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Abstract: The paper studies convergence of the Monotone Struc-
tural Evolution (MSE), a computational method of optimal control.
The principles of MSE are described and an expository example
presents the method in action. It is then proved that under appro-
priate assumptions the method is convergent to the decision space
stationarity conditions. Observations on finite convergence and on
connections with Pontryagin’s maximum principle are also provided.
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1. Introduction

The method of Monotone Structural Evolution (MSE, see Szymkat and Ko-
rytowski, 2003, 2007, Korytowski and Szymkat, 2010) is a direct method for
solving numerically the optimal control problems. In the MSE algorithms, the
controls are constructed by concatenation of arcs of special functions (so-called
control procedures) taken from a predetermined finite set, the stock. The se-
quence of procedures composing a control is its structure. The length and
contents of the control structure, the parameters of the procedures and the
switching times are decision variables. The search for optimum consists of pe-
riods of gradient optimization with respect to the parameters and switching
times, each period in a fixed decision space with constant dimension, separated
by discrete changes of that space, called structural changes. The distinctive fea-
tures of the MSE lie in the algorithms of the discrete part of the method, and
in the construction of the stock. In every structural change, a new sequence of
procedures composing the control is created, in such a way that the control does
not change as a function of time. In consequence, the cost functional monotoni-
cally decreases in the course of computations. Special structural changes called
generations are used to enrich the decision space of gradient optimization. Their
purpose is to revive the search for minimum when it becomes inefficient, and
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the current approximation of problem solution does not satisfy the necessary
optimality conditions of Pontryagin’s maximum principle. In combination with
reductions, that is, structural changes, in which control structures (together with
the decision space of gradient optimization) are simplified by eliminating their
unpromising elements, the generations allow for an effective search for optimal
structures.

The principal goal of this paper is to prove convergence to appropriately
defined stationarity conditions for two simple versions of the MSE. The idea of
the main theorem and its proof are patterned after a paper by Axelsson et al.
(2008), concerning hybrid systems. This transfer of ideas was possible, because
optimization in an auxiliary switched system plays a fundamental part in the
MSE. Besides modifications, resulting from adapting the proof to the control
theory setting and the MSE method, it was necessary to rectify some obscurities
in the original reasoning, in particular in the proofs of Lemmas 4.6 and 4.7.

The paper begins with problem formulation and a presentation of the el-
ements of the MSE. Then follow the basic MSE algorithm and an expository
example of minimizing fuel consumption in car control, which shows the method
in action. This example illustrates the rare property of the MSE that, unlike
other computational methods, it can find the optimal control structure in a
finite number of steps. Next, convergence of the basic algorithm to decision sta-
tionarity is proved under rather restrictive assumptions. A stronger theorem on
infinite convergence to stationarity conditions is formulated for the MSE algo-
rithm equipped with an Armijo-type linesearch procedure. Its proof constitutes
the main result of the article. Three further examples illustrate various infinite
convergence issues of the method. Observations on finite convergence and re-
lationships between the MSE decision stationarity and the maximum principle
complete the paper.

Consider the control system described by a state equation

ẋ(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = x0, (1)

where x(t) ∈ Rn, and the control u takes values in Rm. A cost functional

Q(u) = q(x(T ))

is minimized on the trajectories of (1) subject to the condition that the control
is a piecewise continuous function u : [0, T ] → U , where U is a given nonempty
set in Rm. The initial state x0 and the horizon T are fixed. The function f is
continuous in its both arguments, differentiable in the first argument, and the
derivative ∂xf is continuous in its both arguments. The function q is continu-
ously differentiable.

2. Elements of the MSE

We begin with some basic concepts of the MSE. The control procedures are
appropriately regular functions P : [0, T ] × Rn × Π(P ) → U , where Rn is
interpreted as the state space, Π(P ) ⊂ Rµ (P ) is the set of admissible values
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of the procedure parameter, and µ(P ) denotes the dimension of the parameter.
The stock Ξ is a predetermined, finite and nonempty set of such procedures.
For an arbitrary sequence ζ, let l(ζ) denote its length. Any finite and nonempty
sequence S = (S1, ..., Sl(S)) ∈ Ξl(S) is called a control structure. For any positive
integer κ, Θκ denotes the set of all real sequences τ = (τ0, τ1, ..., τκ) satisfying
0 = τ0 ≤ τ1 ≤ ... ≤ τκ = T . A decision is defined as a triple ξ = (S, τ, π),
where S is the decision control structure, S ∈ Ξl(S), τ ∈ Θl(S), and π ∈ ΠS is
the decision parameter, where

ΠS = {π = (π1, ..., πl(S)) : πi ∈ Π(Si), i = 1, ..., l(S)}.

The terms of the sequence τ are called structural nodes. The length of the de-
cision ξ is defined by N(ξ) = l(S). To each decision ξ = (S, τ, π), a control
uξ and a state trajectory xξ induced by that decision are assigned, uξ(t) =
Si(t, xξ(t), πi), t ∈ [τi−1, τi[, i = 1, ..., N(ξ), and xξ is the solution of (1) pro-
duced by uξ. Decisions are equivalent, if they induce the same control. The
induced cost Σ is defined by the equality

Σ(ξ) = Q(uξ).

In the induced optimization problem, the minimum of Σ is sought in the set
of all decisions. A decision ξ̂ is optimal, if Σ(ξ̂) ≤ Σ(ξ) for every decision ξ. If
the number of optimal controls is finite, and each of them may be represented as
a concatenation of a finite number of arcs of appropriately regular functions of
time, state and parameters, it is always possible to choose Ξ so that the induced
problem is equivalent to the original optimal control problem.

For an arbitrary control structure S, let ΩS be the corresponding decision
space of gradient optimization, that is, the set of all decisions of the form ξ =
(S, τ, π) with τ ∈ Θl(S) and π ∈ ΠS . Consider a situation where ξ = (S, τ, π)
is the current approximation of the problem solution. Let ξ̄ = (S̄, τ̄ , π̄) be
another decision, such that S̄ 6= S and uξ̄ = uξ (whence Σ(ξ̄) = Σ(ξ)). The

structural change ξ 7→ ξ̄ denotes the transformation of ξ into ξ̄, together with the
replacement of the decision space ΩS , which contains ξ and in which the gradient
optimization ran immediately before the structural change, by the decision space
ΩS̄ , to which ξ̄ belongs. If ξ̄ does not satisfy the stopping conditions of the
algorithm, the gradient optimization is continued in the new space ΩS̄ , with ξ̄
as the starting point.

To simplify further considerations we shall omit the explicit dependence of
control procedures on time and parameters, and assume that they are functions
P : Rn → U . A decision thus is a pair ξ = (S, τ), where S ∈ ΞN(ξ), τ ∈ ΘN(ξ),
and the control induced by ξ is expressed by the formula uξ(t) = Si(x(t)), for
t ∈ [τi−1, τi[, i = 1, ..., N(ξ), with x being the solution of (1) corresponding to
uξ.

Define the functions fP : Rn → Rn, fP (x) = f(x, P (x)). The state equation
in the induced problem takes the form

ẋ(t) = F (t, x(t)), t ∈ [0, T ], x(0) = x0, (2)
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F (t, x) = fSi
(x), t ∈ [τi−1, τi[, i = 1, ..., N(ξ).

We want all solutions of (2) to be well defined in [0, T ] and uniformly bounded.
More precisely, we make the following assumption, valid throughout the paper.

Assumption 1.

(i) All solutions of the initial value problem (2) are well determined in the whole
time interval [0, T ], and

(ii) there is a compact set B ⊂ Rn, such that all solutions of (2) lie in B and
for every P ∈ Ξ, fP is of class C1 in some neighborhood of B.

A straightforward estimation of solution bounds for (2) yields a sufficient
condition for Assumption 1 to hold.

Lemma 1. Let K0 > 0 be a constant, ρ= exp(K0T ) − 1, and Bρ = {x ∈ Rn :
||x−x0||≤ρ}. Suppose also that for every P ∈Ξ : (i) || fP (x)|| ≤K0(||x−x

0||+1)
∀x ∈ Bρ, and (ii) fP is of class C1 in some neighborhood of Bρ. Assumption 1
is then valid with B = Bρ.

The derivatives of the cost Σ with respect to structural nodes are calculated
with the use of the adjoint final value problem (called induced)

ψ̇(t) = −∂xF (t, x(t))ψ(t), ψ(T ) = −∂q(x(T )). (3)

Lemma 2. There is a constant K1 > 0, such that for every decision ξ the
corresponding solution x of the initial value problem (2), and the corresponding
solution ψ of the final value problem (3) satisfy the following relationships:

(i) ||x ||∞ ≤ K1, ||ψ||∞ ≤ K1

(ii) ||x(t2)−x(t1)|| ≤ K1|t2 − t1|, ||ψ(t2)−ψ(t1)|| ≤ K1|t2 − t1| ∀ t1, t2 ∈ [0, T ].

Here || · ||∞ denotes the norm in L∞.

Lemma 2 is an obvious consequence of Assumption 1 and the classical theo-
rems on ordinary differential equations (see, e.g., Schättler and Ledzewicz, 2012,
Appendix B).

The derivative of the cost Σ with respect to a structural node τi is expressed
by

∂τiΣ(ξ) = ψ(τi)
⊤(fSi+1(x(τi))− fSi

(x(τi))). (4)

Here ξ = (S, τ), 0 < i < N(ξ), τi−1 < τi < τi+1, and x and ψ are the solutions of
(1) and (3), respectively, produced by the induced control uξ. This well known
formula comes from the classical proof of the maximum principle (see Sirisena,
1974, for an early application to gradient optimization, and Osmolovskii and
Maurer, 2012, for more recent employment).

The structural changes used further are limited to spike generations and
reductions. The spike generation is characterized by a function Γ which, given
P ∈ Ξ, θ ∈ [0, T ] and a decision ξ = (S, τ) with τ strictly increasing, produces
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a new decision ξ̄ = (S̄, τ̄) = Γ(ξ, P, θ), such that τ̄ is the shortest supersequence
of τ with two terms equal to θ, and S̄ is the shortest supersequence of S, such
that if τ̄i−1 = τ̄i = θ for some i ∈ {1, ..., N(ξ̄)}, then S̄i = P . The reduction ρ is
a composition of two structural changes, ρ = ρ2 ◦ρ1. If ξ = (S, τ) (with an arbi-
trary τ ∈ ΘN(ξ)) and ξ̄ = (S̄, τ̄) = ρ1(ξ), then τ̄ is the longest strictly increasing
subsequence of τ , and S̄ is the subsequence of S, containing all those, and only
those, terms Si, i ∈ {1, ..., N(ξ)}, for which τi−1 < τi. If ξ̄ = (S̄, τ̄) = ρ2(ξ),
then S̄ is the longest subsequence of S, such that S̄i 6= S̄i+1, i = 1, ..., N(ξ̄) − 1,
and τ̄ is the longest subsequence of τ , such that it does not contain any term
τi, i ∈ {1, ..., N(ξ) − 1}, for which Si = Si+1. Thus, the decisions ξ and ρ(ξ)
are equivalent, but the latter has no equal nodes and no equal adjacent control
procedures.

A sequence of structural nodes τ ∈ ΘN(ξ) is called stationary, if

τ0 < τ1 < ... < τN(ξ) and ∂τiΣ(S, τ) = 0, i = 1, ..., N(ξ)− 1. (5)

We say that a decision ξ = (S, τ) is node-stationary, if (5) holds. For the needs
of this paper we take an idealistic assumption that the gradient optimization in
a constant decision space ΩS is carried on until stationarity of structural nodes
is achieved.

Assumption 2. A spike generation may be done only if conditions (5) are
satisfied, that is, the decision ξ = (S, τ), which is the first argument of Γ, is
node-stationary.

Let ξ̄ = (S̄, τ̄ ) = Γ(ξ, P, θ) and ξ = (S, τ), that is, ξ̄ is the result of a
spike generation on a node-stationary decision ξ. Define a family of decisions
ξ′ = (S̄, τ ′), where τ ′ takes values in the intersection of a sufficiently small
neighborhood of τ̄ with the set ΘN(ξ̄). For a pair P ∈ Ξ, θ ∈ [0, T ], define
its slope index DP, θ(ξ), determined by the one-sided derivatives of cost with
respect to the new structural nodes, computed similarly as the derivative (4).
If θ = 0, then τ̄1 = θ (by definition of τ̄ ) and

DP,0(ξ) =
∂+Σ

∂τ ′1
(ξ′)

∣

∣

∣

∣

ξ′=ξ̄

= ψ(0)⊤(fS1(x(0)) − fP (x(0))), (6)

and if τi−1 < θ ≤ τi for some i ∈ {1, ..., N(ξ)}, then

DP,θ(ξ) = −
∂−Σ

∂τ ′i
(ξ′)

∣

∣

∣

∣

ξ′=ξ̄

= ψ(θ)⊤(fSi
(x(θ)) − fP (x(θ))) (7)

(in that case τ̄i = θ). Here, x and ψ are the solutions of (2) and (3), respectively,
induced by ξ. It easily follows from Assumptions 1 and 2 that the function
[0, T ] ∋ θ 7→ DP, θ(ξ) is continuous for every P ∈ Ξ. Observe that if 0 < τ̄i =
τ̄i+1 < T for a certain i ∈ {1, ..., N(ξ)}, then

−
∂−Σ

∂τ ′i
(ξ′)

∣

∣

∣

∣

ξ′=ξ̄

=
∂+Σ

∂τ ′i+1

(ξ′)

∣

∣

∣

∣

ξ′=ξ̄

.
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This is straightforward by a continuity argument, if θ 6= τj for j = 1, ..., N(ξ).
Otherwise, Assumption 2 has to be taken into account.

Define further the decision slope index,

D(ξ) = min
P∈Ξ

min
0≤θ≤T

DP, θ(ξ).

It is evident that D(ξ) ≤ 0 for every node-stationary ξ. A decision ξ is called
stationary, if it is node-stationary and D(ξ) = 0. Obviously, if an optimal
decision exists, then there is an optimal node-stationary decision, and every
optimal node-stationary decision is stationary.

3. The basic MSE algorithm and an expository example

Conceptually, the algorithm below is a very simple implementation of the MSE
ideas. Applied to the optimal control problem of Example 1, it will allow us to
present the most essential elements of the MSE in action and to explain them.

Algorithm 1.

Step 0. Choose γ ∈ ]0, 1] and a starting decision ξ̄. Set k := 1.

Step 1. Using gradient minimization and reductions, find a node-stationary
decision ξk = (Sk, τk), such that Sk

i 6= Sk
i+1 for i = 1, ..., N(ξk)− 1, and

Σ(ξk) ≤ Σ(ξ̄), if k = 1,

Σ(ξk) < Σ(ξ̄), if k > 1.

Step 2. If D(ξk) = 0, stop. Otherwise, use a spike generation to create a new
decision ξ̄ = Γ(ξk, P, θ), such that DP, θ(ξ

k) ≤ γD(ξk). Set k := k + 1 and
return to Step 1.

Obviously, P and θ in Step 2 may be different for different values of k.
For the question of choosing the parameter γ and detailed generation rules,
we refer the reader to our earlier works, see also Example 1 and the examples
in Section 6. It is worth mentioning here that γ < 1 allows generations with
DP, θ(ξ) > D(ξ), which often results in a finite convergence, while the choice
of γ = 1, seemingly more effective, may lead to chattering (as in Example 3 in
Section 6). It should be also remembered that the practical MSE algorithms
require only approximate node-stationarity in Step 1 – more accurate near the
end of optimization, and a simultaneous insertion of several spikes in Step 2
usually proves profitable.

It is evident that the performance of MSE algorithms greatly depends on
the choice of the stock of control procedures Ξ. Generally, Ξ may contain any
sufficiently regular functions of time, state and parameters, which prove useful
in numerical approximation. However, in order to take full advantage of the
possibilities offered by the MSE, it is advisable to make the stock MP-complete.
For the purpose of introducing this concept, define first the interval partition
of [0, T ] as any set of pairwise disjoint subintervals of [0, T ] with nonempty
interiors, such that almost every point t ∈ [0, T ] belongs to some element of
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that set. Let xu denote the solution of (1) produced by a control u, ∆ be a
subinterval of [0, T ], and P ∈ Ξ. Denote the function ∆ ∋ t 7→ P (xu(t)) by
P∆(xu). The set of control procedures Ξ is MP-complete, if and only if for
every control u, satisfying the necessary optimality conditions of Pontryagin’s
maximum principle, there is an interval partition of [0, T ], possibly infinite, such
that the restriction of u to any element ∆ of that partition is equal to P∆(xu),
for some P ∈ Ξ. In particular, Ξ is MP-complete, if every such control u is
induced by some decision.

It is straightforward from this definition that if the stock is MP-complete
and ξ is an optimal decision, then the control induced by that decision is optimal
in the original optimization problem, that is, Q(uξ) ≤ Q(u) for every piecewise
continuous function u : [0, T ] → U .

Example 1. Consider a car of mass m traveling along a hilly road. It is
affected by the driving force v1 produced by the engine, the force v2 produced
by friction brakes, the gravity, and the motion resistance force proportional to
squared speed. The mass change, due to fuel consumption, is neglected. Denote
the distance covered by the car by x1 and its speed by x2. It is assumed that the
speed is always positive, except possibly at the initial and final time moments.
Upon defining the control signals u1 = m−1v1 and u2 = m−1v2, we have the
state equations

ẋ1 = x2, ẋ2 = u1 − u2 − ax22 + r(x1), (8)

where a is a positive constant. The function r(x1) is connected with h(x1), the
height of the road above an arbitrary level, by the formula

r(x1) = −
g ∂h(x1)

√

1 + ∂h(x1)2
,

where g is the Earth gravitational acceleration. At the initial moment of time
the car is at rest, and after a given time T it should stop at a given distance y,
and so

x1(0) = 0, x2(0) = 0, (9)

x1(T ) = y, x2(T ) = 0. (10)

The admissible controls are bounded

0 ≤ ui(t) ≤ uim, i = 1, 2, t ∈ [0, T ]. (11)

The car must not violate a given speed limit V, x2(t) ≤ V , t ∈ [0, T ]. The
optimal control problem is to drive the car so that all the above conditions are
satisfied and the fuel consumption is as small as possible. It is assumed that
the consumed mass of fuel is proportional to the work done by the engine, and
so we take the performance index in the form

Q(u) =

∫ T

0

u1(t)x2(t)dt.
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In order to solve this problem numerically, we use the exterior penalty ap-
proach and formulate a family of auxiliary problems, parameterized by a posi-
tive coefficient K. For a given K, the auxiliary problem is defined by the state
equations (8) with the initial conditions (9), the control constraints (11) and a
performance index

QK(u) = Q(u) + 1
2K

(

(x1(T )− y)2 + x2(T )
2 +

∫ T

0

(x2(t)− V )2+dt

)

= x3(T ) +
1
2K(x1(T )− y)2 + 1

2Kx2(T )
2. (12)

The additional state variable x3 satisfies an initial value problem ẋ3 = u1x2 +
1
2K(x2 − V )2+, x3(0) = 0. The theory says that the solution of the auxiliary
problem tends to a solution of the original optimization problem as K tends to
infinity.

The preparatory stage in the MSE approach begins with the choice of the
stock of control procedures Ξ. To make the stock MP-complete, we apply the
maximum principle to the problem of minimizing the cost (12) on the trajecto-
ries of (8), subject to conditions (9) and (11). The Pontryagin function reads

H(ψ, x, u) = ψ1x2 + ψ2(u1 − u2 − ax22 + r(x1))− u1x2 −
1
2K(x2 − V )2+,

where the adjoint function ψ satisfies the adjoint set of equations

ψ̇1 = −ψ2∂r(x1), ψ1(T ) = K(y − x1(T )),

ψ̇2 = −ψ1 + 2aψ2x2 + u1 +K(x2 − V )+, ψ2(T ) = −Kx2(T ). (13)

The switching function for the control u1 is defined by φ1(x, ψ) = ψ2 − x2, and
for the control u2 by φ2(x, ψ) = −ψ2. Any optimal control u maximizes the
Pontryagin function, and so

ui(t) =

{

0, if φi(x(t), ψ(t)) < 0
uim, if φi(x(t), ψ(t)) > 0

}

, i = 1, 2.

This indicates that the stock Ξ should include the following boundary control
procedures

P1(x) =

[

0
0

]

, P2(x) =

[

u1m
0

]

, P3(x) =

[

0
u2m

]

.

Obviously, control procedures with both components positive can be rejected.
As it can be expected that the optimal control may have singular arcs, we
shall examine the singularity conditions. The control u1 is singular on some
interval of time, if φ1(x(t), ψ(t)) ≡ 0. Assuming u2(t) ≡ 0 and x2(t) > 0
on that interval, and differentiating twice the identity φ1[t] ≡ 0, we obtain a
state-feedback expression for the singular control, u1s(x) = ax22 − r(x1). The
condition of singularity for u2 on an interval of time reads φ2(x(t), ψ(t)) ≡ 0.
Under the assumptions that u1(t) ≡ 0 and x2(t) > V , after two differentiations
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of the identity φ2[t] ≡ 0 we obtain the singular control u2 in a feedback form,
u2s(x) = −ax22 + r(x1). The singular control arcs u2s(x) of the auxiliary prob-
lems tend, as K → ∞, to state-constrained control arcs of the original optimal
control problem, u2(x) = −aV 2+r(x1). In conclusion, we add two more control
procedures, called candidate singular, to the stock Ξ

P4(x) =

[

ū1s(x)
0

]

, P5(x) =

[

0
ū2s(x)

]

, (14)

where

ūis(x) =







0, if uis(x) ≤ 0
uis(x), if 0 ≤ uis(x) ≤ uim
uim, if uis(x) ≥ uim







, i = 1, 2.

The stock then becomes MP-complete for the auxiliary problem.
It is worth noticing here that the adjoint equations (13) differ from the in-

duced adjoint equations (3) on the structural time intervals, where the control
procedures P4 or P5 are valid. Note also that substitution of (14) to the state
equation may lead to discontinuity of the derivatives ∂fP , and so to a violation
of Assumption 1(ii). This can be neglected in most cases, since the continu-
ity of ∂fP has been assumed in order to facilitate the presentation and can
be weakened. Another way to overcome this obstacle, sometimes preferred be-
cause it allows for retaining the Assumption 1(ii) and because of a better rate
of convergence, are special saturation generations, performed after each line-
search ending with saturation of a candidate singular procedure. They consist
in adding a new structural node at every time moment, different from the al-
ready existing nodes, at which the function t 7→ ∂xF (t, x(t)) is discontinuous,
together with introducing the appropriate new elements in the control struc-
ture. In accordance with the general rules of structural changes, a saturation
generation does not change the control as a function of time, and the new nodes
fulfill the stationarity condition (5). A saturation generation can be followed by
a few steps of non-gradient optimization, involving only those structural nodes,
at which the adjacent control procedures take equal values.

For calculations we take g = 9.81 m/s2, y = 4000 m, T = 240 s, a = 0.001,
u1m = 2 m/s2, u2m = 4 m/s2, V = 30 m/s. The function r is a C1 piecewise
polynomial, constructed by means of the MATLAB function pchip

r(x1) = r1i(x1 − yi)
3 + r2i(x1 − yi)

2 + r3i, yi ≤ x1 ≤ yi+1, i = 1, ..., 7,

where y8 = y and the values of yi, r1i, r2i, r3i, i = 1, ..., 7, are given in the table
below:

i 1 2 3 4 5 6 7

yi 0 100 400 700 1000 2000 2300

105r1i 0 1/135 0 −1/135 0 −1/108 0

104r2i 0 −1/3 0 1/3 0 5/12 0

r3i 0 0 −1 −1 0 0 5/4
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The inserted control procedure P and the insertion point θ in spike genera-
tions are chosen in a rather complex way1. First, for i = 1, ..., N(ξ) find pi ∈ Ξ
and ti ∈ [τi−1, τi], satisfying

Dpi,ti(ξ) = min{Dp, t(ξ) : p ∈ Ξ, t ∈ [τi−1, τi]}.

Let Iγ = {i ∈ {1, ..., N(ξ)} : Dpi,ti(ξ) ≤ γD(ξ)}. Then, for every i ∈ Iγ find
p̄i ∈ Ξ, such that

Dp̄i,ti(ξ) = max{Dp,ti(ξ) : p ∈ Ξ, Dp,ti(ξ) ≤ γD(ξ)}.

Finally, P = p̄j and θ = tj, where j ∈ Iγ and Dp̄j ,tj (ξ) = min{Dp̄i,ti(ξ) : i ∈
Iγ}.

We begin computations with the penalty coefficient K = 10. In Step 0, set
γ := 0.02, ξ̄ := (S̄, τ̄ ), S̄ := (P2, P1), τ̄ := (0, 45, T ). The results of further
calculations for K = 10 are summarized in the table below, where Σ(ξ) =
QK(uξ), and all other symbols are as in the description of Algorithm 1 and in
the rule of choice of P and θ.

k Σ(ξk) D(ξk) Sk j P θ DP,θ(ξ
k)

1 9880.09 −2052.29 (P2, P1) 2 P5 222.354 −52.94

2 2954.59 −450.15 (P2, P1, P5) 3 P3 240 −450.15

3 1405.37 −44.57 (P2, P1, P5, P3) 1 P4 16.8505 −11.73

4 1018.30 −0.00002 (P2, P4, P1, P5, P3)

The corresponding node vectors are as follows:

τ1 = (0, 31.35736, 240),

τ2 = (0, 37.85850, 121.93994, 240),

τ3 = (0, 31.97458, 194.21181, 230.14511, 240),

τ4 = (0, 7.06500, 132.06677, 193.47539, 230.15353, 240).

The value of the slope index D(ξ4) is zero within the limits of computational
accuracy (its negative value does not mean that the algorithm can be continued
with a new spike generation) and so ξ4 = (S4, τ4) is recognized as an optimal
decision for K = 10. The continuation of the penalty method with greater
values of K does not change the optimal control structure, and the changes of
the plots in Figs. 1d, 2 and 3 are negligible. The controls u1 and u2, induced by
ξk, k = 1, 2, 3, are shown in the upper parts of Figs. 1a, 1b and 1c, respectively;
the candidate singular controls ū1s and ū2s are plotted with thin lines. The
negative arcs of the functions Di(t) = DPi,t(ξ

k), i = 1, ..., 5, are shown in
the lower parts of the figures. The vertical bold dotted lines ended with dots
indicate the spikes inserted in each iteration. They are prolonged downwards
with thin solid lines to help understand their connection with the slope indices.

1It is not difficult to propose simpler rules for choosing P and θ, which would also ensure

finite convergence, however, the number of iterations could then be greater.
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The optimal controls as functions of time are shown in Fig. 1d together with
the normalized switching functions φ̄i(t) = φi[t]/maxz |φi[z] |, i = 1, 2. It can
be seen that the necessary optimality conditions of the maximum principle are
satisfied within computational accuracy. Figure 2 presents plots of the optimal
controls as functions of the distance x1, and the road profile described by the
function h(x1). The phase plots of the optimal state trajectories x2(x1) and
x3(x1) are depicted in Fig. 3.

Figure 1. Results of optimization and spike generations in iterations 1 (a), 2
(b), and 3 (c), and the optimal control with switching functions (d) (time on
horizontal axes)

All computations were performed with the use of a fully implicit 5th order,
3 stage Radau IIa/Radau Ia adjoint pair of ODE solvers, with the relative step
accuracy of 10−14.

4. On infinite convergence of the MSE algorithms

Despite the simplicity of Algorithm 1, we can only give a rather weak char-
acterization of its convergence. In order to prove a stronger theorem it will
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Figure 2. Optimal controls u1 and u2, and the road profile h as functions of x1;
control values on the left, values of h on the right

Figure 3. Optimal phase trajectories x2(x1) (left scale) and x3(x1) (right scale)

be necessary to equip the MSE algorithm with an additional Armijo linesearch
(similar to the procedure applied in Axelsson et al., 2008).

Lemma 3. Assume that

(i) Algorithm 1 is infinite,

(ii) there is an increasing function ζ : R− → R−, such that Σ(ξk+1)− Σ(ξk) ≤
ζ(D(ξk)) for every k.

Then, D(ξk) → 0 as k → ∞.

Proof. Assume that the lemma is false. Then, there exist a real number δ < 0
and an infinite strictly increasing sequence of positive integers ki, i = 1, 2, ...,
such that D(ξki ) < δ, i = 1, 2, .... By assumption, Σ(ξki+1) − Σ(ξki) ≤ ζ(δ),
where ζ(δ) is a negative real number, independent of the iteration number k.
Since the cost functional Σ is lower bounded (by virtue of Assumption 1), we
have come to a contradiction.
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To fulfill the assumption (ii) of Lemma 3, we shall make an additional as-
sumption regarding Step 1, or, alternatively, modify Algorithm 1 by adding a
new step. Before stating the theorems on convergence, we need some definitions
and lemmas. We say that Step 1 of Algorithm 1 is complete for a given k, if the
point τk determined in that step is a minimizer of the function τ 7→ Σ(Sk, τ) in
Θl(Sk).

The following construction plays an important part in the sequel. Con-
sider a spike generation ξ 7→ ξ̄, which transforms a decision ξ = (S, τ) into
ξ̄ = (S̄, τ̄) = Γ(ξ, P, θ) by inserting a control procedure P at a time moment
θ. In accordance with Assumption 2, the sequence τ is stationary. Assume
also that DP, θ(ξ) < 0. Given ξ and ξ̄, define a broken line [0,∞ [ ∋ λ 7→
c(λ) = (c0(λ), c1(λ), ..., cl(c(λ))(λ)), whose successive segments lie in the real
vector spaces with decreasing dimensions. Assume c(0) = τ̄ . For λ > 0, c(λ) is
the shortest increasing sequence comprising all elements of the set

{max(0, θ − λ),min(θ + λ, T )} ∪ {τi ∈ [0, θ − λ] ∪ [θ + λ, T ] : i ∈ {0, ..., N(ξ)}}.

Let z(λ), for λ ≥ 0 denote the subsequence of S̄ which is a concatenation of the
sequences

(Si : τi−1< θ − λ, i ∈ {1, ..., N(ξ)}), (P ), and (Si : τi> θ + λ, i ∈ {1, ..., N(ξ)}).

Note that the first segment of the broken line c has the steepest descent di-
rection. Let further ξλ = (z(λ), c(λ)) and h(λ) = Σ(ξλ). The following lemma
gives an estimate of the induced cost Σ on the broken line c. As the estimation
is lengthy and technical, the proof has been moved to a separate Section 5.

Lemma 4. There is a positive constant L > 0, independent of ξ, P and θ, such
that

h(λ) ≤ h(0) +DP, θ(ξ)λ + 1
2Lλ

2

for every λ ∈ [0, λmax], where λmax = min(−2L−1DP, θ(ξ),
1
2T ).

Recall that decisions are equivalent, if they induce identical controls. The
next lemma directly follows from that definition.

Lemma 5. To every decision ξ = (S, τ) there is an equivalent decision ξ̄ =
(S̄, τ̄ ), such that S̄ and τ̄ are subsequences of S and τ , respectively, τ̄ is strictly
increasing, and S̄i 6= S̄i+1 for i = 1, ..., N(ξ̄)− 1.

We can now prove that completeness of Step 1 is sufficient for the assumption
(ii) of Lemma 3 to hold.

Theorem 1. Assume that Step 1 of Algorithm 1 is complete for every k, and
Algorithm 1 is infinite. Then D(ξk) → 0 as k → ∞.
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Proof. It is straightforward from Lemmas 4 and 5 that the minimum of the
function τ 7→ Σ(Sk, τ) in Θl(Sk) is not greater than Σ(ξk)+ζ0(DP, θ(ξ

k)), where

ζ0(v) =

{

− 1
2L

−1v2, −L−1v ≤ 1
2T

1
2vT + 1

4LT
2, −L−1v ≥ 1

2T

and L is a positive constant, independent of k. As ζ0 : R− → R− is an increasing
function and DP, θ(ξ

k) ≤ γD(ξk), then Σ(ξk+1) ≤ Σ(ξk) + ζ0(γD(ξk)). The
function ζ(v) = ζ0(γv) is also increasing and the assumptions of Lemma 3 are
fulfilled.

The completeness of Step 1, or even a good approximation of it, seldom can
be guaranteed in practical problems. So far, the broken line c has only been used
to prove the existence of ζ. We shall now show that equipping the algorithm
with an Armijo-type linesearch along c allows us to skip the assumption of
completeness.

The Armijo linesearch is an algorithm for finding better cost values h(λ) on
the broken line c, based on a modification of the well known Armijo condition.
Assume a constant α ∈ ]0, 1[ and a strictly decreasing, infinite sequence of real
numbers (λj , j = 1, 2, ...) ⊂ ] 0, 12T ], converging to zero. The result of the search
for a minimum on c is defined as a decision ξΛ = (z(Λ), c(Λ)), where

Λ = max{λj , j = 1, 2, ... : h(λj)− h(0) ≤ αλjDP, θ(ξ)}. (15)

A simple MSE algorithm with the Armijo linesearch is given below.

Algorithm 2.

Step 0. Choose γ ∈ ]0, 1] and a starting decision ξ̂. Set k := 1.

Step 1. Using gradient minimization and reductions, find a node-stationary deci-
sion ξk = (Sk, τk), such that Σ(ξk) ≤ Σ(ξ̂) and Sk

i 6= Sk
i+1 for i = 1, ..., N(ξk)−1.

Step 2. If D(ξk) = 0, stop. Otherwise, use a spike generation to create a new
decision ξ̄ = Γ(ξk, P, θ), such that DP, θ(ξ

k) ≤ γD(ξk).

Step 3. Determine the broken line c as earlier in this section, putting ξ = ξk.
Using the Armijo linesearch find ξΛ and set ξ̂ := ξΛ. Next, set k := k + 1 and
return to Step 1.

The following theorem is the main result of this paper.

Theorem 2. Let ξk, k = 1, 2, ..., be the sequence of decisions produced in
Step 1 of successive iterations of Algorithm 2. If that sequence is infinite, then
limk→∞D(ξk) = 0.

Proof. Assume that the sequence ξk, k = 1, 2, ..., is infinite, and apply Lemma
4 to Step 3 of iteration k of Algorithm 2. The cost estimate in Lemma 4
a(λ) = Σ(ξk) + DP,θ(ξ

k)λ + 1
2Lλ

2, and the straight line b(λ) = Σ(ξk) +

αDP,θ(ξ
k)λ intersect at λ = 2(α − 1)L−1DP,θ(ξ

k). Define λ̂(v) = max{λj ,
j = 1, 2, ... : λj ≤ 2(α − 1)L−1v} for v < 0. At the point Λ produced
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by the Armijo linesearch we have Σ(ξΛ) ≤ b(Λ) ≤ b(λ̂(DP,θ(ξ
k))) (because

λ̂(DP,θ(ξ
k)) ≤ Λ). Thus, Σ(ξk+1) ≤ Σ(ξk) +αDP,θ(ξ

k)λ̂(DP,θ(ξ
k)). As ζ0(v) =

αvλ̂(v) is an increasing function R− → R− independent of the iteration number
k, so is ζ(v) = ζ0(γv), and the assumptions of Lemma 3 are satisfied.

5. Proof of Lemma 4

Our aim is to find an upper bound for h(λ) = Σ(ξλ). To that end, we first
estimate the right-hand cost derivative on c. Denote by xλ the solution of (1)
induced by ξλ, and by ψλ the corresponding solution of (3). Notice that x0 and
ψ0 are, respectively, the solutions of (1) and (3), produced by the control uξ.
The right derivative of h at zero is given by

∂+h(0) =

{

2DP, θ(ξ), if 0 < θ < T
DP, θ(ξ), if θ = 0 or θ = T

(compare (6) and (7)). We shall need the right derivative ∂+h(λ) for an arbitrary
λ ≥ 0, which can be computed analogously to (4). It will be convenient to write
the derivative as a sum, ∂+h(λ) = d−(λ) + d+(λ), where

d−(λ) =

{

ψλ(θ − λ)⊤(fSr(λ)
(xλ(θ − λ))− fP (xλ(θ − λ))), θ − λ > 0
0, θ − λ ≤ 0,

d+(λ) =

{

ψλ(θ + λ)⊤(fSs(λ)
(xλ(θ + λ))− fP (xλ(θ + λ))), θ + λ < T

0, θ + λ ≥ T,

r(λ) = min { i ∈ {1, ..., N(ξ)} : τi ≥ θ − λ} for θ − λ > 0,

s(λ) = min { i ∈ {1, ..., N(ξ)} : τi > θ + λ} for θ + λ < T.

We shall show that ∂+h(λ) is bounded by a linear function of λ. The next
lemma gives an estimate for the derivative of cost on the broken line c, whose
construction follows a spike generation ξ → ξ̄ with ξ = (S, τ) and ξ̄ = (S̄, τ̄) =
Γ(ξ, P, θ). By Assumption 2, the sequence τ satisfies (5).

Lemma 6. There is a constant L > 0, independent of ξ, P and θ, such that

(i) | d−(λ) − d−(0) | ≤ Lλ for every λ ∈ [0, θ[ ,

(ii) | d+(λ)− d+(0) | ≤ Lλ for every λ ∈ [0, T − θ[ .

Proof. We only prove (i), because for (ii) the argument is similar. Suppose
that 0 ≤ λ < θ. Then, d−(λ) − d−(0) = V1 − V2, where

V1 = ψλ(θ − λ)⊤fSr(λ)
(xλ(θ − λ))− ψ0(θ)

⊤fSr(0)
(x0(θ)),

V2 = ψλ(θ − λ)⊤fP (xλ(θ − λ))− ψ0(θ)
⊤fP (x0(θ)).

We first find an estimate for V2. Put a = xλ(θ−λ)− x0(θ) and b = ψλ(θ−λ)−
ψ0(θ). From Assumption 1 and the classical theorems on the dependence of
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solutions to ordinary differential equations on parameters, it follows that there
is a constant K2 > 0, such that ||xλ −x0||∞ ≤ K2λ and ||ψλ −ψ0||∞ ≤ K2λ for
every λ ≥ 0. Therefore, by Lemma 2

||a|| ≤ ||xλ(θ − λ)− xλ(θ)||+ ||xλ(θ) − x0(θ)|| ≤ (K1 +K2)λ,

and in a similar manner, ||b|| ≤ (K1 +K2)λ. Further,

fP (xλ(θ − λ)) = fP (x0(θ) + a) = fP (x0(θ)) + ∂fP (x0(θ))
⊤a+ o(a),

o being a common symbol for all error terms of order higher than one. After a
short calculation,

V2 = b⊤fP (xλ(θ − λ)) + ψ0(θ)
⊤∂fP (x0(θ))

⊤a+ o(a).

The right-hand side is of order at least one with respect to a and b, and so there
exists a constant L2 > 0, such that |V2| ≤ L2λ. The estimation of V1 is more
complicated. Write it in the form

V1 = V1,1 + V1,2 + V1,3,

V1,1 = ψλ(θ − λ)⊤fSr(λ)
(xλ(θ − λ)) − ψ0(θ)

⊤fSr(λ)
(x0(θ)),

V1,2 = ψ0(θ)
⊤fSr(λ)

(x0(θ))− ψ0(τ̄r(λ))
⊤fSr(λ)

(x0(τ̄r(λ))),

V1,3 = ψ0(τ̄r(λ))
⊤fSr(λ)

(x0(τ̄r(λ)))− ψ0(θ)
⊤fSr(0)

(x0(θ)).

Repeating the argument used to estimate V2 it can be shown that there is a
constant L1,1 > 0, such that |V1,1| ≤ L1,1λ. In a similar way it is proved that
|V1,2| ≤ L1,2|θ− τ̄r(λ)|, for some constant L1,2 > 0. As it easily follows from the
definition that 0 ≤ θ − τ̄r(λ) ≤ λ, we obtain |V1,2| ≤ L1,2λ. Let us now pass to
the estimation of V1,3. For r(λ) = r(0), V1,3 = 0. For r(λ) < r(0),

V1,3 =

r(0)−1
∑

i=r(λ)

(

ψ0(τ̄i)
⊤fSi

(x0(τ̄i))− ψ0(τ̄i+1)
⊤fSi+1(x0(τ̄i+1))

)

=

r(0)−1
∑

i=r(λ)

(W1,3,i + Z1,3,i),

where

W1,3,i = ψ0(τ̄i)
⊤
(

fSi
(x0(τ̄i))− fSi+1(x0(τ̄i))

)

,

Z1,3,i = ψ0(τ̄i)
⊤fSi+1(x0(τ̄i))− ψ0(τ̄i+1)

⊤fSi+1(x0(τ̄i+1)).

For i = r(λ), ..., r(0)−1, we have τ̄i = τi. Hence, by virtue of the assumption that
τ is stationary, W1,3,i = ψ0(τi)

⊤
(

fSi
(x0(τi))− fSi+1(x0(τi))

)

= ∂τiΣ(ξ) = 0.
Consider now the term Z1,3,i. Reasoning analogously as in the case of V1,2,
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it can be shown that there exists a constant L1,3 > 0, such that |Z1,3,i| ≤
L1,3(τ̄i+1 − τ̄i) for i = r(λ), ..., r(0) − 1. Therefore
∣

∣

∣

∣

∣

∣

r(0)−1
∑

i=r(λ)

Z1,3,i

∣

∣

∣

∣

∣

∣

≤

r(0)−1
∑

i=r(λ)

|Z1,3,i|≤L1,3

r(0)−1
∑

i=r(λ)

(τ̄i+1 − τ̄i) = L1,3(τ̄r(0) − τ̄r(λ))≤L1,3λ.

Consequently, |V1,3| ≤ L1,3λ and further, for L1 = L1,1+L1,2+L1,3, |V1| ≤ L1λ.
Putting L− = L1 + L2 yields that | d−(λ) − d−(0) | ≤ L−λ for every λ ∈ [0, θ[.
A similar argument leads to the conclusion that | d+(λ) − d+(0) | ≤ L+λ for
some L+ > 0 and every λ ∈ [0, T − θ[. The claim of Lemma 6 is obtained with
L = max(L−, L+).

Now we can estimate the cost on c. By Lemma 6, d−(λ) ≤ DP,θ(ξ) + Lλ
for λ ∈ [0, θ [ and d−(λ) = 0 for λ ≥ θ. Similarly, d+(λ) ≤ DP,θ(ξ) + Lλ for
λ ∈ [0, T − θ[ and d+(λ) = 0 for λ ≥ T − θ. As

h(λ) = h(0) +

∫ λ

0

∂+h(s) ds,

we obtain

h(λ) ≤ h(0) + 2DP,θ(ξ)λ + Lλ2, 0 ≤ λ ≤ λ1,

h(λ) ≤ h(0) +DP,θ(ξ)(λ1 + λ) + 1
2L(λ

2
1 + λ2), λ1 ≤ λ ≤ λ2,

with λ1 = min(θ, T − θ) and λ2 = max(θ, T − θ). Since λ2 ≥ 1
2T , the claim of

Lemma 4 follows.

6. Further examples

Example 2 (non MP-complete stock). Consider the fuel consumption prob-
lem of Example 1. Once more we apply Algorithm 1 to the auxiliary problem
with the penalty coefficient K = 10, but this time with a non MP-complete
stock Ξ = {P1, P2, P3, P4}. The generation rules, the starting decision and the
parameter γ are as before. With such a stock, it is still possible to construct op-
timizing sequences of decisions (since all the boundary procedures are present),
but the finite convergence cannot be achieved. Our aim is to estimate the rate
of convergence. Starting from iteration 6, all decisions ξk = (Sk, τk) exhibit
a characteristic pattern. The induced controls uk, k = 6, 7, ..., do not differ
much outside the time interval [τk3 , τ

k
2k−3[, that is, between the fourth and the

penultimate structural nodes. In that interval uk1 is identically zero, and uk2 is of
bang-bang type with 2k− 6 switches (see Fig. 4, where the controls u6 (a) and
u18 (b) are depicted). More precisely, for every k ≥ 6 we have l(Sk) = 2(k− 1),
and Sk

1 = P2, S
k
2 = P4, S

k
2i−1 = P1, S

k
2i = P3, i = 2, ..., k − 1.

The control uk2 and the corresponding trajectory x2 are periodic in [τk3 , τ
k
2k−3[

with a period δk = τk5 − τk3 . To prove it, assume additionally that x2(t) ≥ V for
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Figure 4. The controls u6(a) and u18(b) (time on horizontal axes)

every t ∈ [τk3 , τ
k
2k−3[, which is true for all sufficiently large k ’s (the proof for an

arbitrary k is similar, but the details are more complicated). Let ψ denote the
corresponding solution of the induced adjoint system (3). By the stationarity of
τk (see (5)), we have ψ2(τ

k
i ) = 0, i = 3, ..., 2k−3. Note that in the time intervals

where r(x1(t)) = const, also ψ1 = const. Then, by straightforward substitution
it can be verified that for every i = 2, ..., k − 2, and t ∈ [τk2i−1, τ

k
2i+1]

ψ2(t) = K(x2(t)− x2(τ
k
2i))

1
2 (x2(t) + x2(τ

k
2i))−Wk

r37 − u2(t)− ax2(t)2
,

where Wk = V + K−1ψ1, u2(t) = u2m for t ∈ [τk2i−1, τ
k
2i[ , u2(t) = 0 for t ∈

[τk2i, τ
k
2i+1[. Hence x2(τ

k
2i−1) = x2(τ

k
2i+1), i = 2, ..., k−2, and x2(τ

k
2i) = x2(τ

k
2i+2),

i = 2, ..., k− 3. This, and the alternate monotonicity of x2, imply the equalities
τk4 − τk3 = ... = τk2k−4 − τk2k−5 and τk5 − τk4 = ... = τk2k−3 − τk2k−4, and the
periodicity follows.

The slope indices DP,θ(ξ
k) for k ≥ 6 are negative for all pairs (P, θ) of the

form (P1, θ), θ ∈ ] τ2i−1, τ2i[, and (P3, θ), θ ∈] τ2i, τ2i+1[, where i = 2, ..., k − 2.
For all other pairs, DP,θ(ξ

k) ≥ 0. The indices DP1,θ(ξ
k) and DP3,θ(ξ

k) as
functions of θ ∈ [τk3 , τ

k
2k−3[ are periodic with the period δk. Thus, the decision

slope index D(ξk) is equal to the lesser of the two numbers: min{DP1,θ(ξ
k) :

θ ∈ [τk3 , τ
k
4 ]} and min{DP3,θ(ξ

k) : θ ∈ [τk4 , τ
k
5 ]}. For the assumed values of

parameters the latter is always smaller, and so

D(ξk) = min{DP3,θ(ξ
k) : θ ∈ [τk4 , τ

k
5 ]} = u2m min{ψ2(θ) : θ ∈ [τk4 , τ

k
5 ]}.

To estimate the rate of convergence of the MSE, assume that k is sufficiently
large and write

ψ2(θ) = ψ̇2(τ
k
4 )(θ − τk4 ) +

1
2 ψ̈2(τ

k
4±)(θ − τk4 )

2 + o(δ2k), θ ∈ [τk3 , τ
k
5 ],
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where ‘τk4 −’ is valid for θ ∈ [τk3 , τ
k
4 ] and ‘τk4 +’ for θ ∈ [τk4 , τ

k
5 ]. Here

ψ̇2(τ
k
4 ) = K(x2(τ

k
4 ) −Wk),

ψ̈2(τ
4
k−) = K(r37 − u2m − aW 2

k + a(x2(τ
k
4 )−Wk)

2),

ψ̈2(τ
4
k+) = K(r37 − aW 2

k + a(x2(τ
k
4 )−Wk)

2).

Using the stationarity condition (5) we easily obtain

τk4 − τk3 = 2
x2(τ

k
4 )−Wk

r37 − aW 2
k − u2m

+ o(δk), τk5 − τk4 = 2
x2(τ

k
4 )−Wk

aW 2
k − r37

+ o(δk).

Hence

x2(τ
k
4 )−Wk =

(u2m + aW 2
k − r37)(aW

2
k − r37)

2 u2m
δk + o(δk)

and

D(ξk) = −u2m
ψ̇2(τ

k
4 )

2

2ψ̈2(τk4 +)
+ o(δ2k)

=
K(u2m + aW 2

k − r37)
2(aW 2

k − r37)

8 u2m
δ2k + o(δ2k).

Since

δk =
τk2k−3 − τk3
2(k − 3)

,

and Wk and τk2k−3 − τk3 have finite limits W and ∆, respectively, as k → ∞,
then

D(ξk) =
K(u2m + aW 2 − r37)

2(aW 2 − r37)∆
2

32 u2m(k − 3)2
+ o(k−2), k > 3.

The first term in the right-hand side is a good approximation of D(ξk) if k is
so large that x2(t) ≥ V for every t ∈ [τk3 , τ

k
2k−3].

Example 3 (the role of parameter γ). Consider a scalar system, described by
a state equation ẋ(t) = u(t), t ∈ [0, T ], with T = 2 and x(0) = 1. A cost
functional

Q(u) = 1
2

∫ T

0

x(t)2dt

is to be minimized subject to a control constraint |u(t)| ≤ 1. This problem
can be transformed (similarly as in Section 3) to the form given in Section 1.
Pontryagin’s maximum principle then yields the necessary optimality conditions
for a control u and the corresponding trajectory x :

u(t) =

{

−1, if ψ(t) < 0
+1, if ψ(t) > 0 ,
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where the adjoint function ψ is a solution of the final value problem ψ̇(t) =
x(t), ψ(T ) = 0. In every open interval where ψ(t) ≡ 0, the optimal control is
identically zero. Indeed, we then have ψ(t) ≡ 0 ≡ ψ̇(t) ≡ x(t) ≡ ẋ(t) ≡ u(t)
(the control u is singular in that interval). We choose the stock as that result
suggests: Ξ = {P1, P2, P3}, P1(x) ≡ −1, P2(x) ≡ 0, P3(x) ≡ +1. P1 and P3 are
boundary control procedures, and P2, a candidate singular one. A consequence
of the fact that all control procedures are constant is that the adjoint final value
problem of the maximum principle is identical with the induced adjoint problem
(3).

Our aim is to show the convergence consequences of different choices for the
parameter γ in Step 2. Assume that the rule, used to determine the inserted
control procedure P and the insertion point θ, is as follows

DP,θ(ξ
k) = max

p∈Ξ
min
t
{Dp,t(ξ

k) : Dp,t(ξ
k) ≤ γD(ξk)}, k = 1, 2, .... (16)

Let the starting decision be (P1, (0, T )), equal to ξ1 because the sequence (0, T )
is stationary. In the corresponding induced solution, x(t) = 1 − t and ψ(t) =
t − 1

2 t
2. The cost value Σ(ξ1) is equal to 1

3 . We calculate DP1, t(ξ
1) = 0,

DP2, t(ξ
1) = −ψ(t) and DP3, t(ξ

1) = −2ψ(t), for t ∈ [0, T ]. The decision ξ1 is
not stationary, since D(ξ1) = DP3, 1(ξ

1) = −1. Suppose first that γ = 0.4. We
choose P = P2 and θ = 1 in accordance with (16). The spike generation in Step 2
yields the decision ξ̄ = (S̄, τ̄ ), where S̄ = (P1, P2, P1) and τ̄ = (0, 1, 1, T ). The
subsequent gradient optimization (Step 1 of the algorithm) leads to a stationary
decision ξ2 with the induced solution u(t) = −1, x(t) = 1− t, ψ(t) = − 1

2 (t−1)2

for t < 1, and u(t) = x(t) = ψ(t) = 0 for t ≥ 1. It is easy to verify that this
solution is optimal in the original problem, with the cost Q(u) = Σ(ξ2) = 1

6 .
We shall now show that with the value of γ equal to 1, the MSE algorithm

becomes infinite. The rule (16) then takes the form DP, θ(ξ
k) = D(ξk). In

compliance with this rule, the spike generation in every iteration inserts the
control procedure P = P3 at θ = 1. Successively, the decisions ξk = (Sk, τk),
k = 1, 2, ..., are produced, with N(ξk) = 2k − 1 and

Sk
i = (−1)i, τki = 1 +

2i− 1

4k − 3
, for i = 1, ..., N(ξk).

Simple calculations give the values of D(ξk) and Σ(ξk) for an arbitrary k

D(ξk) = −
1

(4k − 3)2
, Σ(ξk) =

1

6

(

1 +
1

(4k − 3)2

)

.

Figure 5 presents the control obtained in iteration 6 (induced by ξ6), and the
plots of the negative parts of DP1, t(ξ

6), DP2, t(ξ
6) and DP3, t(ξ

6).

Example 4. In this example, the stock Ξ contains enough control procedures
to construct the optimal control structure, which is finite. Still, the MSE algo-
rithms may exhibit infinite convergence for any choice of the parameter γ, pro-
ducing infinite sequences of nonstationary decisions ξk = (Sk, τk), k = 1, 2, ...,
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Figure 5. The control induced by ξ6 is plotted in the upper part; the negative
arcs of the functions Di(t) = DPi,t(ξ

6) are plotted below (time on horizontal
axes)

such that every point τk is stationary, and the sequence of cost values Σ(ξk)
is strictly decreasing. This example is a modification of Example 3, where we
substitute x1 for the state variable x and introduce another state variable x2 to
represent time, satisfying ẋ2(t) = 1, t ∈ [0, T ], x2(0) = 0. The cost functional
and the control constraints are not changed, neither are the optimality condi-
tions, the adjoint final value problem, nor the optimal control. The essential
new feature is in the construction of Ξ. Define the auxiliary functions, for t < T

d1(t) = a1(t− T )7s(t),

d2(t) = ḋ1(t) = 7a1(t− T )6 s(t)− a1a2(t− T )5 c(t),

d3(t) = ḋ2(t) = a1(t− T )3(42(t− T )2 − a22) s(t)− 12a1a2(t− T )4 c(t),

d4(t) = ḋ3(t) = a1(t− T )2(210(t− T )2 − 15a22) s(t)

+ a1a2(t− T )(a22 − 90(t− T )2) c(t),

where s(t) = sin(a2(t − T )−1), c(t) = cos(a2(t − T )−1). For t ≥ T , di(t) = 0,
i = 1, ..., 4. The parameters a1 and a2 are chosen so that d3(1) = −1, d4(1) = 0.
Hence

a1 =
1

12a2 cos a2 + (a22 − 42) sina2
, (17)

and a2 is an arbitrary nonzero solution of the equation

tana2 =
a2(a

2
2 − 90)

15(a22 − 14)
. (18)

Let the stock consist of only two procedures, Ξ = {P1, P2}, with

P1(x) =

{

−1, x2 ≤ 1
d3(x2), x2 ≥ 1

}

, P2(x) ≡ 0.

P1 and P2 are continuously differentiable. The optimal solution (see Example
3) is induced by the decision ξ = (S, τ), S = (P1, P2), τ = (0, 1, T ).
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Note that for the stock consisting of two control procedures, the rules of
choice of P and θ, proposed in Examples 1 and 3, simplify to the form DP,θ(ξ) =
D(ξ). In consequence, the MSE algorithms with those generation rules do
not depend on γ. Consider now a decision ξ = (S, τ), S = (P1, P2, P1),
τ = (0, τ1, τ2, T ), with τ1 ≤ 1 and τ2 > 1. The corresponding induced con-
trol and trajectory x1 are expressed by

u(t) =







−1, t < τ1
0, τ1 ≤ t < τ2
d3(t), t ≥ τ2







, x1(t) =







1− t, t ≤ τ1
1− τ1, τ1 ≤ t ≤ τ2
1− τ1+d2(t)−d2(τ2), t ≥ τ2







.

The adjoint trajectory satisfies ψ(t) =
∫ t

T
x1(s)ds, and so

ψ(t) =







ψ(τ1) + t− τ1 −
1
2 (t

2 − τ21 ), t ≤ τ1
ψ(τ2) + (1− τ1)(t− τ2), τ1 ≤ t ≤ τ2
(1− τ1 − d2(τ2))(t− T ) + d1(t), t ≥ τ2







.

To examine the stationarity conditions of the structural nodes, calculate

∂Σ

∂τ1
= ψ(τ1)(P2(x(τ1))− P1(x(τ1)) = ψ(τ1),

∂Σ

∂τ2
= ψ(τ2)(P1(x(τ2))− P2(x(τ2)) = ψ(τ2)P1(x(τ2)).

Hence, the conditions take the form ψ(τ1) = 0 and ψ(τ2) d3(τ2) = 0. For that
set of equations, we compute solutions with τ1 = 1. The value of τ2 > 1 thus
satisfies ψ(τ2) = 0, or d2(τ2)(τ2 − T )− d1(τ2) = 0, whence

tan

(

a2
T − τ2

)

=
a2

6(T − τ2)
. (19)

Evidently, equation (19) has in ]1, T [ an infinite number of solutions with respect
to τ2. They can be arranged in a strictly increasing sequence τ i2, i = 1, 2, ...,
convergent to T. Let ξi = (S, τ i), τ i = (0, 1, τ i2, T ). The sequence of cost values

Σ(ξi) = 1
6 + 1

2

∫ T

τ i
2

(d2(t)− d2(τ
i
2))

2dt

strictly decreases and tends to the optimal value of 1
6 .

Let us now discuss Algorithm 1 with the generation rule DP,θ(ξ) = D(ξ) and
with a steepest descent gradient algorithm, such that the linesearch returns the
nearest stationary point on the steepest descent halfline. Let the starting deci-
sion be ξ1, defined above. It is easy to check that the algorithm then produces an
infinite sequence of decisions ξk = (Sk, τk), k = 1, 2, ..., with Sk = (P1, P2, P1)
and τk = (0, 1, τk2 , T ), τ

k
2 being the kth term of the sequence of solutions of

(19). Attempts to achieve finite convergence by replacing the rule of choice of
P and θ by a rule depending on γ, e.g., DP,θ(ξ) = γD(ξ), prove futile, yielding
more complex structures Sk.
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Figure 6. The control induced by ξ1 (top) and the negative part of DP2,t(ξ
1)

(bottom) (time on horizontal axes)

For a1 = 0.0218175208363471 and a2 = 5.276866884891947 taken as the
solutions of (17) and (18), τ12

∼=1.262620582159035 is the smallest solution of
(19), greater than 1. Figure 6 shows the control u induced by the decision ξ1,
and the negative part of the slope index DP2, t(ξ

1). To end the discussion of this
example, note that Algorithm 1 with Step 1 complete in every iteration, would
obviously be finitely convergent to the optimal solution.

7. Observations on finite convergence

Provided a reasonable choice of the stock Ξ and sufficient computational accu-
racy, the MSE algorithms exhibit a certain desirable feature. In the optimal
control problems, where the conditions of Pontryagin’s maximum principle are
only fulfilled by controls with finite structures, the MSE method usually finds
a solution, satisfying the maximum principle, after a finite number of iterations
(as in Example 1). We cannot offer an in-depth theoretical explanation of that
phenomenon, instead, we shall merely give a few observations.

To start with, consider a ‘complete search’ optimization method, which ex-
plains what can be aimed at in the construction of MSE algorithms. Let σ be
a sequence of all elements of Ξ, and let σk denote its k -fold concatenation. The
complete search algorithm is as follows.

CS Algorithm.

Step 0. Set k := 1.

Step 1. Find ξk=(Sk, τk), such that Σ(ξk)=min{Σ(ξ) : ξ=(σk, τ), τ ∈ΘN(ξ)},

τk is strictly increasing and Sk is a subsequence of σk.

Step 2. If D(ξk) = 0, stop. Otherwise, set k := k + 1, and return to Step 1.

Note that for every decision ξ = (S, τ) of length shorter than k, there is
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an equivalent decision ξ̄ = (σk−1, τ̄ ) with some τ̄ ∈ ΘN(ξ̄), where S and τ are
subsequences of σk−1 and τ̄ , respectively (see Lemma 5). Hence, it follows that
if an optimal decision (of finite length) exists, then the CS algorithm is finite.
However, this algorithm can hardly be regarded as a version of the MSE, since
Step 1 of iteration k + 1 does not generally begin with a decision equivalent to
ξk, and the return to Step 1 after Step 2 brings on a temporary increase in the
cost Σ. This is in contrast to Algorithms 1 and 2. Besides, the CS algorithm
is impractical for two more reasons. First, the ‘multiple generations’ in Step
2 produce unnecessarily complex control structures, which results in inefficient
optimization, and second, the requirement that Step 1 be complete (in the sense
of Section 4) may be difficult to fulfill. That is why neither of these ‘complete
search’ properties has been included in Algorithms 1 and 2 (the completeness
of Step 1, however, is assumed in most of the results below).

We now give several observations on finite convergence of Algorithm 1. The
trivial case of |Ξ| = 1 will be left out.

Observation 1. Let Step 1 of Algorithm 1 be complete for every k. Then,
Algorithm 1 is finite (that is, D(ξk) = 0 for some k) if and only if there is a
constant M, such that N(ξk) ≤M for every k.

Proof. This is straightforward from the fact that the sequence Σ(ξk), k =
1, 2, ..., strictly decreases, and the number of control structures with a given
length is finite.

The next observation is an obvious consequence.

Observation 2. Algorithm 1 is finite, if Step 1 is complete for every k, |Ξ | = 2,
and there is an optimal decision.

Observation 3. Algorithm 1 is finite, if Step 1 is complete for every k, all
control procedures in Ξ are constant, and the right-hand side of the state equation
(1) is linear of the form f(x, u) = Ax+ u, where A is a constant n× n matrix.

Proof. Let P1, P2 ∈ Ξ, and let ψ satisfy ψ̇(t) = −A⊤ψ(t), t ∈ [0, T ], ψ(T ) = a.
It follows from the theory of linear differential equations with constant coef-
ficients that if the function t 7→ ψ(t)⊤(P1 − P2) is not identically zero, then
the number of its roots is less than some integer M0, independent of P1, P2,
and a ∈ Rn. Now, it is enough to notice that M = |Ξ | 2M0 is the constant in
Observation 1.

Observation 4. Let B be the compact set defined in Assumption 1. Moreover,
assume that
(i) Step 1 is complete for every k,
(ii) all control procedures in Ξ are constant,
(iii) the right-hand side of the state equation (1) has the form f(x, u) = f0(x)+

f1(x)u with n = 2 and m = 1 (that is, x(t) ∈ R2 and u(t) ∈ R),
(iv) the function f2(x) = ∂f1(x)⊤f0(x)−∂f0(x)⊤f1(x) is Lipschitz continuous

in B,
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(v) ∂q(x) 6= 0 ∀x ∈ B,
(vi) det [f1(x) f2(x)] 6= 0 ∀x ∈ B.

Algorithm 1 is then finite.

Proof. Let τkik − τkik−1 = min{τki − τki−1 : i ∈ 1, ..., N(ξk) }, k = 1, 2, ....
Suppose, contrary to the claim, that Algorithm 1 is infinite. Then by Observa-
tion 1, τkik − τkik−1 → 0 as k → ∞. From (ii) and the stationarity of τk (see (5))
it follows that

φ(xk(τkik−1), ψ
k(τkik−1)) = φ(xk(τkik ), ψ

k(τkik)) = 0, k = 1, 2, ..., (20)

where φ(x, ψ) = ψ⊤f1(x), and xk and ψk denote, respectively, the solutions
of (2) and (3) in iteration k. The sequence xk(τkik), k = 1, 2, ..., is contained

in B, and it follows from Lemma 2 that all ψk are uniformly bounded. Thus,
the sequence of pairs (xk(τkik), ψ

k(τkik )), k = 1, 2, ..., has an accumulation point

(x̄, ψ̄) with x̄ ∈ B. Denote φ̇(x, ψ) = ψ⊤f2(x). The function t 7→ φ(xk(t), ψk(t))
is continuously differentiable and by (iv), its derivative t 7→ φ̇(xk(t), ψk(t)) is
Lipschitz continuous with a Lipschitz constant independent of k. Hence

φ̇(xk(τkik), ψ
k(τkik )) → 0 as k → ∞. (21)

From (20) and (21), φ(x̄, ψ̄) = 0 and φ̇(x̄, ψ̄) = 0. By virtue of (v) there is an
ε > 0, such that ||ψk(τkik) || ≥ ε for every k, whence ψ̄ 6= 0. We conclude that
det [f1(x̄) f2(x̄)] = 0, which contradicts the assumption (vi).

The next observation is about finite convergence of Algorithm 2.

Observation 5. Assume the following:
(i) all control procedures in Ξ are constant,
(ii) the right-hand side of the state equation (1) has the form f(x, u) = f0(x)+

bu, where f0(x) = col(f0
1 (x1), ..., f

0
n(xn)), f

0
j : R → R, j = 1, ..., n, and

b = col(b1, ..., bn) ∈ Rn,
(iii) for every x ∈ B, ∂q(x)⊤b 6= 0 and (∂q(x)⊤b) ∂jq(x) bj ≥ 0, j = 1, ..., n,

where B is defined in Assumption 1 and ∂jq(x) denotes the jth component
of ∂q(x).

Then, Algorithm 2 is finite.

Proof. Assume that in iteration k of the algorithm, for k = 1, 2, ..., θk is the
point at which the spike is inserted in Step 2, and xk, ψk denote, respectively,
the solutions of (2) and (3). Suppose that the algorithm is infinite, and so
D(ξk) < 0 for every k and D(ξk) → 0 as k → ∞. Therefore, there exist
P1, P2 ∈ Ξ and an infinite, strictly increasing sequence of positive integers ki,
i = 1, 2, ..., such that D(ξki) = ψki(θki

)⊤b(P1 − P2). Let

wi(t) = ψki(t)⊤b = −∂q(xki(T ))⊤diag(ei1(t), ..., ein(t)) b, t ∈ [0, T ],

eij(t) = exp

(

∫ T

t

∂f0
j (x

ki

j (s)) ds

)

, j = 1, ..., n.
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By virtue of the assumptions on (1) in Section 1, Assumption 1, the assumption
(iii) and the Weierstrass theorem, there is an η > 0, such that | ∂q(x)⊤b | ≥ η
for every x ∈ B. Similarly, it can be shown that there is a positive real number
e, such that eij(t) ≥ e > 0 for every positive integer i, every j ∈ {1, ..., n} and
every t ∈ [0, T ]. Hence,

|wi(t) | =

n
∑

j=1

eij(t) |∂jq(x
ki (T )) bj| ≥ eη > 0

for every t ∈ [0, T ] and every i. Thus, we have arrived at a contradiction.

Note that an analogous observation is valid for Algorithm 1, if additionally,
its Step 1 is complete for every k.

Observation 6. If the system (1) is of order 1 (n = 1) and all functions fP ,
P ∈ Ξ, are pairwise different in the whole set B, determined in Assumption 1,
then Algorithms 1 and 2 are finite (they stop after a number of iterations not
greater than the number of elements in Ξ).

Proof. Let x and ψ be the solutions of (2) and (3), respectively, corre-
sponding to a decision (S, τ). A structural node τi ∈ ]0, T [ is stationary, if
ψ(τi)(fSi+1(x(τi)) − fSi

(x(τi))) = 0, or ψ(τi) = 0. Consequently, the control
structure in every iteration of the algorithm consists of only one term and/or
the adjoint function ψ is identically zero. Since the sequence of cost values is
strictly decreasing, the claim follows.

8. Stationary decisions and the maximum principle

We finish the paper with a discussion of relationships between the MSE station-
arity conditions and Pontryagin’s maximum principle, which will allow a better
understanding of the obtained results on convergence. One of the basic premises
behind the MSE is that the optimization algorithm should naturally stop only
when the current optimal control approximation satisfies the necessary opti-
mality condition of the maximum principle. In other words, we wish that the
controls induced by stationary decisions be always extremal. This requirement
is easy to accomplish if the stock contains appropriately parameterized control
procedures, as described in Section 2. Here we shall show that the equivalence
between the decision stationarity and the induced control, being extremal, can
be sometimes proved also for procedures depending merely on state, considered
in this article.

Define the Pontryagin function H : Rn × Rn × Rm → R, H(ψ, x, u) =
ψ⊤f(x, u), and the set of all control values attainable at an arbitrary point
x ∈ Rn, Ux = {v ∈ U : ∃P ∈ Ξ, v = P (x)}. Let uξ be the control induced
by a node-stationary decision ξ, and let xξ and ψξ denote, respectively, the
corresponding solutions of (1) and (3). Note first that a certain weak maximum
principle holds at every stationary point in the decision space.
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Observation 7. The stationarity condition of the decision ξ, D(ξ) = 0, is
equivalent to the following maximum condition

H(ψξ(t), xξ(t), uξ(t)) ≥ H(ψξ(t), xξ(t), v) ∀v ∈ Uxξ(t) ∀t ∈ [0, T ].

This observation is straightforward from the definition D(ξ) = min{DP, θ(ξ) :
P ∈ Ξ, 0 ≤ θ ≤ T }. Thus, ψξ(t)

⊤(f(xξ(t), uξ(t)) − f(xξ(t), P (xξ(t))) ≥ 0 for
every P ∈ Ξ and every t ∈ [0, T ].

The control uξ is extremal, if it fulfills the necessary optimality condition of
the classical Pontryagin’s maximum principle for the optimal control problem
of Section 1, that is, if the relationship

H(ψξ(t), xξ(t), uξ(t)) ≥ H(ψξ(t), xξ(t), v) ∀v ∈ U a.e. t ∈ [0, T ],

holds together with

∂2F (t, xξ(t))ψξ(t) = ∂2H(ψξ(t), xξ(t), uξ(t)) a.e. t ∈ [0, T ], (22)

in (3). It is obvious that if the control uξ is extremal, then D(ξ) = 0. Let us
ask: when the decision stationarity is sufficient for the induced control to be
extremal? The following is evident from the definition.

Observation 8. Assume that
(i) U is finite, U = {e1, ..., ek},
(ii) Ξ = {P1, ..., Pk} and Pi(x) ≡ ei, i = 1, ..., k,
(iii) ξ is stationary.

Then, the control uξ is extremal.

Observation 9. Assume that
(i) there is a finite set E, such that E ⊂ U ⊂ Conv(E),
(ii) for every e ∈ E there is a P ∈ Ξ, such that P (x) ≡ e,
(iii) the right-hand side of (1) has the form f(x, u) = f0(x) + f1(x)u,
(iv) equality (22) is true,
(v) ξ is stationary.

Then, the control uξ is extremal.

Proof. By (i), for every v ∈ U there exist ai ≥ 0 and ei ∈ E, i = 1, . . . , k,

such that
∑k

i=1 ai = 1 and v =
∑k

i=1 aie
i. From (ii), (iii) and (v), we have

ψξ(t)
⊤f1(xξ(t))(uξ(t) − ei) ≥ 0 for i = 1, ..., k, and for every t ∈ [0, T [. Hence

∑k
i=1 aiψξ(t)

⊤f1(xξ(t))(uξ(t) − ei) ≥ 0, and ψξ(t)
⊤f1(xξ(t))(uξ(t) − v) ≥ 0

∀v ∈ U ∀t ∈ [0, T [.

In the last two observations we make the following assumption.

Assumption 3. Let ξ = (S, τ) and let Sij denote the jth component of the vector
Si, i = 1, ..., N(ξ), j = 1, ...,m. Assume also that

(i) U = [u1min, u1max]× [u2min, u2max]× ... × [ummin, ummax],
(ii) Si, i = 1, ..., N(ξ), are continuously differentiable,
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(iii) for i = 1, ..., N(ξ), j = 1, ...,m, either uj min < Sij(xξ(t)) < uj max for
a.e. t ∈ [τi−1, τi], or Sij is constant and Sij(x) ∈ {uj min, ujmax} for every
x ∈ Rn,

(iv) ξ is stationary.

The next observation explains, why the control obtained in Example 1 sat-
isfies the optimality condition of the maximum principle.

Observation 10. Let Assumption 3 hold. Assume also that

(i) for every vertex e of U there is a P ∈ Ξ, such that P (x) ≡ e,
(ii) the right-hand side of (1) has the form f(x, u) = f0(x) + f1(x)u.

Then, the control uξ is extremal.

Proof. By definition, DP,t(ξ) = ψξ(t)
⊤f1(xξ(t))(uξ(t) − P (xξ(t))). Denote

u = uξ(t), P = P (xξ(t)), φ = f1(xξ(t))
⊤ψξ(t). Then

DP,t(ξ) = φ⊤(u − P ) =

m
∑

j=1

φj(uj − Pj).

Using (iv) in Assumption 3 and an argument similar to that used for Observation
9 we can prove that φj(uj −v) ≥ 0 for every v ∈ [uj min, uj max] and j = 1, ...,m.
This implies φj = 0, if ujmin < uj < ujmax. Consider now the right-hand side
of (3). For t ∈ [τi−1, τi[ and i = 1, ..., N(ξ)

∂2F (t, xξ)ψξ = ∂1f(xξ, uξ)ψξ + ∂Si(xξ) f
1(xξ)

⊤ψξ.

Fix i and let σj denote the j th column of ∂Si(xξ(t)), j = 1, ...,m. Then

∂Si(xξ) f
1(xξ)

⊤ψξ =

m
∑

j=1

σjφj .

If ujmin < Sij(xξ(t)) < uj max for a.e. t ∈ [τi−1, τi], then φj = 0. If Sij is
constant, then σj = 0. Thus, by Assumption 3 (iii), ∂Si(xξ) f

1(xξ)
⊤ψξ ≡ 0 and

(22) holds. The claim follows from Observation 9.

Part (i) of Assumption 3 and the assumption (ii) of Observation 10 are
obviously fulfilled in Example 1. To satisfy the assumption (i) of Observation
10, we have to complement the stock Ξ with a procedure P6 = col(u1m, u2m).
This, however, affects neither the process of solving the problem nor its result,
because pressing the gas and brake pedals at the same time can be excluded
from the search for optimal control. The remaining parts of Assumption 3 are
true for the final decision ξ4. Note that due to (22), the solutions of the final
value problems (3) and (13) coincide.

In the last observation we break free from the assumption that the state
equation is affine in control – at the cost of additional requirements with respect
to the stock and regularity.
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Observation 11. Let Assumption 3 be true. Let also for j = 1, ...,m, and
t ∈ [0, T ]

Hj(v, t) = H(ψξ(t), xξ(t), uξ1(t), ..., uξ,j−1(t), v, uξ,j+1(t), ..., uξm(t)).

Assume that
(i) Ξ = Ξ1 × ... × Ξm, where Ξj , j = 1, · · · ,m, is a finite set of appropriately

regular functions Rn → [uj min, ujmax]; for every j, Ξj contains procedures
Pj min(x) ≡ uj min and Pj max(x) ≡ ujmax,

(ii) f in (1) is continuously differentiable in its both arguments,
(iii) ∂1Hj(uξj(t), t) = 0, t ∈ [τi−1, τi[, for every pair i, j, such that uj min <

Sij(xξ(t)) < ujmax for a.e. t ∈ [τi−1, τi],
(iv) If ∂1Hj(v, t) = 0 for some v ∈ [uj min, ujmax] and t ∈ [0, T ], then there is

a P ∈ Ξj, such that P (xξ(t)) = v.
Then, the control uξ is extremal.

Proof. Let Ji be the set of all j ∈ {1, ...,m}, such that ujmin < Sij(xξ(t)) <
uj max for a.e. t ∈ [τi−1, τi]. By Assumption 3 (iii), the right-hand side of (3)
can be written in the form, for t ∈ [τi−1, τi[ and i = 1, ..., l(S),

∂2F (t, xξ)ψξ = ∂2H(ψξ, xξ, uξ) +
∑

j∈Ji

σij∂1Hj(uξj(t), t),

where σij denotes the j th column of ∂Si(xξ(t)). It then follows from (iv) that
(22) is true. Now, it is straightforward from (i) and Assumption 3 (iv) that for
every t and every j

Hj(uξj(t), t) ≥ Hj(P (xξ(t)), t) ∀P ∈ Ξj .

We thus have, by (i), Assumption 3 (iv), Assumption 3 (iii), and (iv)

Hj(uξj(t), t) ≥ Hj(v, t) ∀v ∈ [ujmin, ujmax],

whence the claim.
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