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Abstract: A two-level classification scheme is considered where 
the first-level classifiers yield fuzzy decisions ( degrees of support) 
for a certain class. These values are further aggregated in order 
to arrive at a final degree of support and to infer the class label. 
The aggregation operation proposed here uses degrees of consensus 
between first-level decisions for strengthening or alleviating the final 
decision support. An experimental example is presented in order to 
compare the proposed rule with some other aggregation connectives 
with respect to the classification accuracy. 

1. Introduction

Two-level classification ( combination of multiple classifiers) is a discipline gain­
ing speed in the recent years althoug·h the idea emerged earlier, Barabash (1983), 
Dasarathy, Sheela (1979), Jozefczyk (1986), Rastrigin, Erenstein (1981). It 
stems from a decision making related experience that a collective of classifiers 
can exhibit a better overall classification performance than the best single clas­
sifier. The increasing interest in this direction has come to emphasize that, 
among the design criteria of a pattern c::lassifier, the computational complexity 
is being subsequently shifted to a secondary plan, leaving the primary one to the 
classification accuracy. In other words, more complex classification structures 
are justifiable if this improves the classification performance. 

Two main groups of two-level classification strategies may be distinguished 
depending on the type of the decisions of the first-level classifiers: Comple­

mentary and Competitive. Figure 1 shows a possible grouping of methods in 
two-level classification. 

The studies in the Complementary stream assume that one of the first-level 
classifiers should be given the right to make decision for each single object. The 
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main question is how to guess which of the classifiers is the best one for the ob­
ject being classified. Two approaches have been suggested. The first one is the 
so called "Change-glasses", see Kuncheva (1993), Mitra, Kuncheva (1994), Ho, 
Hull, Srihari (1994) (with another catchy name "divide-and-conquer", Chiang, 
Fu 1994) in which the classifier is supposed to "realize" its degree of competence 
and if it is below a certain threshold, the paradigm switches to another (more 
precise) classification rule. The reg-ions of uncertain decision may also be pre­
liminarily learned, as proposed in Chiang, Fu (1994), Kuncheva, Mitra (1994), 
Mitra, Kuncheva (1994). The second approach is to partition the feature space 
into predefined regions of competence, one for each classifier. The object is 
first analyzed in order to find out in which competence region it falls and then 
the respective classifier makes the decision, Dasarathy, Sheela (1979), Rastrigin, 
Erenstein (1981). It should be mentioned that this strategy has given rise to 
many heuristic pattern classification techniques. Sometimes they are not even 
designated as two-level classifiers although the idea is implied. 

The Competitive strategy seems to be the most commonly employed one. 
All the classifiers are supposed to yield classification decisions trying to guess 
the right class. Depending on what the classification outputs are (rank orders 
of the classes, Ho, Hull, Srihari 1994, Tubbs, Alltop 1991, posterior probabili­
ties, binary values denoting crisp class labels, Lam, Suen 1994, Wernecke 1992, 
etc.) different aggregation techniques should be applied, Xu, Krzyzak and Suen 
(1992). 

In the following it will be assumed that every first-level classifier yields a 
numerical estimate in the interval [O, 1] for each class. 

In a probabilistic framework, one could apply to this classification prob­
lem the so called consensus theory, Benediktsson, Sveinsson and Ersoy (1993), 
Benediktsson, Swain (1992), Bordley 1982, Ng and Abramson (1992). Having 
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originated from multisource data analysis, these methods have recently been 
considered in the context of two-level pattern recognition where the classifiers 
are supposed to yield estimates of the posterior probabilities for the classes. The 
consensus theory provides guidelines to combine the individual decisions into a 
final estimate under different hypothesis of their interdependence. 

When we treat the classifiers' outputs as degrees of acceptance, support, 
compliance, typicality, severity, strength of confirmation, etc., then the fuzzy 
aggregation rules appear to be more appropriate. 

The present paper considers a fuzzy statement of a competitive strategy 
for two-level classification. A fuzzy operation is proposed for aggregating the 
decisions of several classifiers expressed as degrees of support for a given class. A 
refusal option is embedded at the second stage, which means that the decision 
concerning a given class includes the following three alternatives: {Yes, No, 
Refuse to decide}. The fuzzy aggregatipn rule itself is based on a degree of 
consensus between the first-level classifiers. The higher the degree, the greater 
the support to either positive or negative decision. The rule uses explicitly 
an aggregation connective that could be selected among the existing ones. As 
an appealing option we propose to use the OWA operators Yager (1987;1988) 
for such an aggregation. Sections 2 and 3 contain a formal statement of the 
problem along with some comments on the existing aggregation rules and their 
applicability to the two-level classification. The aggregation rule is described in 
Section 4. Section 5 presents an experimental illustration. 

2. Two-level classification

The design process of a two-level classifier consists of two main steps: (1) Choice 
and training of the first-level classifiers; (2) Choice of the aggregation rule. 
The first stage, although tightly connected with the final result, will not be 
considered here. Only the surprising fact is worth mentioning that a vast number 
of authors consider neural networks as the first-level classifiers Alpaydin (1993), 
Battiti, Colla (1994), Benediktsson, Sveinsson and Ersoy (1993), Chiang, Fu 
(1994), Filippy, Costa, Pasero (1994), Hashem, Schmeiser, Yih (1994), Huang, 
Suen (1994), Jordan, Jacobs (1992), Nadal, Legault, Suen (1990), Poddar and 
Rao (1993), Sung-Bae, Kim (1992). It can be argued that much simpler and 
equally powerful conventional pattern classification techniques might lead to 
similar results. Perhaps the neural networks classifiers are preferred due to 
their ability to learn complex classification boundaries, neglecting sometimes 
the eventual generalization problems. 

Formally, the second stage of the two-level classification paradigm can be 
directly mapped onto the decision making task ( this analogy has been implied 
in almost all papers concerning the topic). Let n = { w1, ... , w M} be the set 
of classes (alternatives) and let x be an object generated by one of them (in 
general we can regard x as ad-dimensional feature vector). The problem to be 
solved is to infer the correct class knowing the classification decisions (individual 
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preferences) of L classifiers ( decision makers). Let R = { R1 , . . .  , RL } be the 
set of classifiers and let rij denote the assessment of the i-th classifier with 
respect to the j-th class .. The term "decision profile" will be used to denote 
the L x M matrix [rij], Values rij may denote degrees of support, strength of 
evidence, confidence, belief, acceptance rate, etc. Once they are to be used in a 
competitive type of a two-level classifier, we assume that they assess the same 
value (e.g. a degree of support) in the same scale. 

The two-level classification environment considered here is characterized by 
the following additions to the classical pattern recognition setting: 

• All classifiers operate simultaneously without interacting during the first­
level classification process.

• All data of the object to be classified are supplied to the input of each
classifier. Nevertheless, a classifier may be restricted to using only a subset
of features "masking" the redundant ones.

The problem of inferring the correct class corresponds straightforwardly to 
the one of choosing the best alternative. It can be solved by using an appropriate 
aggregation rule. The objective, from a classification point of view, is to surpass 
the single-level classifiers with respetc to classification accuracy. 

The "refuse" option is usually introduced when the cost of making a wrong 
decision is too high. The classifier is supposed to be able to measure a degree of 
confidence and to refuse to specify a class label in case of a low confidence. The 
two-level classification IS especially convenient for such type of decision making 
because the classifiers can be regarded as experts and the confidence can be 
measured by the degree of consensus between them. In the ideal case the refuse 
rate R should be kept as low as possible while the accuracy A should be as 
high as possible. The result can be visualized as a curve A(R) on an Accuracy­
Refuse plane. It can be formally proven that refusing to decide on the objects 
with lowest values of the maximal posterior probabilities leads to an increasing 
function A(R), Battiti, Colla (1994). 

3. Aggregation rules

The choice of an optimal aggregation rule in the sense of the highest attainable 
classification accuracy requires the complete knowledge of probabilistic char­
acteristics of the first-level classifiers which in most practical instances is not 
feasible. It can be shown that the approximation of the posterior probabilities 
as precisely as possible is a sufficient but not a necessary condition for obtain­
ing an optimal two-level classifier. That is, we can elude a precise estimation 
(implied in the consensus theory) still being able to arrive at a good solution. 

Furthermore, if we consider the outputs of the first-level classifiers in their 
fuzzy context, some constraints drop (e.g. the orthogonality property stating 
that the degree of support that each classifier yields for the classes should sum up 
to 1). Therefore, what seems to be particularly attractive is that this alleviation 



Fuzzy aggi-egation of multiple classification decisions 341 

allows to use a rich palette of aggregation rules offered by fuzzy decision mak­
ing. The rules range from the simplest max-min ones to the more sophisticated 
preference analyses, outranking theory, hybrid aggregators, etc. Krishnapu­
ram, Lee (1992), Ramakrishnan, Rao (1992), Yager (1987;1988), Zimmermann 
(1987), Zimmermann, Zysno (1983). 

Let us first consider the decision profile containing posterior probabilities, 
i.e. rij = Pi(wj/x). If all classifiers use the same features and yield the Bayesian 
posterior probabilities, then Pi(wj/x) = . . .  = PL(wj/x) = P (wj/x). There is 
no need to build a two-level scheme since the optimal decision can be obtained 
using any of the classifiers. Let us suppose, however, that the classifiers use 
conditionally independent subsets of features x(ll, xC2l, . . .  , x(L) which form a 
partition on the set of features X, i.e. 

LJ x(i)=X; x(i)nxUl=0, \/i,j=l, ... ,L, i-=/-j (1) 
i=l, ... ,L 

Then the problem becomes to find a proper aggregation function in order to 
obtain the Bayesian posterior probability at the second level. Let p(xdwj ) be 
the conditional probability density functions (p.d.f.s) for xi, Xi taking values in 
the space defined by the subset of features x(i), i = 1, . . .  , L. Let P( Wj) be the
a priori probabilities for the classes, and p(xi) the unconditional p.d.f.s. The 
following formula expresses the posterior probability of correct classification at 
the second level 

(2) 

where M ( x) denotes a coefficient that does not depend on the class labels and, 
therefore, does not affect the classification decision, given x. In terms of the 
decision profile, the optimal aggregation in the Bayesian sense leads to the 
following formula: 

L 

rj (x) = mjM(x) IT Tji(x). (3) 
i=l 

where mj is a parameter independent of x. The above formula answers the ques­
tion for the optimal aggregation rule in case of the Bayesian first-level classifiers 
based on conditionally independent subsets of features. It has been observed in 
a simulation experimental study of Ng and Abramson (1992) that in real tasks 
the above formula is weaker than other aggregation rules. This can be explained 
by its rather restrictive underlying assumptions. In real problems, neither the 
classifiers are Bayesian, nor the subsets of features are completely independent. 
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Then, other aggregation rules may be more appropriate. This is even more true 
when the values in the decision profile do not correspond to probabilities but to 
other characteristics that may not be clear cut. 

The most popular choices are the weighted average although the use of a lot 
of different rules is equally justifiable ( or better: equally not justifiable) with 
respect to the classification accuracy. Among these the following ones can be 
mentioned (see Krishnapuram, Lee, 1992, for more details): 
The Generalized Mean Operator (p E [O, 1]) 

The Multiplicative ,'-Operator ("YE [O, 1]) 

The Additive ,'-Operator 

A special family of aggregation rules are the so called Ordered Weighted A verag­
ing (OWA) operators Yager (1987;1988). This definition provides an abstraction 
which can conveniently handle heuristic views on the combination of the esti­
mates ( e.g. in forms of linguistic quantifiers). An OWA operator is presented by 
a weight vector W containing L values in the interval [O, 1] which are associated 
with the ordered estimates. That is, the first weight is to be multiplied by the 
maximal one among the estimates, and the last weight, by the minimal value. 

Formally, an OWA operator can be expressed as 

L 

rj(x) = L wibi(x)
i=l 

where bi(x) is the i-th largest element in the collection rj1(x), ... ,rjL(x). In 
this formalism, the most popular aggregation rules can be expressed by the 
respective weight vector W: 

[1/ L, 1/ L, ... , 1/ Lf : Averaged Classi.fier 

[1, 0, ... , Of : Optimistic Aggregation Rule 

[O, 0, ... , l] T : Pessimistic Aggregation Rv,le 

(4) 

(5) 

(6)
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Following this representation one can define a lot of combination rules to reflect 
one's hypothesis about the relationships between the estimates, e.g. 

[0, 1, 0, ... , 0] : The R11.le of the Second Highest Maxim11.m

[0, 0, ... , 1, 0] : The R11.le of the Second Lowest Minim11,m 

[O, 1/(L - 2), 1/(L - 2), ... , 1/(L - 2), O] : 
The R11,le of the Competition ]11,ry 

(7) 

(8) 

(9) 

These latter rules can be thought of as expressing the belief that the maximal 
and minimal estimates might be outliers. 

Many other rules can be formulated stating appropriate profiles on the weight 
vector. 

4. The proposed fuzzy aggregation rule

A wide group of aggregation methods are based on the concept of a consen­
sus, see Berenstein, Kanal, Lavine (1986), Bezdek, Spillman, Spillman (1979), 
Day (1988), Fedrizzi, Kacprzyk, Zadrozny (1988), Fedrizzi, Kacprzyk (1989), 
Ho, Hull, Srihari (1994), Kacprzyk (1986), Kacprzyk, Fedrizzi, Nurmi (1992), 
Kuncheva (1994;1995), Zimmermann (1987). Although consensus is tradition­
ally meant as a full and unanimous agreement we will adopt that it is a mea­
surable parameter whose ultimate value corresponds to unanimity. A lot of 
excellent arguments in favor of continuous-valued measuring of the consensus 
have been raised in the literature (see, e.g., Kacprzyk, Fedrizzi, Nurmi 1992). 
Usually, the degree of consensus is used to monitor the evolution of group prefer­
ences or to form a set of alternatives that obey certain consensus requirements. 
Here we propose an aggregation rule that uses explicitly the degree of consensus 
between the decision makers. The main idea is to strengthen the acceptance or 
rejection rate of an alternative if the decision makers agree in their assessments 
on either of these. More formally this can be expressed by: 

• if the decisions agree on an aggregated value above a certain threshold
T from the interval (0, 1) we could increase the strength of support (the
acceptance rate);

• if the decisions agree on an aggregated value below T we could even more
"depress" the support;

• if the decisions disagree (regardless of the fact whether the resultant value
is greater or less than T) there are no reasons to change the aggregated
value in either direction.

A model of neuron whose transition function implements the above rationales 
is proposed in Kuncheva (1994). 

Let only one class be considered at a time, and let y = [Y1, ... , YLJ T denote 
the individual degrees of support of this class. We denote by K(A(y), C(y), T) E 
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[O, 1] the proposed aggregation rule where A(y) stands for a conventional aggre­gation rule, C(y) is a degree of consensus between the individual decisions Yi i = 1, ... , L, and T is a  preliminarily fixed threshold. The following formula for 
K is proposed: 

. 
1 

K(A(y), C(y), T) = -�------

1 + 
1TT exp(-o:C(y)(A(y) - T))

(10) 

where o: is a constant determining the strength of the influence of the degree of consensus on the final value. Note that a classical aggregation rule participates explicitly in the formula. Its value is only modified by the degree of consensus. If A(y) and C(y) are symmetric with respect to their arguments, K is also symmetric. Since the derivative of Kon C is positive for A(y) > T, and negative otherwise, the formula guarantees that the greater the degree of consensus, the stronger the acceptance support (if the aggregated value is above T) and the greater the degree of consensus, the stronger the rejection support (if the aggregated value is below T). The way of measuring the degree of consensus C(y) is another theme that has been partially discussed in Kuncheva (1992) (without being exhaustively studied). In order to visualize the difference between a conventional aggregation rule and the proposed formula, the following problem is considered: 1. Let y = [Yi, Y2f E [O, 1 ] 2 be the vector containing the degree of supportfor an alternative provided by two first-level decision makers. Let Yi = 0denote total rejection and Yi = 1 - total acceptance, i = 1, 2.2. Since there are a lot of ways to introduce different competence of theexperts, we will confine the discussion to the case of equal competence3. After calculating the degree of support, we have to make a crisp decisioneither accepting or rejecting the alternative. We wish also to supply therule with the ability to reply "refuse to decide". This can simply be doneby choosing two thresholds: T accept and T reject and implementing therule:
{ accept, if F S > T accept Final Decision = reject, if F S < T reject refuse to decide, otherwise. The notation FS is used here for the value of the final support. In the case of classical aggregation rules it will be A(y). In our case F S stands for K(A(y), C(y), T). 4. As a measure of consensus we will use the Highest Discrepancy, Kuncheva(1992) defined by

C(y) = 1- . _max [Yi - YJI• (11) 
i,J=l, ... ,L which for the current example is: 

C(y) = 1- IY1 - Y2I-
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Fig. 2 shows an example of decision surfaces for A(y) and K versus y1 and 
Y2 with A(y) = min{y1, y2} (pessimistic aggregation). 

5. An illustrative example

The early detection of a hyaline membrane disease of a newborn is a problem 
of vital importance because the decision determines the necessary further treat­
ment. Normally a clinical manifestation of the disease is highly obscured and 
a correct diagnosis is difficult to be stated. (It should be noted that our ex­
perimental study has only an illustrative meaning and is not supposed to give 
meaningful medical results). There is a high risk a premature newborn to be 
affected by this particular disease due to the immaturity of lungs. The problem 
is to predict whether the infant will suffer from a hyaline membrane disease 
or not, using some parameters measured before or immediately after delivery 
and others taken from the mother's history. A set of 6 parameters has been 
used including: birth weight, gestation age and maturity of the baby, Apgar 
index at two subsequent time moments after delivery, and blood pH. Due to a 
preliminary analysis the first and the last one have been excluded from further 
considerations. We will refer to the respective parameters as X1 ,X2,X3 , and 
X4. The sample consists of 99 cases, 51 healthy and 48 affected children. 

In order to form the first-level decisions, the linear discriminant analysis 
(LDA) was used on each variable. The degree of support of the hypothesis of 
being affected was measured by the posterior probability as estimated by the 
LDA program. These values are regarded as y;-s: the individual classification 
decisions subject to aggregation. 

The main goal of the experiment was to compare the behavior of the pro­
posed rule with that of the respective aggregation connective embedded in the 
formula and, eventually, to demonstrate its advantages. For clarity it has been 
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decided to use an equal competence of the experts since any adjustment of the 
weights could insert an artifact. Therefore, because of the nonoptimality of the 
aggregation, the absolute value of the classification accuracy provided by the 
aggregated decision may not be better than the best single one. This fact may 
hold true both for the simple aggregation rule and for its consensus modifica­
tion through Kand will not be further commented. Two measures of consensus 
have been used, see Kuncheva (1992): the Highest Discrepancy (introduced ear­
lier (11)), and the Integral Highest Discrepancy measuring the highest deviation 
from the mean value: 

C(y)=l-_max IYi-YI 
i=l, ... ,L -

(12) 

where y is the mean value of Yi - s. For convenience the two measures will be 
called C'i, (12), and C2, (11), respectively. 

The following aggregation rules have been tried: (P) the Pessimistic Aggre­
gation Rule (6), (PP) the Rule of Second Minimum (8), (0) the Optimistic 
Aggregation Rule (5), (00) the Rule of Second Maximum (7), (AV) the Av­
eraged Classifier ( 4), ( J) the Rule of the Competition Jury (9), ( G) and The 
Geometric Mean: a logarithmic aggregation rule akin to that presented by (3). 
(The bold notation correspond to these in the table.) 

Each rule has been applied individually, and then through the proposed 
fuzzy consensus aggregation rule K.

The experiment included a smooth changing of the acceptance and rejection 
thresholds in a conjugated manner, i.e. Taccep

t = 1 - Treject, so that Taccep
t 

increases from 0.5 to 1, and Treject decreases respectively. The points for which 
F S ( K or A(y)) exceeded T accep

t have been assigned to the class "affected" while 
those below Tre.fect, to the class "healthy". The points in between have been 
designated for "refuse". Usually, the classification results when the classifier has 
a refuse option are visualized on the plane A vs. R where A is the probability 
of correct classification of the accepted objects, and R is the overall probability 
of refuse (sec Battiti, Colla, 1994). The ideal point in the plane (R, A) is that 
defined by coordinates (0, 1). A criterion that can simultaneously account for 
A and R can be defined as follows: 

U =>-A+ (1 - >-)(1 - R) 

with A being a parameter in the interval [O, 1]. By changing monotonically 
Taccep

t (respectively T reject) the A(R) curve is obtained for each aggregation 
rule. In order to assess the curve we measured the average values of U along 
the curve. These values for the considered aggregation rules with several values 
of the parameter A arc presented in Table 1 along with those for the individual 
classifiers (the features). We have restricted the refuse rate R to vary up to 0.8 
since for its higher values the assessment of the accuracy is based on too few 
objects and the result may be spurious. 
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,\ 0.6 0.7 0.8 0.9 
X1 0.595 0.605 0.614 0.624 
X2 0.680 0.696 0.711 0.726 
Xs 0.687 0.695 0.703 0.710 
X4 0.728 0.753 0.779 0.804 
p 0.674 0.700 0.726 0.751 
K(P, C1) 0.715 0.712 0.708 0.705 
K(P, C2) 0.709 0.709 0.709 0.709 
pp 0.712 0.729 0.745 0.762 
K(PP,C1) 0.749 0.752 0.755 0.758 
K(PP, C2) 0.738 0.745 0.752 0.759 
0 0.631 0.650 0.669 0.688 
K(O,C1) 0.704 0.702 0.700 0.698 
K(O,C2) 0.701 0.703 0.705 0.707 
00 0.669 0.693 0.718 0.742 
K(OO,C1) 0.732 0.738 0.744 0.750 
K(OO,C2) 0.726 0.738 0.749 0.760 
AV 0.735 0.754 0.774 0.794 
K(AV,C1) 0.763 0.771 0.780 0.788 
K(AV,C2) 0.754 0.765 0.777 0.788 
J 0.659 0.684 0.709 0.734 
K(J, C1) 0.730 0.724 0.718 0.713 
K(J, C2) 0.722 0.721 0.720 0.719 
G 0.730 0.754 0.777 0.801 
K(G,C1) 0.767 0.775 0.784 0.793 
K(G,C2) 0.756 0.767 0.779 0.790 

Table 1. Average values of U for different ,\ 
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Figure 3. 

It can be seen from the table that in most cases the proposed fuzzy consensus 
aggregation rule surpasses the embedded classical one. The two extreme cases 
are visualized in the plane A vs. R, in Figs. 3 and 4 respectively. The Averaged 
Classifier ( 4) appears to be the worst case according to the criterion U. It can be 
seen, however, that the curves defined by the rule without consensus and with 
consensus are quite comparable (Fig.3), even for some R the proposed rule is 
better. The best case is the Optimistic Aggregation Rule (5) where both curves 
obtained with consensus dominate the one without consensus (Fig.4). Note that 
in the above considerations, the final classification result is obtained regardless 
of what the type of the first-level classifiers is, provided they assess the same 
value in the same scale. 

6. Discussion and conclusions

From the above considerations it can be concluded that the proposed aggrega­
tion formula including explicitly the degrees of consensus between the decision 
makers provides a versatile tool for decision support. It seems heuristically plau­
sible since in the regions where the decision makers highly disagree, the crisp 
decision (either acceptance or rejection) becomes less likely to be made. On the 
other hand, the formula is more "generous" in cases where the decision makers 
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agree, even though without much confidence as to the crisp decision. 

0.8 

349 

The experimental illustration shows equal or better performance of the pro­
posed formula compared to that of the respective conventional aggregation rule. 
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