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Abstract: The paper considers some properties of selected types
of perfect resource placements in 4-dimensional cube-type networks
with soft degradation. The conditions of existence of perfect place-
ments and the ways of determining resource placement are presented.
Examples of different types of placements are given. On the basis of
the established forms of the network working structures along with
network degradation the average number of working processors with
specified order is determined. This value could be a measure of the
network’s computing capabilities loss along with the increasing de-
gree of network degradation for a given type of resource placement.
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1. Introduction

A processor network has the logical structure of k-dimensional cube-type if the
graph nodes of its topology can be labeled by k-dimensional binary vectors such
that the Hamming distance between the vectors of adjacent nodes is equal one.
We are considering the case when the network is 4-dimensional.

We assume that the network processors can be divided into working proces-
sors and database processors (distributed database). Execution of some tasks by
a working processor requires access to database, and also some results obtained
by a working processor must be submitted to the database.

In the networks used in embedded systems (typically real-time systems)
a processor, which has been permanently faulty, can not be repaired (or re-
placed), but is excluded from the network (the access to it is being blocked),
and the new degraded network continues to operate under the condition that
it meets certain requirements (Chudzikiewicz and Zieliński, 2010; Kulesza and
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Zieliński, 2010; Zieliński et al., 2011; Zieliński, 2012). Such type of a network is
called network with soft (graceful) degradation. Diagnosing of a processor net-
work aims to identify faulty processors and to eliminate them from the network.
One of significant problems in the design and exploitation of such a network is
skillful resource placement and modification of resource placement after each
loss of the network processors.

The generalized cost of a network traffic with specified resource (database)
placement and workload of the network is usually analyzed with experimental
methods or by means of simulation. In the present paper we try to express this
cost analytically for a given perfect placement. The definition of (m, d)-perfect
placement (where m is the number of data resource processors attained by any
working processor of a network at a distance not greater than d) provides a char-
acteristic value of the generalized cost of information traffic in the network for
the given workload. We will find the minimum number of database processors
in such way that each working processor has access to at least m database pro-
cessors attainable at a distance of not more than d. Such an approach is known
in relation to the network of regular logical structure (AlBdaiwi and Bose, 2003,
2005; Bae and Bose, 1997; Imani et al., 2010; Moinzadeh et al., 2008). We use
the definition perfect distance-d placement of data resources in the processor
network (Definition 3) fairly commonly used in reference to torus-type networks
(AlBdaiwi and Bose, 2003, 2005; Bae and Bose, 1997), to networks whose log-
ical structures are described by coherent graphs of 4-dimensional cubes, which
corresponds to the working structures of the 4-dimensional cube networks with
soft degradation (Kulesza and Zieliński, 2011, 2012; Zieliński, 2012).

The main goal of this paper is to obtain a measure of loss of the network
computing capabilities with increasing degree of network degradation for a given
type of resource placement. We have achieved this goal by determining the aver-
age numbers of working processors for some types of perfect resource placements
in the 4-dimensional cube type network.

The paper consists of three main sections and conclusions. The second sec-
tion provides the basic properties of working structures which are induced by
the network in the process of its soft degradation. This section contains the
definition of the concept of a perfect placement (deployment) of computers with
data resources in the working structure of a network G (Definition 3) and of the
concept of access characteristics of working computers to a distributed database
for a specific placement (Definition 4). Examples of different placement types
are provided. The third section considers the conditions of existence of a specific
type of perfect placements and the ways of determining them, with determina-
tion of the (1, 1 |G), (1, 2 |G) and (2, 1 |G)-perfect placements for working struc-
tures G (with the distinction of the cyclic and acyclic structures). On the basis
of geometric forms of network working structures and their node groups, given
in Kulesza and Zieliński (2011), (2012); Zieliński (2012), the average number
of working processors in a network of order of at least six for selected resource
placements is determined. This value could constitute a measure of loss of net-
work computing capabilities with increasing degree of network degradation for
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a given type of resource placement.

In the summary, some conclusions from the results presented in the paper
are formulated.

2. Basic definitions and properties

Definition 1 The logical structure of computer network is called the struc-
ture of 4-dimensional cube if it is described by coherent ordinary graph G =
〈E, U〉 (E is the set of processors, U is the set of bidirectional data transmis-
sion lines), whose nodes can be labelled by 4-dimensional binary vectors without
repetitions in such a way that

[H (ε (e′) , ε (e′′)) = 1] ⇔ [(e′, e′′) ∈ U ] (1)

where H (ε (e′) , ε (e′′)) is Hamming distance between the labels of nodes e′ and
e′′.

If |E| = 24 and |U | = 2 |E|, then the graph of type of 4-dimensional cube is
denoted by H4, and is called the non-labeled 4-dimensional cube.

In the process of network degradation some of the nodes are excluded from
the network due to diagnosis of arising faults and the subsequent network re-
configuration. In the process of reconfiguration such a network structure that
meets the diagnosability conditions of the network is determined. This new
network structure will be called working structure if it possesses the ability to
identify at least one faulty node. The detailed conditions of the hypercube net-
work diagnosability were highlighted in Zieliński (2012). Let us note that the
new working structure (subgraph) must be a coherent graph, which means that
there exists a path from any node to all other graph nodes. We distinguish three
classes of working structures, namely cyclic graphs, acyclic graphs, and trees,
which will be denoted by the C, A, T symbols, respectively.

Let H̃4 =
〈

H4;
{

ε(e) : e ∈ E(H4)
}〉

be the 4-dimensional cube with labeled
nodes, where E(H4) is the set of nodes of the graph H4.

We denote by & ∈ {C, A, T } the class of working structures and by p its
order, i.e. the number of nodes (processors) in the working structure.

Denote by Ǧ&
p

(

H4
)

and Ǧ&
p (H̃4) the sets of coherent subgraphs of graphs

H4 and H̃4 of order p, respectively, for a class & ∈ {C, A, T }.

Let ν (G)
(

G ∈ Ǧp

(

H4
)

for p ≥ 6
)

be the number of possible label assign-
ments to the nodes of graph G, according to the formula (1). It can be easily
seen that ν (G) is the number of subgraphs of graph H̃4 which are isomorphic
with the graph G after removal of labels of the nodes.

Example 1 The structure G (Fig. 1) is the structure of type H4(G ∈ ĞA
6 (H4))

because the nodes of this structure can be labeled in accordance with the formula
(1). It is known (Kulesza and Zieliński, 2011, 2012) that ν (G) = 96.
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Figure 1. Illustration of verification that the structure of G is a structure of
type H4

Figure 2. Geometric representations of the cube H4

The graph G is a regular graph of degree 4 if the degree µ(e) = |A(e)| (where
A(e) is the set of nodes adjacent to a node e ∈ E ) of each node of the graph G
is equal to 4.

The graph H4 will be presented as a composition (Kulesza and Zieliński,
2011) of graphs H3

a and H3
b (Fig. 2a) and as torus of size (4 × 4) (Fig. 2b,

T (4 × 4)).

Notice that any cube Hδ (δ ≥ 2) can be represented in the form T (δ × δ),
but not inversely.

Figure 3 presents the geometric forms of working structures G ∈ Ǧp

(

H4
)

of
order p ≥ 6, induced by the network in the process of its degradation, that were
presented in Kulesza and Zieliński (2011, 2012) and Zieliński (2012) in the form
of a possibly minimum number of intersecting edge lines, which makes it easier
to analyze their properties. The numbers ν (G) were determined by the method
of structure composition (Zieliński, 2012).

The numbers of sets Ǧp(H̃4) and Ǧp(H4) for p ≥ 6 with the distinction of
the cyclic, acyclic and tree structures are specified in Table 1.

From among numerous properties of working structures of the network we
will discuss only properties of a cycle, a tree, including also a simple chain of
the highest order.

The cycle will be treated here as a subgraph of graph G and not as a cyclical
chain (Korzan, 1978; Kulikowski, 1986).

Definition 2 A cycle C in the graph G is called such a coherent subgraph of
G that ∀e∈E(C) : µ (e |C) = 2.

Lemma 1 ∀C∈C(G) : |E (C)| ∈ {4, 6, 8} (C (G) - the set of cycles in the graph
G).
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Figure 3. Examples of geometric forms of working structures of the network
(the numbers ν (G) are specified)

Table 1. The numbers of sets of working structures Ǧp(H̃4) and Ǧp(H4)

Proof. The graph C is a graph of class H4 and thus (in accordance with
Definition 2)

∀e∈E(C) : [{e′, e′′} = A(e)] ⇒ [(H (ε (e) , ε (e′)) = H (ε (e) , ε (e′′)) = 1)∧

∧
(

∀e′′′∈{E(C)\{A(e)∪{e}}} : H (ε(e), ε(e′′′)) > 1
)]

what is satisfied only if the chain lengths of the binary cycle labels are equal to
4, 6 or 8 (there is no need to justify that).

The examples of cycles existing in the H4 are shown in Fig. 4.
The placement of data resources in the 4-dimensional cube type network

with soft degradation will be regarded here as a labeled graph
〈

G; Ė
〉

where

G ∈ Ǧp

(

H4
)

and Ė ⊂ E (G) (Ė is the set of database processors,
{

E (G) \Ė
}

is the set of the working processors of the network G).
Let d (e′, e′′ |G) be the distance between nodes e′ and e′′ in a coherent graph

G, that is - the length of the shortest chain (in the graph G) connecting node
e
′

with the node e′′.
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Figure 4. Examples of cycles in the graph H4 (with given numbers ν (C) of
cycles of specified order)

Definition 3 We say (AlBdaiwi and Bose, 2003, 2005; Bae and Bose, 1997;

Imani et al., 2010; Moinzadeh et al., 2008) that the labeled graph
〈

G; Ė
〉

(
∣

∣

∣
Ė
∣

∣

∣
≥

1) is the (m, d |G) -perfect placement (m ∈ {1, ..., µ (G)}, d ∈ {1, ..., D (G)},
where D (G) is the diameter of the graph G), Ė is the set of database processors
in the network G, if there exists a set Ė of minimum cardinality such that

[

∀
e∈{E(G)\Ė} :

∣

∣

∣

{

e′ ∈ Ė : d (e, e′|G) ≤ d
}∣

∣

∣
≥ m

]

∧

∧
[

∀{e∗, e∗∗}⊂Ė : d (e∗, e∗∗|G) > d
]

∧
[

(µ (e′′|G) = 1) ⇒
(

e′′ /∈ Ė
)]

. (2)

The (m, d |G)-perfect placement will be denoted by (m, d |G) d in order to dis-
tinguish it from the placement of type (m, d |G), in which the set Ė does not
need to be of minimum cardinality.

Note that (according to Definition 3) a set Ė in placement (m, d |G) is a par-
ticular kind of an externally stable set, i.e. a set of vertices no two of which are
adjacent and the subgraph 〈G (E,U)〉E(G)\Ė is an empty graph.

Denote by F(m, d)d (G) the set of (m, d |G)-perfect placements in the network
G.

Definition 4 The vector ω (f) =
(

ω1 (f) , . . . , ωD(f) (f)
)

for
(

f ∈ F(m, d) (G)
)

where ωi (f) =
∣

∣

∣

{

e ∈
{

E (G) \Ė
}

:
(

∃e′∈Ė : d (e, e′ |G) = i
)

}∣

∣

∣
is called access

characteristic (numbers of working processors of network G with a given dis-
tance to distributed database) for placement f .

Example 2 Figure 5 presents the examples of
(

m, d |H4
)

-perfect placements
by giving their access characteristics. The network H4 is presented in the form
H3

a⊗H3
b as well as in the form of torus (4 × 4). Note that the set Ė in

(

4, 1 |H4
)

-

perfect placement is a set of internally stable (U(
〈

E
(

H4) \ Ė
〉

H4

)

= ∅).

Example 3 Figure 6 presents six examples of (m, d |G)-perfect placement in
five selected networks G ∈ Ǧp

(

H4
)

for p ∈ {7, 8, 9} by giving their access char-
acteristics. Placements of f4 and f5 are determined for the same network.
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Figure 5. Examples of the
(

m,d |H4
)

-perfect placement

Figure 6. Examples of the (m,d |G)-perfect placements of database in five se-
lected networks

We are interested in the conditions of existence of (1, 1 |G), (1, 2 |G) and
(2, 1 |G) perfect placements, the algorithms for their determination and the
average number R(m,d |G)d (p) of working processors of the network of order p
with (m, d |G)-perfect placement of data resources.

3. Perfect placements in the network working structures

Let F(m, d) (G) be the set of (m,d |G)-perfect placements in the network G and

Ė (f), Ė(m, d) (G) - the sets of database computers of the network G for the
placement f ∈ F (m, d) (G).

Consider the algorithm for determining perfect placements (1, 1 |G), (1, 2 |G)
and (2, 1 |G) of G ∈ Ǧp

(

H4
)

and we determine (for these placements) the av-
erage number

ℜ(m,d|G)d (p) =
∣

∣

∣
Ğp(H4)

∣

∣

∣

−1 ∑

G∈Ğp(H4)

ν (G) (p−
∣

∣

∣
Ė(m,d)d (G)

∣

∣

∣
) (3)
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of working processors of the network of order p with the (m,d |G)-perfect place-
ment of data resources (with distinction of cyclic and acyclic structures).

The average number R(m,d |G)d (p) characterizes the loss of the network com-
puting potential (the number of working processors) along with the increase of
its degradation degree for the specified (m,d |G)-perfect placement.

Denote by
E(d) (e |G) = {e′ ∈ E (G) : d (e, e′ |G) ≤ d}

for d ∈ {1, . . . , D (G)} and by

Ê1 (G) =
{

e ∈ E (G) :
(

∃e′∈A(e) : µ (e′) = 1
)}

.

Note that

[

f ∈ F(1,1) (C)
]

=⇒
[∣

∣

∣
Ė (f)

∣

∣

∣
=

⌈

3−1 |E (C)|
⌉

]

for (C ∈ C (G)), and cyclic sequences λ(1,1) (|E (C)|) of numbers d (e′, e′′ |C)

for ({e′, e′′} ⊆ Ė (f)) have the form of λ(1,1) (4) = (2, 2), λ(1,1) (6) = (3, 3) and
λ(1, 1) (8) = (3, 3, 2) . Here, λ(1, 1) (|E (C)|) is the sequence of division of the
number |E (C)| .

Lemma 2
[

F(1, 1) (G) = ∅
]

⇔
[

∃{e′,e′′}⊂E(G):µ(e′)=µ(e′′)=1 :
(

A (e′) , A (e′′)
)

∈

U (G)
]

.

Proof. According to formula (2), the nodes adjacent to node e′ and node e′′

must belong to the set Ė, which contradicts it being an externally stable set.

The rules of determining the (1, 1|G)-perfect placement are as follows:

1. If G is a cyclic structure (G ∈ ĞC
(

H4
)

), then as the first node of the

set Ė (f) for
(

f ∈ F(1, 1)d (G)
)

we choose such a node ei1 ∈ E (G), whose

degree is the biggest one and the subgraph Ḡ(1) (G, ei1) =
〈{

E (G) \E(1) (ei1)
}〉

G
has the smallest number of consistent components.

Then, we determine a placement for every one of these consistent com-
ponents, wherein if a consistent component is composed of a single node,
then it belongs to the set Ė (f).

2. If G ∈ ĞC
(

H4
)

, then we determine the subgraph of G, which is a cy-
cle (in the sense of Definition (2)) C of the highest order and thus we
choose the nodes of the set Ė (C) so that they form a cyclic sequence
λ (1,1) (|E (C)|) and the expression

∑

e∈Ė(C)

µ (e|G) reaches the maximum

value. If ∃e′∈{E(G)\E(C)} :
{

E (e′|G) ∩ Ė (C)
}

= ∅ then e′ ∈ Ė (G).

3. If
[

G ∈ ĞA
(

H4
)

]

∧
[

¬∃{e′,e′′}⊆Ê1(G) : (e′, e′′) ∈ U (G)
]

, then we assume

that Ê1 (G) ⊂ Ė (f) and we determine Ė (f ′) for
(

f ′ ∈ F(1, 1) (G′′)
)

,
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where G′′ =

〈

E (G) \

{

⋃

e′∈Ê1(G)

E(1) (e′)

}〉

G

wherein each single-node

component (which can be treated as a consistent component) of the graph
G′′ belongs to the set Ė (f).

Example 4 In accordance with the above rules we determine the (1, 1|G)-
perfect placements for the networks G1 ∈ ĞA

11

(

H4
)

, G2 ∈ ĞC
9

(

H4
)

, and G3 ∈

ĞC
12

(

H4
)

(Fig. 7).

Figure 7. Illustration of the determination procedures of (1, 1|G)-perfect place-
ment for networks G1 ∈ ĞA

11

(

H4
)

, G2 ∈ ĞC
9

(

H4
)

and G3 ∈ ĞC
12

(

H4
)

According to the adapted rules the (1, 1|G)-perfect placements were deter-
mined for 192 network working structures (these placements do not exist for 12
structures), ten of which are shown in Fig. 8 and in Table 2. Then, Fig. 9 shows
the average numbers ℜ( 1,1|G)d (p) of working processors, depending on the order
of structures (p) with the distinction of cyclic and acyclic structures.

Now, let us denote by d (e|G) the biggest distance from the node e ∈ E (G)
to another node of the set E (G), while r (G) and D (G) (respectively) denote the
radius and the diameter of the graph G, i.e., r (G) = min {d (e|G) : e ∈ E (G)}
and D (G) = max {d (e′, e′′|G) : {e′, e′′} ⊂ E (G)}.

It is known that D (G) ≤ 2 r (G).
If d (e|G) = r (G), then the node e is called the central node of the network

G.
Let us denote EC (G) = {e ∈ E (G) : d (e|G) = r (G)}.

Example 5 The network G ∈ ĞA
9

(

H4
)

(see Fig. 10) has the radius r (G) = 3
and three central nodes.
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Figure 8. Examples of (1, 1|G)-perfect placements for a selected network G ∈
Ğp

(

H4
)

Table 2. The average numbers of working processors for (1, 1|G)-perfect place-
ment in the network G ∈ Ğp

(

H4
)

Note that D
(

H4
)

= r
(

H4
)

= 4 and
∣

∣

∣
F(1, 2)d

(

H̃4
)
∣

∣

∣
= 8.

Obviously [r (G) = 2] ⇒
[ ∣

∣

∣
Ė(1, 2)d (G)

∣

∣

∣
= 1

]

.

One can ascertain that
∣

∣

∣

{

G ∈ Ğp

(

H4
)

: r (G) = 2
}∣

∣

∣
= 23, wherein a numer-

ical series, defining the number of structures whose (1, 2|G)-perfect placement
is a placement with a central database has the form 6x6 + 7x7 + 6x8 + 4x9.

Note that
[

f ∈ F(1,2)d (C)
]

⇒
[∣

∣

∣
Ė (f)

∣

∣

∣
= 1 + ∇ (|E (C)| − 4 )

]

for ((a > 0) ⇒

(∇ (a) = 1) and (a ≤ 0) ⇒ (∇ (a) = 0)), where a = |E (C)| − 4, and ∇a is
bivalent function. The cyclic strings λ(1, 2) (|E (C)|) of numbers d (e′, e′′|C)

for
(

{e′, e′′} ⊆ Ė (f)
)

have the form λ(1, 2) (4) = (4), λ(1, 2) (6) = (3, 3) and

λ(1, 2) (8) = {(5, 3) , (4, 4)}.
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Figure 9. The average numbers of working processors in the network G ∈
Ğp

(

H4
)

with (1, 1|G)-perfect placement of database processors (indication:
solid line for cyclic network; dotted line for acyclic network)

Figure 10. Illustration of determination of the radius r (G) of the network
G ∈ ĞA

9

(

H4
)

The rules of determining the (1, 2|G )-perfect placement are as follows:

1. If G is a cyclic structure (G ∈ ĞC
(

H4
)

), as the first node of a set Ė (f)

for
(

f ∈ F(1, 2) (G)
)

we choose such a node ei1 ∈ E (G), whose degree is

the biggest one and the subgraph Ḡ(2) (G, ei1) =
〈{

E (G) \E(1) (ei1)
}〉

G
has the smallest number of consistent components. Then, we determine
a placement for every one of these consistent components, wherein if a
consistent component is composed of a single node, then it belongs to the
set Ė (f).

2. If G ∈ ĞC
(

H4
)

, then we determine a partial subgraph of graph G, which
is a cycle (in the sense of Definition 2) C of the highest order and we choose
the nodes of the set Ė (C) in such a way that they form a cyclic sequence of
λ(1,2) (|E (C)|) and the expression

∑

e∈Ė(C)

µ (e|G) reaches the maximum

value. If ∃e′∈{E(G)\E(C)} :
{

E (e′|G) ∩ Ė (C)
}

= ∅, then e′ ∈ Ė (G).

3. If
[

G ∈ ĞA
(

H4
)

]

, then we assume that Ê1 (G) ⊂ Ė (f) and we determine
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Ė (f ′) for
(

f ′ ∈ F(1,2) (G′′)
)

, where G′′ =

〈

E(G)\{
⋃

e′∈Ê1(G)

E(1) (e′)}

〉

G

,

wherein the single-node consistent component of the graph G′′ belongs to
the set Ė (f).

Example 6 In accordance with the above rules we determine the (1, 2|G) -
perfect placement for the networks G1 ∈ ĞC

13

(

H4
)

, G2 ∈ ĞA
12

(

H4
)

, and G3 ∈

ĞC
10

(

H4
)

(see Fig. 11).

Figure 11. Illustration of the determination procedures of (1, 2|G)-perfect
placement for networks G1 ∈ ĞC

13(H4), G2 ∈ ĞA
12(H4), and G3 ∈ ĞC

10(H4)

According to the established rules, the (1, 2|G)-perfect placements were
determined for 204 network working structures, ten of which are shown in Fig. 12
and in Table 3. Then, Fig. 13 provides the illustration for the average numbers
ℜ( 1, 2 |G)d (p) of working processors of the structure depending on its order p
with distinction of cyclic and acyclic structures.

Lemma 3
[

G ∈ ĞA
(

H4
)

]

⇒
[

F(2, 1) (G) = ∅
]

.

Proof. ∃e∈E(G) : µ (e) = 1 and according to Definition 1 (µ (e) = 1) ⇒
(

e /∈ Ė(m,d) (G)
)

, and thus |A (e)| < 2, which contradicts the definition of

(2, 1|G) -perfect placement.
Note that [f ∈ F(2,1)d(C)] ⇒ [ |Ė(f)| = 2−1|E(C)| ] (C ∈ C(G)), and the

cyclic sequences λ(2, 1)( |E(C)| ) of numbers d(e′, e′′|C ) ({e′, e′′} ⊆ Ė(f), f ∈
F(2, 1)d(C)) have the form of λ(2, 1)( 4) = (2, 2), λ(2, 1)( 6) = (2, 2, 2), and
λ(2, 1)( 8) = (2, 2, 2, 2).
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Figure 12. Examples of (1, 2|G)-perfect placements for a selected network
G ∈ Ğp

(

H4
)

Table 3. The average numbers of working processors for (1, 2|G)-perfect place-
ment in the network G ∈ Ğp

(

H4
)

Property 1 The coherent cyclic graph has a kernel if each cycle in this graph
is of evennumbered order (Richardson, 1953).

Property 2 If the cyclic network G has a kernel then F(2,1) (G) 6= ∅ because
∀
e∈{E(G)\Ė} : |A (e)| ≥ 2.

From Properties 1 and 2, the following property results directly:

Property 3 [G ∈ ĞC(H4)] ⇒ [(F(2, 1)(G) 6= ∅)] because each cycle in the graph
G is of the even-numbered order (Lemma 1).

Determining the placement f ∈ F(2,1)d (G) for
(

G ∈ ĞC
(

H4
)

)

is therefore rel-

atively simple and involves the determination of the set E∗ ⊂ E (G) that is
internally and externally stable and assuming that the set Ė (f) is of lesser
cardinality than the sets E∗ and E (G) \E∗.

The set E∗ can be determined in many different ways. One of them (applied
in this paper) is coloring the nodes of the graph G using two colors in such
a way that the nodes of the same color are not adjacent.

Figure 14 shows (2, 1|G)-perfect placements for five selected (out of 204)
networks of the set ĞC

p

(

H4
)

for p ≥ 6, and Table 4 and Fig. 15 present the
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Figure 13. The average numbers of working processors in the network G ∈
Ğp

(

H4
)

with (1, 2|G)-perfect placement of database processors (indication:
solid line for cyclic network; dotted line for acyclic network)

determined average numbers ℜC
( 2,1|G)d (p) of working computers of the network

of order p with (2, 1|G)-perfect placement of data resources.

Figure 14. Examples of (2, 1|G)-perfect placements for selected networks G ∈
Ğp

(

H4
)

4. Conclusions

We considered the conditions of existence of certain types of perfect place-
ments and the ways to determine them, and determined (1, 1|G), ( 1, 2|G) and
(2, 1|G)-perfect placements for the working structures of the 4-dimensional
cube type network with soft degradation for orders equal at least 6. This allowed
us (with the knowledge of geometrical forms of the working structures) to de-
termine the average number ℜ(m, d|G)d (p)

(

(m, d|G) ∈ {(1, 1|G) d, (1, 2|G) d,

(2, 1|G) d}
)

of the working processors of the network with the order p for a spe-
cific data resource placement (see Fig. 16).

The generalized cost of information traffic in a network for a given placement
of database computers depends on the nature of the tasks performed by the
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Table 4. The average numbers of working computers for (2, 1|G)-perfect place-
ment in the network G ∈ Ğp

(

H4
)

Figure 15. The average numbers of working computers in the network G ∈
ĞC

p

(

H4
)

with (2, 1|G)-perfect placement of database computers (for acyclic
networks such placement does not exist)

network. Such an analysis is not the subject of this paper. This is a separate
problem, which can be examined with the use of simulation methods for a
specified (m, d)-perfect placement and a particular type of task load of the
network.
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