε))‖L2(Ω) ≤ (β − α)
√
|Ω| ∀ ε > 0.
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Since τ ≥ (β − α)
√

|Ω| and supε>0 ‖θ̂ε,λ(ε)‖Lr(Ω) < +∞, it follows from defini-
tion of the function µτ that

lim sup
ε→0

inf
(B,u,θ,p)∈Ξ̂ε

Jε,τ (B, u, θ, p) ≤ lim sup
ε→0

Jε,τ

(
B̂, ûε,λ(ε), θ̂ε,λ(ε), p̂ε,λ(ε)

)

= lim sup
ε→0

∫

Ω

|θ̂ε,λ(ε)(x) − θd(x)|
r dx < +∞

provided the exponent γ ∈
[
1, N

N−1

)
was chosen as follows: γ = Nr

N+r . �

Summing up Propositions 2 and 3, we are led to the following conclusion:
the fulfilment of (73) or τ ≥ (β−α)

√
|Ω| suffices to claim that any cluster tuple

(in the context of convergence (75)–(76)) of the sequence of optimal solutions{
(B0

ε , u
0
ε, θ

0
ε , p

0
ε) ∈ Ξ̂ε

}
ε>0

is a quasi-feasible point to the original OCP (1)–(6).

We are now in a position to prove our main result.

Theorem 5 Let
{
(B0

ε , u
0
ε, θ

0
ε , p

0
ε) ∈ Ξ̂ε

}
ε>0

be an arbitrary sequence of optimal

solutions to the approximated problems (19)–(23). If the condition (73) holds
true, then any cluster tuple

(
B0, u0, θ0, p0

)
is a quasi-optimal solution of the

OCP (1)–(6). Moreover, in this case the following variational property holds

lim
ε→0

inf
(B,u,θ,p)∈Ξ̂ε

Jε,τ (B, u, θ, p) = J
(
B0, u0, θ0, p0

)
= inf

(B,u,θ,p)∈Ξ̂0(τ)
J(B, u, θ, p).

(103)

Proof As follows from Propositions 2–4, the set of feasible points Ξ̂0(τ) is

nonempty. Let us assume that there exists a tuple
(
B̂, û, θ̂, p̂

)
in Ξ̂0(τ) such

that

J
(
B̂, û, θ̂, p̂

)
< J

(
B0, u0, θ0, p0

)
. (104)

By the definition of the set Ξ̂0(τ), we have B̂ ∈ Bad, p̂ ∈ Sad, and ‖p̂ −

σ(θ̂)‖L2(Ω) ≤ τ . We define the sequence
{
(B̂ε, ûε, θ̂ε, p̂ε)

}
ε>0

as follows

p̂ε → p̂ in C(Ω) as ε→ 0,

B̂ε ≡ B̂, and p̂ε ∈ Sad ∀ ε > 0,

‖p̂ε − σ(θ̂)‖L2(Ω) ≤ τ +
ε2

2
for ε ∈ (0, τ) small enough, (105)

and each of the pairs (ûε, θ̂ε) is a weak solution to the boundary value prob-

lems (20)–(22) with B = B̂ε and p = p̂ε, and such that θ̂ε is the duality so-
lution of (22). Since each of these problems admits the unique solution in
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W 1,β
0 (Ω; ΓD) ×W 1,γ

0 (Ω), satisfying the a priori estimates (44) and (71), it fol-

lows that the tuples (B̂ε, ûε, θ̂ε, p̂ε) are feasible points to the corresponding ap-

proximated OCPs (19)–(23), i.e. (B̂ε, ûε, θ̂ε, p̂ε) ∈ Ξ̂ε for all ε > 0. Moreover,
in view of Remark 3 and the estimates

‖ûε‖
α
W 1,α

0 (Ω)

by (31), (30)

≤ (1 + |Ω|)

(∫

Ω

|∇ûε|
p̂ε dx + 1

)

by (49)

≤ (1 + |Ω|)

(
2α

′+1

(∫

Ω

|g|α
′

dx+ |Ω|

)
+ 1

)
,

‖θ̂ε‖W 1,γ
0 (Ω)

by (44), (71)

≤ C(δ)2α
′+1

(∫

Ω

|g|α
′

dx+ |Ω|

)
,

‖θ̂ε‖W 1,̺
0 (Ω)

by Höder ineq.

≤ C‖θ̂ε‖W 1,γ
0 (Ω) < +∞, ∀ γ ≥ ̺, (106)

the sequence
{
(ûε, θ̂ε)

}
ε>0

is bounded inW 1,α
0 (Ω; ΓD)×W 1,γ

0 (Ω) for some δ > 0.

Hence, by analogy with Propositions 2 and 3, it can be shown that

ûε ⇀ û in W 1,α
0 (Ω; ΓD) and θ̂ε ⇀ θ̂ in W 1,γ

0 (Ω), (107)

where (û, θ̂) is a weak solution to the boundary value problem (2)–(3) with p = p̂.
Since the weak solution of this problem is unique (by the strict monotonicity
and the log-Hölder continuity of the exponent p̂ ) it is not necessary to pass to a
subsequence in (107). At the same time, since the embeddingW 1,γ(Ω) →֒ Lγ(Ω)

is compact, we can suppose that there exists a subsequence
{
θ̂δ(ε)

}
δ(ε)>0

of
{
θ̂ε

}
ε>0

such that δ(ε) → 0 as ε→ 0, δ(ε) ≤ ε, and θ̂δ(ε) → θ̂ almost everywhere

in Ω. Hence, by the boundedness of the sequence
{
σ(θ̂ε)

}
ε>0

and the Lebesgue

theorem, we can suppose that σ(θ̂δ(ε)) → σ(θ̂) strongly in L2(Ω) as ε→ 0 and

‖σ(θ̂δ(ε))− σ(θ̂)‖L2(Ω) ≤
ε2

2
for ε small enough. (108)

As a result, (105) and (108) imply that

‖p̂δ(ε) − σ(θ̂δ(ε))‖L2(Ω) ≤ ‖p̂δ(ε) − σ(θ̂)‖L2(Ω) + ‖σ(θ̂δ(ε))− σ(θ̂)‖L2(Ω)

≤ τ + δ(ε)2 ≤ τ + ε2

for ε small enough. Hence, there exists ε0 > 0 such that

0 ≤ µτ

(∫

Ω

|p̂δ(ε)(x) − σ(θ̂δ(ε)(x))|
2 dx

)
≤ ε2, ∀ ε ∈ (0, ε0). (109)
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Taking this fact into account, we get

J
(
B0, u0, θ0, p0

)

by (76)
= lim inf

ε→0

∫

Ω

|θ0ε(x)− θd(x)|
r dx ≤ lim inf

ε→0
Jε,τ

(
B0

ε , u
0
ε, θ

0
ε , p

0
ε

)

= lim inf
ε→0

inf
(B,u,θ,p)∈Ξ̂ε

Jε,τ (B, u, θ, p) ≤ lim inf
ε→0

Jε,τ

(
B̂δ(ε), ûδ(ε), θ̂δ(ε), p̂δ(ε)

)

= lim inf
ε→0

J
(
B̂δ(ε), ûδ(ε), θ̂δ(ε), p̂δ(ε)

)
+ lim

ε→0

1

ε
µτ

(∫

Ω

|p̂δ(ε) − σ(θ̂δ(ε))|
2dx

)

+ lim
ε→0

ε

∫

Ω

|∇θ̂δ(ε)|
̺ dx

by (106)
= J

(
B̂, û, θ̂, p̂

)
. (110)

Having come into conflict with (104), we conclude: relation (110) holds true
only as an equality, which immediately yields (103). Thus,

(
B0, u0, θ0, p0

)
is a

quasi-optimal solution of the OCP (1)–(6). �

It remains to discuss the question as to the optimal solutions to the OCP
(1)–(6) in the sense of Definition 3. As follows from Theorem 5, it suffices to
show that Ξ0 6= ∅ and consider, instead of the approximated problems (19)–(23),
the following ones (with τ = ε in the approximation cost functional)

Minimize Jε(B, u, θ, p) =

∫

Ω

|θ(x) − θd(x)|
r dx+ ε

∫

Ω

|∇θ|̺ dx

+
1

ε
µε

(∫

Ω

|p(x)− σ(θ(x))|2 dx

)

subject to the constraints (20)–(23).

(111)

In effect, the validity of the main Theorem 1 immediately results from the
following result.

Theorem 6 Let Ω be an open bounded domain in R
N with a sufficiently smooth

boundary. Assume that Ξ̂0(τ) 6= ∅ for τ = 0, i.e. there exist a matrix B̂ ∈
Bad, an exponent p̂ ∈ Sad, and a weak solution to the thermistor problem

(1)–(6) (û, θ̂) ∈ W
1,σ(θ̂(·))
0 (Ω; ΓD) ×W 1,γ

0 (Ω) with B(·) = B̂(·) such that θ̂ is

the duality solution to (3) and p̂ = σ(θ̂) almost everywhere in Ω. Then, the
OCP (1)–(6) has a non-empty set of optimal solutions and some of them can
be attained (in the sense of convergence (75)–(76)) by solutions (B0

ε , u
0
ε, θ

0
ε , p

0
ε)

to the approximated problem (111).

Proof To begin with, let us note that, in view of the initial assumptions and
Remarks 3 and 4, the set Ξ0, given by (15), is nonempty. To get the solvability
of the original OCP (1)–(6), we pass to its perturbation in the form of the family
of approximated problems (111). Due to Theorem 4, each of the problems (111)
has a nonempty set of solutions. Let (B0

ε , u
0
ε, θ

0
ε , p

0
ε) be optimal tuples to the

approximated problems (111). As follows from Proposition 2, compactness of
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this sequence with respect to the convergence (75)–(76) can be guaranteed by
the condition (73). In order to demonstrate that the estimate (73) holds true
with some C∗ > 0, we will closely follow the proof-line of Theorem 5. As a

result, a sequence
{
(B̂ε, ûε, θ̂ε, p̂ε) ∈ Ξ̂ε

}
ε>0

can be constructed such that

p̂ε → p̂ in C(Ω) as ε→ 0, B̂ε ≡ B̂, and p̂ε ∈ Sad ∀ ε > 0,

‖p̂ε − σ(θ̂)‖L2(Ω) ≤ ε/2 for ε > 0 small enough,

ûε ⇀ û in W 1,α
0 (Ω; ΓD) and θ̂ε ⇀ θ̂ in W 1,γ

0 (Ω),

σ(θ̂ε) → σ(θ̂) strongly in L2(Ω) as ε→ 0.

Hence, by applying the arguments, having been used by us before in the proof of
Theorem 5, we can conclude that there exists ε0 > 0 and a subsequence {δ(ε)}
of {ε} such that

‖σ(θ̂δ(ε))− σ(θ̂)‖L2(Ω) ≤
ε

2

for all ε < ε0

and

‖p̂δ(ε) − σ(θ̂δ(ε))‖L2(Ω) ≤ ‖p̂δ(ε) − σ(θ̂)‖L2(Ω) + ‖σ(θ̂δ(ε))− σ(θ̂)‖L2(Ω) ≤
ε

2
+
ε

2
,

∀ ε ∈ (0, ε0).

Therefore,

µδ(ε)

(∫

Ω

|p̂δ(ε)(x) − σ(θ̂δ(ε)(x))|
2 dx

)
= 0, ∀ ε ∈ (0, ε0). (112)

Thus,

lim sup
ε→0

inf
(B,u,θ,p)∈Ξ̂δ(ε)

Jδ(ε)(B, u, θ, p)

≤ lim sup
ε→0

Jδ(ε)(B̂δ(ε), ûδ(ε), θ̂δ(ε), p̂δ(ε))

= lim sup
ε→0

∫

Ω

|θ̂δ(ε) − θd|
r dx = C∗ < +∞.

As a result, Propositions 2 and 3 imply the existence of a cluster tuple

(
B0, u0, θ0, p0

)
∈ BV (Ω)N×N ×W 1,β

0 (Ω; ΓD)×W 1,γ
0 (Ω)×Sad,

with γ = Nr
N+r , of the sequence

{
(B̂ε, ûε, θ̂ε, p̂ε)

}
ε>0

in the sense of convergence
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(75)–(76), such that (see (104) and (110))

J
(
B0, u0, θ0, p0

)
= lim inf

ε→0

∫

Ω

|θ0ε − θd|
r dx = lim inf

ε→0

∫

Ω

|θ0δ(ε) − θd|
r dx

= lim inf
ε→0

Jδ(ε)

(
B0

δ(ε), u
0
δ(ε), θ

0
δ(ε), p

0
δ(ε)

)

= lim inf
ε→0

inf
(B,u,θ,p)∈Ξ̂δ(ε)

Jδ(ε) (B, u, θ, p)

≥ lim inf
ε→0

inf
(B,u,θ,p)∈Ξ̂ε

Jε (B, u, θ, p)

≥ lim inf
ε→0

∫

Ω

|θ0ε − θd|
r dx = J

(
B0, u0, θ0, p0

)
.

Taking into account the strong convergence p̂δ(ε) → p̂ = σ(θ̂) in C(Ω), we finally

deduce that
(
B0, u0, θ0, p0

)
∈ Ξ0. In order to show that

(
B0, u0, θ0, p0

)
is an

optimal solution to the original problem, we can assume the converse statement
and apply the arguments of the proof of Theorem 5. �

Remark 7 As for the fulfilment of the conditions of Theorem 6, we make use
of the following observation. Assume that N = 2 or N = 3, the constant m2

in the definition of the class of admissible controls (5) is large enough, and the
function σ is Lipschitz continuous on [0,∞), i.e. |σ(s) − σ(s′)| ≤ m|s − s′|.
Then, there exists a value ξ ∈ [m1,m2] such that (see, for instance, Zhikov,

1997, 2008a) a unique solution (u(B), θ(B)) ∈ H
1,σ(θ(B))
0 (Ω; ΓD) ×W 1,γ

0 (Ω) to
the thermistor problem (2)–(4) is such that

σ(θ(B)) ∈W 1,γ(Ω), for some γ > N and

∫

Ω

|∇u(B)|
Nσ(θ(B))

N−2 dx < +∞

for all matrices B = ξ̂I ∈ Bad, where ξ̂ ∈ [ξ,m2]. Hence, by Sobolev embedding
theorem, we can conclude that: p := σ(θ(B)) ∈ W 1,γ(Ω) is Hölder continuous
in Ω and, hence, p has a logarithmic modulus of continuity. So, p ∈ Sad and,
therefore, Ξ0 6= ∅. Thus, the OCP (1)–(6) admits at least one solution by
Theorem 6.

We also note that without the assumption of large constant m2, the existence
of weak solutions to the thermistor boundary value problem (2)–(4) with any

matrix B = ξ̂I ∈ Bad, ξ̂ ∈ [m1,m2], and any Lipschitz continuous function σ,
has been proved only in the one-dimensional case (see Zhikov, 2008a). Hence,
if N = 1 then all conditions of Theorem 6 are satisfied and, therefore, the
corresponding OCP (1)–(6) is solvable.

There stands separately the special case of the thermistor problem with α = β.
Following the fixed point principle, it can be proven that for any admissible
matrix-valued control B ∈ Bad, the system (2)–(4) has at last one solution

(u, θ) ∈ W 1,α+δ
0 (Ω; ΓD)×

[
W 1,1+δ

0 (Ω) ∩W 2,1+δ(Ω)
]
, for some δ > 0, in domain

Ω with a sufficiently smooth boundary (see p.494 in Zhikov, 2011). Moreover,
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in this case u ∈ H
1,p(·)
0 (Ω; ΓD) and the equation (3) holds almost everywhere

in Ω. As a result, we have: the tuple (B, u, θ, σ), with σ(θ) = α, is a feasible
solution to the OCP (1)–(6) and, therefore, Theorem 6 leads to the solvability
of the OCP (1)–(6).

In the general case, the question of non-emptiness of the set of feasible so-
lutions Ξ0 to the OCP (1)–(6) remains open even for the smooth functions σ
and homogeneous Dirichlet boundary conditions (ΓN = ∅). At the same time,
if we consider, instead of equation (3), its relaxation in the form (24), The-
orem 7.2 from Zhikov (2011) says that the relaxed version of the thermistor

problem (2), (4), (24) admits a solution (u, θ) ∈ W
1,σ(θ(B))
0 (Ω) ×W 1,γ

0 (Ω) for
any γ ∈ [1, N

N−1 ), B ∈ Bad, and any continuous function σ(θ), satisfying the

condition (6) with β < +∞ if α ≥ N − 1, and β < α(N−1)
N−1−α if α < N − 1.

Moreover, in this case we have u ∈ W 1,α
0 (Ω). However, as it was mentioned

in Remark 2, in this case the inclusion u ∈ H
1,p(·)
0 (Ω) is by no means obvious.

In order to circumvent this artefact, we can apply Theorem 7.2 from Zhikov
(2011) to a function σ(θ) that has a logarithmic modulus of continuity. Then,

W
1,p(·)
0 (Ω) = H

1,p(·)
0 (Ω) with p := σ(θ(B)), i.e. the H-solution coincides with

the W -solution, and, therefore, the tuple (B, u, θ, σ) is a feasible solution to the
modified OCP (1), (2), (24), (4), (6) for any admissible control B ∈ Bad. Thus,
its solvability can be established by analogy with Theorem 6.

5. Conclusion

Thermistor, as a generic name of a device that is made from materials whose
electrical conductivity is highly dependent on temperature, is often used as tem-
perature control element in a wide variety of military and industrial equipment
ranging from space vehicles to the air conditioning controllers. It is well known
that the large temperature gradients may cause thermistor to crack. Numerical
experiences (see, for instance, Fowler, Frigaard and Howison, 1992; Zhou and
Westbrook, 1997) indicate that the boundary value problem (2)–(4) is rather
sensitive to the choice of a source function div g, the type of boundary conditions
in (2), and magnitude of the heat conductivity, given by the matrix B = B(x).

In spite of the fact that theoretical analysis of the thermistor equations
with different types of boundary conditions has received a significant amount of
attention, there are only optimal control papers on the thermistor problem (see
Introduction) where either the source or the heat transfer coefficient in Robin
boundary conditions are taken to be the control. This circumstance stimulated
us to bring into consideration the optimization problem (1)–(6) with controls in
coefficients of the elliptic operator div (B(x)∇ θ(x)). From this point of view,
we deal with a material (or topology) optimization problem for an ill-posed
nonlinear elliptic system, and there are two main sources of concern that make
the analysis of optimization problem (1)–(6) nontrivial and rather complicate:
the first one comes from nonlinearity of the state equations (2)–(3), and the
second issue is related to the point-wise constraint (4).
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The main idea that has been pushed forward in this paper (see Remark 2),
is to free the original problem from having to deal with difficult constraints. In
particular, we allow for a certain flexibility in dealing with the state restriction
p(·) = σ(θ(·)), in the sense that this equality between the function p(·) as
a fictitious control and the temperature variable θ(·) can be interpreted with
some accuracy and the indicated pairs can run freely in their respective sets of
feasibility. Properly speaking, a similar idea was recently promoted in a very
interesting paper of P. Pedregal (2019), where the author not only allows for a
bit of flexibility in the interpretation of state-equality constraints, but it is also
proposed to estimate the corresponding ’defect’ by introducing an additional
variable in a collection of approximated problems. We sincerely hope that this
idea can be leveraged for the deriving and substantiation of optimality condition
for the thermistor problem (1)–(6).
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Fowler, A.Ċ., Frigaard, I. and Howison, S.D. (1992) Temperature
surges in current-limiting circuit devices. SIAM J. on Applied Mathemat-
ics 52, 998–1011.

Giusti, E. (1984) Minimal Surfaces and Functions of Bounded Variation.
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