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Abstract: The Moore-Gibson-Thompson [MGT] dynamics is con-
sidered. This third order in time evolution arises within the context
of acoustic wave propagation with applications in high frequency
ultrasound technology. The optimal boundary feedback control is
constructed in order to have on-line regulation. The above requires
wellposedness of the associated Algebraic Riccati Equation. The
paper by Lasiecka and Triggiani (2022) recently contributed a com-
prehensive study of the Optimal Control Problem for the MGT-third
order dynamics with boundary control, over an infinite time-horizon.
A critical missing point in such a study is the issue of uniqueness
(within a specific class) of the corresponding highly non-standard
Algebraic Riccati Equation. The present note resolves this problem
in the positive, thus completing the study of Lasiecka and Triggiani
(2022) with the final goal of having on line feedback control, which
is also optimal.

Keywords: uniqueness, non-standard algebraic Riccati equa-
tion, Moore-Gibson-Thompson equation

1. Introduction

The Moore-Gibson-Thompson (MGT) equation is a prominent example of a
Partial Differential Equation (PDE) model, which describes the acoustic velocity
potential in wave propagation. The well known applications thereof are in the
area of High Frequency Ultrasound, where acoustic waves propagate through a
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closed environment (detection of tumors, lithotripsy, welding). In addition, the
MGT model removes the paradox of infinite speed of propagation of thermal
signals by the use of the constitutive Cattaneo law for the heat flux, in place of
the Fourier law. This then results in the presence of a third-order derivative in
time, thus yielding a third order dynamics in time. Most important is the fact
that the resulting dynamics changes character - from parabolic to hyperbolic.
The latter is associated with much compromised regularity of solutions - making
the quantitative analysis of the solutions challenging. While the model has been
known and used in the context of applications for a long time, the mathematical
analysis of the underlined dynamics is relatively new. It was the recent decade
that has witnessed a quite intense set of activities in the area, mostly with
respect to the quantitative theory of wellposedness of solutions (both linear and
nonlinear), as well as their stability. New techniques have been developed in
order to study the system, see Kaltenbacher (2015), Kaltenbacher, Lasiecka and
Pospieszalska (2012), Kaltenbacher, Lasiecka and Marchand (2011), Marchand,
Mc Devitt and Triggiani (2012).

A natural step forward is to consider the control problems, associated with
such third order dynamics. Of particular interest are then boundary control
problems, where the action of control is confined only to a portion of the bound-
ary. From a physical point of view, this is the most interesting case, as only a
small portion of the affected boundary may be accessible to external manipu-
lations. One of the main challenges, faced at the start is the low regularity of
solutions (due to hyperbolicity) when activated by non-smooth controls. Note
that in the case of parabolic-diffusive dynamics, roughness of the data is immedi-
ately counteracted by the smoothing effect of analyticity, exhibited by parabolic
models. This does not happen in hyperbolic-like models. New tools and a better
understanding of the underlying dynamics are necessary.

In fact, such task has been initiated in Bucci and Lasiecka (2019), where
optimal boundary control on a finite time horizon only has been considered.
This has been followed by Lasiecka and Triggiani (2022), where the infinite
time horizon is studied with L2 only boundary controls. The construction
developed in Lasiecka and Triggiani (2022) leads to a feedback control from the
boundary, which also produces uniform stability of the the model. The feedback
control constructed is based on the solvability of an appropriate - nonstandard -
Riccati equation. The attribute ‘nonstandard’ comes in two flavors: first, from
the algebraic structure due to the presence of the third time-derivative in the
model; second, from the gain operators (feedback operators) that are heavily
unbounded and need an appropriate interpretation via regularity theory. The
latter is due to the boundary nature of the controls, which interact with the
non-smooth dynamics. While the optimal solution is represented in a feedback
form via an appropriate solution of the Algebraic Riccati Equation (ARE), in
order to have full confidence in an on-line construction, one needs to assure that
the computed Riccati solution is unique within a specified class. This aspect
is challenging, due to the much compromised smoothness of boundary controls.
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The importance of uniqueness of the ARE solution is further elaborated in more
details, in Remark 1.1, at the end of Section 1. All this brings us to the main goal
of the present paper: to show that the solution to highly non-standard Algebraic
Riccati equation, obtained in Lasiecka and Triggiani (2022) is unique (within a
specified class) - so that the resulting on-line feedback construction, emanating
from such solution, is the correct one, leading to the optimal actuation of the
given Optimal Control Problem. Only then one can be confident that solving
only algebraic equation is sufficient to obtain on-line dynamic feedback, which
is optimal.

To achieve this goal we shall start from the paper of Lasiecka and Triggiani
(2022). After briefly recalling only the needed results of Lasiecka and Trig-
giani (2022), we shall proceed with the proof of uniqueness, which is inspired
by our prior developments (Lasiecka, Lukes and Pandolfi, 1995; Lasiecka, Pan-
dolfi and Triggiani, 1997; Triggiani, 1994a,b). The technical issue to contend
with is due to the algebraic (rather than differential) nonstandard structure
of the ARE with unbounded coefficients. The latter is the consequence of the
hyperbolicity of the dynamics. The references mentioned just before deal only
with parabolic-analytic structures. To overcome the difficulties one needs to ex-
hibit propagation of some regularity through the functional cost and the related
optimization. This is accomplished in Section 4.

2. The OCP for the MGTJ equation with boundary control: a
selected review from Lasiecka and Triggiani (2022)

2.1. The developement

The present paper is a successor to Lasiecka and Triggiani (2022), which studies
an Optimal Control Problem (OCP) for the third order (in time) MGT equation
defined on a, say, 3-d bounded domain Ω, with boundary ∂Ω = Γ = Γ0 ∪ Γ1,
which is reflected in Fig. 1. With reference to a physically significant case that
we wish to cover, the resulting 3-d domain is obtained by rotating the 2-d section,
shown in Fig. 1, around the vertical axis of rotation, passing through the focus
point. The resulting spherical part at the bottom of the domain is the part Γ0

of the boundary, shown in Fig. 2. It is convex and satisfies the geometrical
conditions (ii) of Theorem 2.2. The equation in the acoustic pressure u(x, t)
is subject to dissipation in the Neumann boundary control over the portion Γ1

of the boundary, and control function g in the Robin boundary control of the
complementary portion Γ0 of the boundary:





uttt + αutt − c2∆u− b∆ut = 0 in Q ≡ Ω× (0,∞)

∂νu+ ut = 0 on Σ1 ≡ Γ1 × (0,∞)

∂νu+ ℓu = g on Σ0 ≡ Γ0 × (0,∞)

u(·, 0) = u0; ut(·, 0) = u1; utt(·, 0) = u2 in Ω.

(2.1a)

(2.1b)

(2.1c)

(2.1d)
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Figure 1. Illustration of the domain. The “red” convex portion of the boundary
displays the control region Γ0. The remaining part of the boundary - with no
geometric constraints - represents the area Γ1 of absorption. The picture is
courtesy of B. Kaltenbacher

Here, in line with the literature, c2, b > 0 are appropriate physical constants.
We also take α > 0, though this is not critical. Instead, taking the constant
ℓ > 0 (Robin boundary control) has the attractive implication of Theorem 2.2
below over the case ℓ = 0 (Neumann boundary control). We refer to Bongarti,
Lasiecka and Triggiani (2022), and Bongarti, Lasiecka and Rodrigues (2022) for
recent work on problem (2.1a)–(2.1d). Here, we point out that the above mixed
problem yields a non-standard (pathological) abstract model, see (2.6) below,
which, in turn, is responsible for a non-standard (pathological) OCP, recently
studied in Lasiecka and Triggiani (2022). Though pathological with respect to
more traditional boundary control problems, as in Lasiecka and Triggiani (2000),
the theory, achieved in Lasiecka and Triggiani (2022), is comprehensive. Because
of space limitations, accorded to contributions of a special volume, the issue of
uniqueness of the solution of the corresponding very non-standard (pathological)
Algebraic Riccati Equation (ARE) – (2.21) below – was not treated in Lasiecka
and Triggiani (2022). It is the object of the present note, see Theorem 2.4
below, following the announcement made in Lasiecka and Triggiani (2022). For
purposes of brevity, we shall recall below only these results of Lasiecka and
Triggiani (2022), which are needed for the proof of uniqueness, given in Section
4 of the present paper. The importance of the uniqueness issue is elaborated in
Remark 2.1, at the end of Section 2.
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Figure 2. The boundary Γ0

The optimal control problem. Our notation is the same as in Lasiecka and
Triggiani (2022). With reference to problem (2.1a)–(2.1d), we let

y(t) = [u(t), ut(t), utt(t)]; y0 = [u0, u1, u2] ∈ Z = [D(A∗2)]′;

g ∈ L2(0,∞;U); U ≡ L2(Γ0) (2.2)

Y ≡ D(A
1

2 )×D(A
1

2 )× L2(Ω); D(A
1

2 ) ≡ H1(Ω). (2.3)

Here, A is the realization of −∆ in L2(Ω) with appropriate boundary conditions,
where ν is the outward normal vector to Γ:

Au = −∆u,

D(A) =

{
u ∈ L2(Ω) : ∆u ∈∈ L2(Ω),

∂u

∂ν

∣∣∣∣
Γ1

= 0;

[
∂u

∂ν
+ lu

]

Γ0

= 0

}
⊂ H2−ǫ(Ω)

(2.4)

for ǫ > 0 arbitrary, while A is the 3× 3 operator on the space Y , that provides
the abstract model of the problem (2.1a)–(2.1d) with g ≡ 0:

d

dt



u

ut

utt


 = A



u

ut

utt


 , or

dy

dt
= Ay, g ≡ 0. (2.5)

It is given in Lasiecka and Triggiani (2022), Eq. (2.13). Its specific form is
not strictly needed in the present paper. Only its properties, which are critical
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here, will be noted. More specifically, the abstract model of the mixed problem
(2.1a)–(2.1d) is given by

y(t) = eAty0 +B1g(t) + (L0g)(t) (2.6a)

(L0g)(t) ≡

∫ t

0

eA(t−s)B0g(s)ds+A

∫ t

0

eA(t−s)B1g(s)ds. (2.6b)

Here, B0, B1 are suitable (unbounded) boundary operators, whose specific form
is again strictly not needed in the present paper, see Lasiecka and Triggiani
(2022), Eq. (2.17). Some critical properties are noted below:

A−1B0, A
−2B1 : compact U ≡ L2(Γ0) → Y (2.7a)

B ≡ B0 +AB1 : compact U ≡ L2(Γ0) → Z ≡ [D(A∗2)]′. (2.7b)

Theorem 2.1 (Well-posedness of the boundary homogeneous prob-
lem, g ≡ 0) The (free dynamic) operator A in (2.5), modeling the problem
(2.1a)–(2.1d) for g ≡ 0 generates s.c. semigroup eAt on the space Y , hence on
Z = [D(A∗2)]′, see (2.9) below.

The domain of A(= Aext) as extended on Z is {x ∈ Z : Ax ∈ Z}, equiva-
lently s.t. A−2Ax ∈ Y , equivalently A−1x ∈ Y or x ∈ [D(A∗)]′.

Theorem 2.2 (Uniform stability of eAt on Y and Z) Let g ≡ 0 in (2.1c).
Assume

(i) γ = α− c2

b
≥ 0, ℓ > 0;

(ii) geometric condition on Γ0:

(ii1) Γ0 is either flat or convex;

(ii2) there exists some point x0 ∈ R
n such that (x − x0) · ν ≤ 0 for all

x ∈ Γ0.

Then, there exist constants C ≥ 1, ω > 0 such that the semigroup solution,
guaranteed by Theorem 2.1, satisfies

‖y(t)‖Y = ‖eAty0‖Y ≤ C‖y0‖Y e
−ωt, t > 0 (2.8)

‖eAtz0‖Z = ‖A−2eAtz0‖Y = ‖eAtA−2z0‖Y ≤ M‖z0‖Ze
−ωt, A−2z0 ∈ Y, t ≥ 0.

(2.9)

The Observation operator R is a (smoothing) operator, which satisfies the
following assumptions





R = R∗ in Y, RA2 ∈ L(Y ), equivalently R ∈ L(Z;Y );

RBi : compact U → Y ; i = 0, 1, (2.10a)

so that RR∗ : [D(A∗)]′ → D(A) continuously,

or ARR∗A−1 ∈ L(Y ) (2.10b)
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where Bi, i = 0, 1, are the (unbounded) boundary operators in (2.6), (2.7), see
Lasiecka and Triggiani (2022), Eq. (2.17). Again, here we shall need only their
properties. Next, we introduce the following cost functional

J(g, y) =

∫ ∞

0

[
‖Ry(t)‖2Y + ‖g(t)‖2U

]
dt (2.11a)

and set up the corresponding OCP:

Minimize J(g, y) over all g ∈ L2(0,∞;U),

where y is the solution of the problem (2.1a)–(2.1d) or (2.6a)–(2.6b)

due to g and y0 ∈ Z. (2.11b)

Relative to the OCP (2.11), the main result of Lasiecka and Triggiani (2022) is

Theorem 2.3 With reference to the control problem OCP, formulated above for
the problem (2.1a)–(2.1d) or (2.6a)–(2.6b), the following results hold true:

1. Existence of a unique optimal pair and corresponding regularity. For any
I.C. y0 ∈ Z, there exists a unique optimal pair {ĝ(·; y0), ŷ(·; y0)}, with
ĝ(·; y0) optimal control, ŷ(·; y0) the corresponding optimal solution, such
that

ĝ(·; y0) ∈ C([0,∞);U); Rŷ(·; y0) ∈ C([0,∞);Y ); and ŷ(·; y0) ∈ C([0,∞);Z).

(2.12)

2. Riccati operator. There exists a positive self-adjoint operator P on L(Y ),
defined by

Py =

∫ ∞

0

eA
∗τR∗Rŷ(τ ; y)dτ, y ∈ Y, (2.13)

such that

A∗2PA2 ∈ L(Y ), equivalently, P ∈ L(Z ≡ [D(A∗2)]′;D(A∗2)),
(2.14)

B∗

1A
∗P ∈ L(Y ;U), (2.15)

Ĵ(y0) = (Py0, y0)Y , y0 ∈ Z, in the duality D(A∗2) → [D(A∗2)]′,
(2.16)

where

Ĵ(y0) = J(ĝ(·; y0), ŷ(·; y0)) = optimal cost in (2.11) for y0 ∈ Z. (2.17)

Further properties of P (regularity)

(i) Complementing (2.14)

P ∈ L([D(A∗γ1)]′;D(A∗γ2)) for any γ1, γ2 ≤ 2; A∗γ2PAγ1 ∈ L(Y ).

(2.18)
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(ii) As a consequence of (2.7a) and (2.18) with γ1 = γ2 = 2, i.e. of
(2.14),

B∗

i PA2 = (B∗

i A
∗−2)(A∗2PA2) ∈ L(Y ;U),

equivalently B∗

i P ∈ L(Z;U), i = 0, 1. (2.19)

(iii) Thus, the gain operator B∗P satisfies

B∗PA2 ∈ L(Y ;U), equivalently B∗P ∈ L(Z;U). (2.20)

3. Riccati equation. The operator P in (2.13) satisfies the following non-
standard Riccati equation: for all x1, x2 ∈ Y (for whose well-posedness
recall (2.18), (2.10b) and (2.20))

(Ax1, Px2)Y + (Px1, Ax2)Y + (Rx1, Rx2)Y =
(
B∗

1R
∗Rx1 + B∗Px1, [I +B∗

1R
∗RB1]

−1[B∗

1R
∗Rx2 + B∗Px2]

)
U
,

(2.21)

where (2.7b)

B = B0 +AB1 : compact U ≡ L2(Γ0) → Z = [D(A∗2)]′;

B∗ ≡ B∗

0 +AB∗

1 : compact D(A∗2) → U. (2.22)

4. Feedback synthesis. The optimal control ĝ(·; y0) and the optimal solution
ŷ(·; y0) are expressed by the following pointwise feedback synthesis for all
t > 0

ĝ(·; y0) = −[I − B∗PB1]
−1[B∗

1R
∗R+ B∗P ]ŷ(·; y0), (2.23)

where the operator [I − B∗PB1] is boundedly invertible on U ,
(B∗PA2)(A−2B1) ∈ L(U) by (2.20) and (2.7a).

Remark 2.1 We note that while the optimal observed state Rŷ belongs to the
state space Y - the optimal solution ŷ(t) is guaranteed only to reside in Z =
[D(A∗2)]′. This is due to the rough behavior on the boundary. The additional
regularity of the Riccati operator enables giving proper meaning to the operators
in (2.21).

The main result of the present paper is

Theorem 2.4 (Uniqueness) Under the given assumptions of this section, the
operator P , defined in (2.12), is the only positive self-adjoint solution of the
ARE (2.21) within the class of operators, satisfying the regularity properties of
Theorem 2.3.

The proof is given in Section 4.
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2.2. Literature

As noted in the abstract, the present paper is very focused: it completes the
study of Lasiecka and Triggiani (2022) by showing uniqueness (within a specified
class) of the Riccati operator, solution of the ARE. Thus, of the ever growing
literature in third order SMGTJ-equation, we shall quote only some relevant
papers. First, the name is justified by Stokes (1851), Moore and Gibson (1960),
Thompson (1972), and Jordan (2004). Second, a mathematical study of these
third order PDEs, both linear and non-linear, was initiated about a decade ago,
see Kaltenbacher, Lasiecka and Marchand (2011) and Marchand, McDevitt and
Triggiani (2012). Next, an optimal control problem over a finite time horizon,
but for the Westervelt dynamics and related Kuznetsov-dynamics, was stud-
ied in and Clason and Kaltenbacher (2015), Clason, Kaltenbacher and Veljović
(2009). The recent paper of Lasiecka and Triggiani (2022) provides a compre-
hensive study of the OCP, recalled above in Theorem 2.3. The present note
completes that study by establishing the uniqueness of Theorem 2.4. In estab-
lishing (in Section 4) such uniqueness result, we are guided by the treatment of
uniqueness in Lasiecka, Lukes and Pandolfi (1995). To this end, we point out
that the papers by Lasiecka, Lukes and Pandolfi (1995), Lasiecka, Pandolfi and
Triggiani (1997) and Triggiani (1994a,b) provide different approaches to study
a sort of corresponding pathological OCP: however the one, where the basic
standing assumption is that the original dynamics is parabolic; i.e. it generates
a s.c. analytic semigroup. It intends to cover radically different classes from the
hyperbolic third order SMGTJ-equation, namely, wave or plate equations with
high Kelvin-Voigt damping, and boundary control. The study of finite horizon
control problem for SMGTJ equation with a related Differential (rather than
Algebraic) Riccati Equations has been carried out in Bucci and Lasiecka (2019).

Remark 2.2 This remark is inserted here at the request of a referee to clarify
the impact of the paper. The importance of uniqueness of a positive self-adjoint
solution of Eq (2.21) satisfying the regularity properties of Theorem 2.3 is at
two levels: (i) a theoretical level; and (ii) a computational level.

(i) Theoretical level. First, for any equation involving unknowns, one would
typically like to claim the desirable property of uniqueness of a solution
(within a specified class). We next make this concept more specific in the
context of our present problem, as in Theorem 1.4. In line with the au-
thors’ approach over many years, see, e.g. Lasiecka and Triggiani (2000),
the strategy followed in the study of the present OCP may be summarized
as follows. In Step 1, one asserts the existence of a unique optimal pair
in (2.12). In Step 2, one defines explicitly in (2.13) a positive self-adjoint
operator P and proves for it various regularity properties: those in (2.14)–
(2.20); the feedback synthesis in (2.23); and the semi-group property of
Proposition 3.1, with the highly desirable exponential decay ((ii)). Thus
far, there is no Riccati claim for such operator. Finally, in Step 3, one
shows that such explicit operator P satisfies the ARE (2.21). QUESTION:
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Is such operator P the unique solution of the ARE (2.21) within the class
of established properties? There may be another such solution and this will
give no guarantee that, if used in the feedback synthesis (2.23), it would
provide the optimal control; nor that, if used in (3.1), it would provide
the optimal solution with the nice semigroup properties, established for the
original operator P of Step 1. Thus, one needs that the ARE provides the
“right” operator of the OCP, not a second spurious one, external to the
OCP. This is so, also because the ARE is the de facto avenue for com-
puting the ”right” operator P , the one of Step 1. In short: if uniqueness
is not guaranteed, the Algebraic Riccati solution operator selected may not
yield the optimal feedback and the optimal on-line control.

(ii) Computational level. Under the computational aspect, the desirability of
uniqueness is even more pronounced. The lack of uniqueness can lead to
a wrong quantity, which has nothing to do with the sought-after solution
of the OCP.

3. Additional background from Lasiecka and Triggiani (2022) ne-
eded in the proof of Section 4

Evolution operator Φ(s) and feedback semigroup. In order to obtain an explicit
feedback operator, Lasiecka and Triggiani (2022) consider an evolution operator,
governing the dynamics of the controlled process. Unlike the standard Riccati
theory, see Lasiecka and Triggiani (2000), such evolution does not coincide with
the optimal trajectory. For x ∈ Z ≡ [D(A∗2)]′, one defines the operator Φ(t) by
setting

Φ(t)x = ŷ(t;x)−B1ĝ(t;x) = eAtx+ {L0ĝ(·;x)}(t) ∈ C([0, T ];Z) ∩ L2(0,∞;Z)
(3.1)

(L0ĝ)(t) ≡

∫ t

0

eA(t−s)B0ĝ(s;x)ds+A

∫ t

0

eA(t−s)B1ĝ(s;x)ds (3.2)

by (2.6a) where ŷ and ĝ are the optimal trajectory and the optimal control. We
now collect several important properties.

Proposition 3.1 For the operator Φ(·) defined in (3.1), the following proper-
ties are valid:

(i) Φ(t) is a strongly continuous semigroup on Z with infinitesimal generator

AFx = Ax+ BG0x for x ∈ D(AF ), B = B0 +AB1 ∈ L(U ;Z)
(3.3a)

[D(A∗)]′ ≡ D(AF ) ⊂ Z ≡ [D(A∗2)]′ → Z (3.3b)

G0 ≡ −T−1
0 [B∗

1R
∗R+ B∗P ] ∈ L(Z;U); BG0 ∈ L(Z) (3.4a)

T0 = [I +B∗

1R
∗RB1] = positive self-adjoint on L(U) (3.4b)
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Φ(t) = eAF t;
dΦ(t)x

dt
= AFΦ(t)x = Φ(t)AFx, x ∈ D(AF ). (3.5)

(ii) Φ(·) is exponentially stable in L(Z): there exist constants M ≥ 1, ω > 0
such that

‖Φ(t)‖L(Z) ≤ Me−ωt;

hence ‖RΦ(t)‖L(Z;Y ) ≤ ‖RA2‖L(Y )Me−ωt, t > 0. (3.6)

4. Proof of uniqueness – Theorem 2.4

The proof consists of two main steps, discussed in Sections 4.1 and 4.2 below.

4.1. Uniform stability of the s.c. semigroup Φ(t) generated by any solution P

of the ARE (1.20) through the procedure of Proposition 2.1

Let P be the operator, defined by (2.13) in terms of the optimal trajectory
ŷ(·;x). By Theorem 2.3, such P is a solution of the ARE (2.21) with regular-
ity properties collected there. Moreover, through the procedure, described in
Proposition 3.1, such operator P defines a s.c. semigroup Φ(t)x = ŷ(t;x) −
B1ĝ(t;x) in (3.1) that is uniformly stable on Z = [D(A∗2)]′, see ((ii)). The next

result shows the uniform stability starting from any solution P̂ of the ARE
(2.21).

Theorem 4.1 Let P̂ ∈ L(Y ) be a positive self-adjoint solution of the ARE
(2.21), satisfying the same regularity properties as the operator P in (2.13),
listed in Theorem 2.3. Then, the operator

ÂF = A+ BĜ0, Ĝ0 = −T−1
0 [B∗

1R
∗R+ B∗P̂ ] ∈ L(Z;U) (4.1)

generates a s.c. semigroup Φ̂(t)x = eÂF tx, x ∈ Z, that is uniformly stable in Z:

there exist constants Ĉ ≥ 1, ω̂ > 0 such that

‖eÂF t‖L(Z) = ‖Φ̂(t)‖L(Z) ≤ Ĉe−ω̂t, t ≥ 0. (4.2)

Proof Throughout this proof, to simplify the notation, we shall denote by
P,Φ(t) – rather than P̂ , Φ̂(t) – the operator in the statement of Theorem 4.1 and
the corresponding semigroup. It should not be confused with the “optimality”
operators P in (2.13), (2.17) and Φ in (3.1).
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Step 1.

Proposition 4.2 Let P be any positive self-adjoint solution of the ARE (2.21),
satisfying the regularity properties of Theorem 2.3. Then, such P satisfies

2Re {(Ax,Px)Y + (G0x,B
∗Px)U} = −‖Rx+RB1G0x‖

2
Y − ‖G0x‖

2
U ,

for any x ∈ Y. (4.3)

Proof (Proof of Proposition 4.2) We return to the ARE (2.21) with x1 =
x2 = x ∈ Y , and T0 defined in (3.4b):

(Ax,Px)Y + (Px,Ax)Y + (Rx,Rx)Y =

=
(
B∗

1R
∗Rx+ B∗Px, T−1

0 [B∗

1R
∗Rx+ B∗Px]

)
U
. (4.4)

Notice that all terms are well-defined by the properties of P in Theorem 2.3:
for x ∈ Y ,

Ax ∈ [D(A∗)]′, Px ∈ D(A∗); Rx ∈ Y, B∗

1R
∗Rx ∈ U ;

B∗Px ∈ U ; T−1
0 [B∗

1R
∗R+ B∗P ]x ∈ U. (4.5)

Next, on the RHS of (4.1), add and subtract (G0x,B
∗Px)U (G0 having been

defined in (3.4a)) to get

2Re {(Ax,Px)Y + (G0x,B
∗Px)U} =

−(Rx,Rx)Y + (G0x,B
∗Px)U − (B∗

1R
∗Rx,G0x)U . (4.6)

Next, on the RHS of (4.1), we likewise add and subtract (G0x,B
∗
1R

∗Rx)U , thus
obtaining

RHS of (4.1) =

= −(Rx,Rx)Y + (G0x,B
∗

1R
∗Rx+ B∗Px)U − 2Re {(G0x,B

∗

1R
∗Rx)U}

(4.7)

= −(Rx,Rx)Y − 2Re {(RB1G0x,Rx)Y } − (G0x, T0G0x)U (4.8)

= −Re {(Rx+ 2RB1G0x,Rx)Y } − (T0G0x,G0x)U . (4.9)

When going from (4.7) to (4.8) we have recalled −T0G0 = B∗
1R

∗R+ B∗P from
(3.4a), while when going from (4.8) to (4.9) we have used the fact that T0 in
(3.4b) is self-adjoint. The new form (4.9) of the RHS of (4.1) induces to consider

‖Rx+RB1G0x‖
2
Y = Re {(Rx+ 2RB1G0x,Rx)Y }+ ‖RB1G0x‖

2
Y . (4.10)

Substituting (4.10) in (4.9) yields, upon recalling (4.1):

2Re {(Ax,Px)Y + (G0x,B
∗Px)U} =

‖RB1G0x‖
2
Y − ‖Rx+RB1G0x‖

2
Y − (T0G0x,G0x)U =

= ([B∗

1R
∗RB1 − T0]G0x,G0x)U − ‖Rx+RB1G0x‖

2
Y , (4.11)
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or, recalling B∗
1R

∗RB1 − T0 = −I from (3.4b),

2Re {(Ax,Px)Y + (G0x,B
∗Px)U} = −‖Rx+RB1G0x‖

2
Y −‖G0x‖

2
U , x ∈ Y.

(4.12)

Thus, (4.12) proves Proposition 4.2. ✷

Step 2.

Lemma 4.3 With P (= P̂ ) being any solution of the ARE (2.21), as assumed in
Theorem 4.1, we have that the operator

AF = A+ BG0, G0 = −T−1
0 [B∗

1R
∗R+ B∗P ], BG0 ∈ L(Z) (4.13)

generates a s.c. semigroup Φ(t) = eAF t on Z.

Proof 1 By Theorem 2.2, A generates a s.c. semigroup eAt on Z while B:
bounded (in fact, compact) U → Z by (2.7b), and G0 ∈ L(Z;U), so that BG0 ∈
L(Z) and the Lemma follows.

Step 3.

Proposition 4.4 With P (= P̂ ) as in Theorem 4.1, consider x(t) = eAF tx0, x0 ∈
Z, as guaranteed by Lemma 4.3. Then, the following identity holds true, where
T > 0 is arbitrary:

(Px(T ), x(T ))Y +

∫ T

0

‖Rx(t)+RB1G0x(t)‖
2
Y dt+

∫ T

0

‖G0x(t)‖
2
Udt = (Px0, x0)Y .

(4.14)

Proof Consider x(t) = eAF tx0, x0 ∈ D(AF ) ⊂ Z. Then, by (3.5)

d

dt
(Px(t), x(t))Y = (PAFx(t), x(t))Y + (Px(t), AFx(t))Y (4.15)

= 2Re {([A+ BG0]x(t), Px(t))Y } (4.16)

= 2Re {(Ax(t), Px(t))Y + (G0x(t),B
∗Px(t))U} (4.17)

since P = P ∗, recalling also (4.13).

Next, on the RHS of (4.17), we invoke identity (4.2) of Proposition 4.2. We
obtain

d

dt
(Px(t), x(t))Y + ‖Rx(t) +RB1G0x(t)‖

2
Y + ‖G0x(t)‖

2
U ≡ 0. (4.18)

Integrating (4.18) over [0, T ] yields (4.14), first for x0 ∈ D(AF ), next for x0 ∈ Z

by density. ✷
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Step 4.

Corollary 4.5 In the assumptions of Proposition 4.4 (i.e. Theorem 4.1) we
have for x(t) = eAF tx0, x0 ∈ Z

∫ ∞

0

‖G0x(t)‖
2
Udt ≤ (Px0, x0)Y ≤ C‖x0‖

2
Z , x0 ∈ Z, (4.19)

where C = ‖P‖, the norm of P : Z ≡ [D(A∗2)]′ → D(A∗2) as in (2.14).

Proof In (4.14) we drop the first two positive terms on the LHS of (4.14),
and let T → +∞ in the third integral term. On the RHS we estimate

(Px0, x0)Y ≤ ‖Px0‖D(A∗2)‖x0‖Z ≤ C‖x0‖
2
Z . (4.20)

✷

Step 5.

This is the final step in the proof of Theorem 4.1. We return to equation (3.5):

ẋ(t) = AFx(t) = (A+ BG0)x(t) = Ax(t) + BG0x(t) (4.21)

or

x(t) = eAF tx0 = eAtx0 +

∫ t

0

eA(t−s)BG0x(s)ds. (4.22)

We claim that

∫ ∞

0

‖eAF tx0‖
2
Zdt ≤ C‖x0‖

2
Z for any x0 ∈ Z, (4.23)

after which Datko’s theorem (Datko, 1970) yields that the s.c. semigroup

eAF t(= eÂF t, i.e.P = P̂ ) is uniformly stable as asserted in (4.2). Claim (4.23)
follows readily since eAt is uniformly stable on Z by (2.9) of Theorem 2.2; com-
bined with B ∈ L(U ;Z) and (4.19) of Corollary 4.5:

∥∥∥∥
∫ t

0

eA(t−s)BG0x(s)ds

∥∥∥∥

≤ C

{∫ t

0

e−2ω(t−s)ds

} 1

2

‖B‖L(U ;Z)

{∫ ∞

0

‖G0x(s)‖
2
Uds

} 1

2

≤ const‖x0‖
2
Z .

(4.24)

Thus, Theorem 4.1 is established. ✷
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4.2. Completion of the proof of uniqueness of Theorem 4.1

Step 1. Let P1 and P2 be two positive self-adjoint solutions of the ARE (2.21),
satisfying the regularity properties of Theorem 2.3. Thus, for x, y ∈ Y , recalling
(3.4b),

(Ax,Piy)Y + (Pix,Ay)Y + (Rx,Ry)Y =

=
(
B∗

1R
∗Rx+ B∗Pix, T

−1
0 [B∗

1R
∗Ry + B∗Piy]

)
U
, i = 1, 2. (4.25)

Define Q = P1−P2, so that Q = Q∗ on Y satisfies the corresponding regularity
properties of Theorem 2.3. Subtract (4.2) for i = 2 from (4.2) for i = 1. We
obtain after cancellation of two terms

(Ax,Qy)Y + (Qx,Ay)Y

=
(
B∗

1R
∗Rx, T−1

0 (B∗Qy)
)
U
+
(
B∗Qx, T−1

0 (B∗

1R
∗Ry)

)
U

(4.26a)

+
(
B∗P1x, T

−1
0 (B∗P1y)

)
U
−
(
B∗P2x, T

−1
0 (B∗P2y)

)
U
. (4.26b)

As to the last line, (4.26b), we compute, after adding and subtracting,

(4.26b) =
(
B∗P1x, T

−1
0 (B∗P1y) + T−1

0 (B∗P2y)− T−1
0 (B∗P2y)

)
U
−

(
B∗P2x, T

−1
0 (B∗P2y)

)
U

(4.27)

=
(
B∗Qx, T−1

0 (B∗P2y)
)
U
+
(
B∗P1x, T

−1
0 (B∗Qy)

)
U
. (4.28)

Using (4.28) in (4.26) yields

(Ax,Qy)Y + (Qx,Ay)Y =
(
B∗

1R
∗Rx, T−1

0 (B∗Qy)
)
U
+
(
B∗Qx, T−1

0 (B∗

1R
∗Ry)

)
U

+
(
B∗Qx, T−1

0 (B∗P2y)
)
U
+
(
B∗P1x, T

−1
0 (B∗Qy)

)
U
. (4.29)

=
(
B∗

1R
∗Rx+ B∗P1x, T

−1
0 (B∗Qy)

)
U

+
(
B∗Qx, T−1

0 (B∗

1R
∗Ry) + T−1

0 (B∗P2y)
)
U
. (4.30)

In the first inner product term in (4.30), we use the fact that the operator
T−1
0 (see (3.4b)) is self-adjoint on U , while the last two inner product terms

[????], we invoke the definition Gi = −T−1
0 [B∗

1R
∗R+B∗Pi], i = 1, 2, as in (4.1).

We obtain

(Ax,Qy)Y +(Qx,Ay)Y = − (G1x,B
∗Qy)U−(B∗Qx,G2y)U , x, y ∈ Y (4.31)

where we recall that then: Qx,Qy ∈ D(A∗), G1x,G2y ∈ U, B∗Qx,B∗Qy ∈ U ;
or

((A+ BG1)x,Qy)Y + (Qx, (A+ BG2)y)Y = 0; (4.32)

ultimately

(AF1
x,Qy)Y + (Qx,AF2

y)Y = 0, x ∈ D(AF1
), y ∈ D(AF2

),

D(AFi
) = [D(A∗)]′ (4.33)
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with AFi
= A + BGi, Gi = −T−1

0 [B∗
1R

∗R + B∗Pi], i = 1, 2, the infinitesimal
generators (Lemma 4.3) of s.c. semigroups eAF1

t and eAF2
t, both uniformly

stable by Theorem 4.1. Equation (4.2), where Q = Q∗, resembles (but is not) a
Lyapunov equation, where a critical feature is that its RHS is zero.

Equation (4.2) is well-defined for x ∈ D(AF1
) and y ∈ D(AF2

). Then we
re-write (4.2) for x = eAF1

tx0, x0 ∈ D(AF1
) and y = eAF2

ty0, y0 ∈ D(AF2
).

Thus, we obtain

0 ≡
(
AF1

eAF1
tx0, QeAF2

ty0
)
Y
+
(
QeAF1

tx0, AF2
eAF2

ty0
)
Y

(4.34)

=
d

dt

(
eAF1

tx0, QeAF2
ty0

)
Y
, for any t ≥ 0. (4.35)

Integrating (4.35) over [0, T ] yields

(
eAF1

Tx0, QeAF2
T y0

)
Y
− (x0, Qy0)Y = 0, for any T > 0. (4.36)

Letting T → ∞ and recalling the uniform stability of eAF1
t and eAF2

t (Theorem
4.1) yields

(x0, Qy0)Y = 0, x0 ∈ D(AF1
), y0 ∈ D(AF2

)

=⇒ (x0, Qy0)Y = 0, for any x0, y0 ∈ Y =⇒ Q = 0, as desired. (4.37)

5. Final remark

In the present paper we take throughout the constant ℓ > 0 (Robin control),
in which case the homogeneous problem (2.1a)-(2.1d) with g ≡ 0 is uniformly
stable (Theorem 2.2). In a subsequent paper we intend to extend to results
of Lasiecka and Triggiani (2022) and of the present paper to the case ℓ = 0
(Neumann control). To this end, we intend to pursue the approach, proposed in
Barbu, Lasiecka and Triggiani (2006), Appendix C, for an abstract system mod-
eling more traditional boundary control problems as in Lasiecka and Triggiani
(2000). In the context of the present paper, this means taking B1 = 0 in model
(2.6). Though such Appendix is introduced with reference to the linearized,
3D-Navier-Stokes equations, the assumption of analyticity (parabolicity) of the
s.c. semigroup, generated by the free dynamic operator (A in (2.6)), is not
needed. Thus, within the context of the abstract model ẏ = Ay + Bg, such
Appendix provides a useful equivalence in the study of optimal control prob-
lems with quadratic cost functionals: between an original unstable dynamics,
assumed to satisfy, of course, the Finite Cost Condition (FCC) and a suitable
stable version, which then a-fortiori satisfies the FCC. Thus, without loss of
generality, the former unstable problem may be reduced to the latter stable one,
where then a more streamlined and, above all, explicit treatment is possible.

In the setting of the present paper, the original unstable dynamics is now

problem (2.1a)–(2.1d), with ℓ = 0 and g = 0. (5.1)
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For such a problem as in (5.1), we need to verify that it satisfies the FCC. In
fact, to this end, we replace (5.1) with

problem (2.1a), (2.1b), (2.1d), with (2.1c) replaced by

∂νu = g = −u on Σ0 ≡ Γ0 × (0,∞).
(5.2)

Such control g as in (5.2) produces the required FCC for the original problem
(5.1). Thus, the key task to be addressed is to extend the proof(s) of Barbu,
Lasiecka and Triggiani (2006), Appendix C, to the present more pathological
model (2.6) with B1 6= 0; more precisely, with the triple {A,B0, B1} satisfying
(2.7a)-(2.7b).
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