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1. Introduction

In the traditional quering for relational DBMSs it is often impossible to ade­
quately express the users' "real" intentions and needs. One of the reasons is an 
inherent incompatibility between a "precise" DBMS and an "imprecise" user. 
The traditional query formalism considerably limited the possibility of a proper 
expression of the user's intentions. For many users, who in everyday life use na­
tural language as their (only) natural communication means, this has become 
an obstacle in an efficient use of data from the DBMS, and more generally from 
any information system. Therefore, there is an urgent need for constructing 
more natural and human-consistent systems that would be in line, as much as 
possible, with the users' natural behaviour. 

The inconsistency between what the user wants to express and what is ex­
pressed in the query may lead to several critical situations in query processsing 
which may result in undesired answers (many of them may be empty). 

While working with a standard relational DBMS the user often faces the 
problem that a given output does not satisfy him or her in general. However, 
the user would still clearly want to get some information from the database. 
To formulate a valuable answer he may use some relaxation (generalization) 
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technique (e.g. Guyomard and Siroux, 1989, Cuppens and Demolombe, 1991, 
Chu, Chen, 1992, Gaasterland, Godfrey and Minker, 1992, Kacprzyk, Zadrozny 
and Ziolkowski, 1989, Motro, 1988). The relaxation slightly softens (relaxes) 
initial query elements in order to obtain additional answers (if they exist) in the 
neighbourhood of the initial query. 

Among various aproaches to this relaxation, there are a few that employ 
fuzzy sets. Fuzzy sets theory, Zadeh (1965), implanted into a query language 
allows us to define imprecise linguistic labels inside a query. A fuzzy-logic-based 
approach makes the system flexible which may help formulate a better query, 
and hence yield a better answer at the same time. 

Basically, there are two general lines of research when discussing the applica­
tion of fuzzy sets to the relational DBMSs. In the first one, which may be termed 
fuzzy querying ( e.g. Bose, Galibourg, Hamon, 1989, Kacprzyk, Zadrozny and 
Ziolkowski, 1989, Bookstein, 1980, Larsen, Yager, 1993, Tahani, 1977), it is as­
sumed that the database is traditional (nonfuzzy) and only the query language 
is extended, through an "add-on" module employing some fuzzy tools, in or­
der to handle imprecision in the query. The second one, which may be termed 
the fuzzy database approach ( e.g. Zemankowa and Kandel, 1985, Anvari, Rose, 
1987, Buckles and Petry, 1982) is concentrated on a modification of existing data 
models so as to store imprecise data. Ordinary databases are there extended 
with fuzzy and possibilistic elements. Having vague data inside the database, 
the query language must also be fuzzified. 

Here, we only consider relaxation based on query language modification, 
while the database is not extended. Hence it appears that, using the above 
classification, our approach to the relaxation technique fits in the former class. 

It should be noted that a basic inclusion of fuzzy sets in query language, 
corresponding to a fuzzification of nonfuzzy elements in the query, can be seen 
as some kind of initial relaxation. We refer to such a relaxation as a primary

fuzzy relaxation. 

However, in our work, we do not consider primary relaxation. We assume, 
that a given query is already fuzzfied, but nevertheless responds with empty 
answer. At that position, our aim is to relax this fuzzy query further in order 
to obtain a statisfactory answer. We call this secondary fuzzy relaxation. In 
principle, this problem was not discussed in literature before. 

The fuzzy relaxations (primary and secondary) can be included in the query 
language in several ways using various types of fuzzy elements. Here, we con­
sider the inclusion of the so-called ordered weighted averaging (OWA) operators, 
Yager (1988), which are viewed here as a universal tool for relaxing the aggre­
gation mechanisms in the relational DBMS querying. Moreover, we extend the 
traditional OWA-based aggregation with an interactive refinement of the OWA's 
weights. 
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Figure 1. A fuzzy set representing an imprecise linguistic label High 

2. Basic elements of fuzzy sets

Before we turn to the main subject we sketch basic concepts of fuzzy sets theory. 
Assume X is a set, then a fuzzy subset A of X is defined by a membership 
function µA: X-+ [O, 1] such that for any element x EX, µA(x) indicates the 
degree to which the concept represented by A is satisfied by the element x.

Fuzzy sets theory may provide a description of imprecise linguistic labels by 
their corresponding fuzzy set. A fuzzy set includes only crisp (precise) values. 
Each of these crisp values has its own membership degree (to be denoted md) 
which indicates to what degree this particular precise value complies with the 
user's requirements. In Fig.1, we present a domain dependent (floor number 
in an apartament house) linguistic label "High". Thus, the floors below 10 are 
certainly not high, the floors above 15 are certainly high, and those in-between 
are high to an intermediate degree. Notice that such a representation is, first, 
context dependent, and second, subjective. 

The basic operations on fuzzy sets are: 

• the intersection

µAnB (x) = T(µA(x), µB(x)) (1) 
where µ(x) is the membership function and Tis a t-norm, i.e. a function 
T: [O, 1] x [O, 1] -+ [O, 1] which satisfies the following conditions: 

1. T(a, T(b, c)) = T(T(a, b), c) associativity

2. T(a, b) = T(b, a) commutativity

3. T(a, b) 2: T(c, d) if a 2: c and b 2: d monotonicity

4. T(a, 1) = a boundary

The most popular examples oft-norms are: 
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- T1(a, b) = min(a, b)

-T2(a,b)=a•b

- T3 (a, b) = max(O, a+ b - l)

• the union
µAuB(x) = S(µA(x), µB(x)) , (2)

where µ(x) is the membership function and Sis a t-conorm, i.e. a function
S: [O, 1] x [O, 1] -+ [O, 1] which satisfies the following conditions:

l. S(a,S(b,c)) = S(S(a,b),c) associativity

2. S(a, b) = S(b, a) commutativity

3. S( a, b) 2:: S( c, d) if a 2": c and b 2": d monotonicity

4. S(a, 0) = a boundary

The most popular examples of t-conorms are: 

- S1(a, b) = max(a, b)

- S2(a, b) =a+ b - a· b

- S3 = min(l, a+ b)

For more information of fuzzy sets and related topics, see, e.g. Kacprzyk 
(1986). 

3. A fuzzy-logic-based relaxation in a query language

The relaxation of a query in a relational DBMS is based on the process that 
"softens" (relaxes) elements of the initial query by transforming them into other 
elements that represent a higher level of abstraction, or in other words are 
softer, i.e. less constraining and more flexible. As a result of this relaxation 
a new (relaxed) query is created. In comparison with the initial query, the 
relaxed query has less restrictive (wider) elements. Thanks to wider elements, 
the answer from the relaxed query relates to a "wider" class of elements in 
comparison with the initial query answer. Therefore, the relaxed query may 
result in additional answers (if they exist) that are in the neighbourhood of 
those of the initial query (possibly empty). 

The softening of query elements by relaxation requires some efficient tools. In 
the literature several attempts have been made to construct a relaxation system 
for the querying languages. Among the systems that deal with the semantic 
transformation (relaxation) of the query, there are those that apply a hierarchy 
of concepts ( e.g. Guyomard and Siroux, 1989, Chu and Chen, 1992), a collection 
of rules (e.g. Cuppens and Demolombe, 1991, Gaasterland, Godfrey and Minker, 
1992), and finally imprecise linguistic labels ( e.g. Kacprzyk, Zadrozny and 
Ziolkowski, 1989, Motro, 1988). 
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Q select street, total_area, price, floor_number 

from Real_estate 

total_area between(40,60) 

and price < 30000 

and floor_number > 15

aggregation operator relaxation attribute value relaxation 

Figure 2. Elements of query Q which may be subject to fuzzy query relaxation 

The relaxation approach that we propose in our work, called fuzzy querying 
relaxation, basically softens (relaxes) initial query elements by employing im­
precise linguistic labels defined through fuzzy sets, and some "soft" aggregation 
techniques. If for some reasons (e.g. an empty answer), the user wants to relax 
the query, he replaces the initial query elements with new softer elements which 
are expressed in terms of imprecise linguistic labels. We can distinguish here 
two types of relaxation: the attribute value relaxation and the relaxation of the 
aggregation operator. Both the attribute value relaxation and relaxation of the 
aggregation operator use linguistic labels for relaxing specific elements of the 
query (cf. Fig.2). 

Assume that we have typical real estate data concerning Warsaw, Poland. 
This database is described by several common attributes like "name_oLthe_­
street", "totaLarea", "number_oLrooms", "floor_number", etc. The user con­
structs a query Q exemplified by one given in Fig.2 to be understood as: find an 
ideal flat that must have a moderate total area (between( 40, 60)) and the price 
must be inexpensive ( < 30000) and the floor number must be high (> 15). 

Relaxation of the attribute value is implemented through the fuzzification 
of selection requirements ( atomic conditions, criteria, ... ) . Each precise, initial 
attribute value in the query ( e.g. floor number > 15) may be fuzzified with 
a related imprecise linguistic label (e.g. High, that is floor number is High). 
A fuzzy description of imprecise linguistic labels, besides the initial attribute 
value, comprises other precise attribute values that are in some way related to 
the initial one. Therefore, this kind of relaxation gives a possibility to search for 
other precise values that are in the neighbourhood of the initial precise values. 

The relaxation of aggregation operators proceeds basically through the use of 
fuzzy linguistic quantifiers in line with the original ideas proposed in Kacprzyk 
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Q
R : 

select street, total_area, price, floor_number 

from Real_estate 

where I total_area is Moderate 

Most 
and I price is Inexpensive I 
and floor_number is High 

Figure 3. The relaxed query QR 

and Ziolkowski (1986), Kacprzyk, Zadrozny and Zi6l:kowski (1989). The fuzzy 
linguistic quantifiers that we employ in the query language allow to perform not 
only the aggregation, where all (AND-like aggregation) or at least one (OR-like 
aggregation) query criteria arc satisfied, but also to perfom an intermediate type 
aggregation between the two extremes where "most of", "at least half", "more 
or less", etc. query criteria are to be satisfied. Relaxing the query with linguistic 
quantifiers is equivalent to the replacement of the initial (traditional) quantifier 
( e.g. all) with a less restrictive quantifier ( e.g. most of). In this paper we use 
novel means for dealing with a wide class of fuzzy linguistic quantifiers by rep­
resenting them via the so-called ordered weighted averaging (OWA) operators, 
Yager (1988). 

An example of the query Q (Fig.2) which was relaxed using the above men­
tioned aggregation-operator-related relaxation to the query QR is presented in 
the Fig.3 to be meant as: find a ( quasi) ideal flat where most of conditions: a 
flat has moderate total area and the price is inexpensive and the floor number 
is High, are satisfied. 

In the database systems verification of individual atomic conditions against 
data (records) included in the database may result in an evaluation of a so­
called individual matching degree ( imdkj ). The value of imdkj indicates to what 
degree individual atomic condition k is satisfied by record j in the database. 

In most of ordinary database systems, where we consider only precise atomic 
conditions, there are two possible situation,· a record matches with an atomic 
condition or it does not. In case when a record j entirely matches an atomic 
condition k the individual matching degree imdkj = 1 is delivered, otherwise, 
even if a record is very close to match, it receives imdkj = 0. There are no 
intermediate values for imdkj . Records that match all atomic conditions in the 
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Figure 4. Determination of the individual matching degree for atomic condition: 
total area is Moderate 

query ( imdkj = 1, for each k) are then selected for further aggregation while 
the other ones are rejected. 

In the fuzzy querying system, along with the inclusion of imprecise linguis­
tic labels inside a query, the algorithm for computing the individual matching 
degree was changed. Records may yield individual matching degrees from the 
unit interval [O, 1]: from the mismatched records with imdkj = 0 through inter­
mediate values for imdkj E (0, 1) to full match with imdkj •= l. 

In Fig.4, we sketch the idea of determination of the individual matching 
degree for the atomic condition involving "total area" attribute that was relaxed 
with the linguistic label Moderate, 

Now, we turn to the relaxation of the aggregation operator. At this level 
of relaxation, we may determine how many, or which, atomic conditions have 
to be taken into account in defining an overall satisfaction ( overall matching 
degree) for the aggregated criteria. In standard query languages, the OR-like 
aggregation is supported by the max operator which chooses the highest value · 
from the set of existing individual matching degrees, while the AND-like ag­
gregation is supported by the min operator which takes the lowest individual 
matching degree. In the fuzzy querying relaxation, the OWA operators provide 
a representation of fuzzy linguistic quantifiers that are used in the relaxation 
of aggregation. Depending on the parameters used, the OWA operators may 
attain the aggregation behaviour which takes intermediate values between the 
lowest (min operator) value and the biggest value (max operator) of individual 
matching degrees, The answer, that is possibly delivered after the aggrega­
tion operation, provides a set of valued records accompanied with the overall 
matching degrees from the unit interval [O, l]. The problem will be discussed 
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further. 
The construction of a fuzzy relaxation system, including the attribute value 

relaxation and the relaxation of aggregation operator, allows us not only to 
obtain additional answers but also to distinguish among those records which 
comply better (with a higher overal matching degree) and worse (with a lower 
overal matching degree) with requirements of a query. The crucial point in 
building an effective fuzzy-logic-based relaxation system lies in an efficient fuzzy 
definition of linguistic labels which weaken atomic conditions in the query, and in 
the construction of a proper operator for the linguistic.quantifier which supports 
the aggregation for compond queries. 

4. The concept of an ordered weighted averaging ( OWA)
operator

The OWA operator is employed here as a general aggregation operator which 
exhibits the aggregating behaviour ranging from the classical AND-type one to 
the classical OR-type one, through all intermediate cases, depending on some 
parameter. 

A weighted ordered averaging (OWA) operator F of dimension n has an 
associated with it weighting vector W

W = [w1 ... wnf (3) 
such that 

l. Wj E [0, l], for each j = l, ... ,n;

2. �7=1 Wj = l.
The aggregation F(a1, ... , an) is then

n 

F(a1, ... ,an)= L wAi 
j=l 

where bj is the lh largest element in the set of { a1, ... , an }. 

(4) 

The OWA operators have many interesting properties (Yager, 1988;1993a). 
First, notice that the weights are associated with a particular ordered position 
in the set of elements rather then with a particular element. The weights may 
therefore control the aggregating behaviour of the operator. For instance, for 
the following cases: 

W*
= [l O ... Of

WA = [¾¾ ... ¾r 
W* = [O O ... If 

(5) 

(6) 

(7) 

it is easy to show that these weight vectors correspond to the following aggre­
gations, Yager (1988), respectively: 
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• W* corresponds to the max-type (OR-like) aggregation
F*(ai, ... , an)= . max aj

J=l, ... ,n 

• WA corresponds to the mean-type aggregation
l n 

FA(a1, ... ,an )= - Laj 
n 

j=l 

• W* corresponds to the min-type (AND-like) aggregation
F*(a1, ... , an ) = . min aj

J=l, ... ,n 

and 

F*(a1, ... , an )� F(a1, ... , an ) � F*(ai, ... , an ) 

that is 
,

. min aj � F(a1, ... ,an ) � _max aj 
1=l, ... ,n J=l, ... ,n 

389 

(8) 

(9) 

(10) 

(11) 

(12) 

Thus, the OWA operator is equivalent to the min operation for Wn = l,
and Wj = 0 for all j -=/=- n, the max operation for w1 = 1, and Wj = 0 for all
j -=/=- 1, and the arithmetic mean for wi = l/n, Vi. For weights "in-between" an
intermediate aggregation may be obtained. 

As we have presented above, the concept of weights employed in the OWA 
operator makes easy and universal the manipulation of aggregation. Yager 
(1988) proposed two basic measures in order to guide and control the aggre­
gation. With the first one, called the measure of orness, one can calculate the 
degree to which the operator is OR-like or AND-like in his behaviour. The main 
idea is that: if the orness value is greater than 0.5, then the OWA operator is 
considered as more OR-like than AND-like, otherwise it is considered as more 
AND-like than OR-like. That is, the measure of orness for a weighting vector 
W (3) is 

l n 
orness(W) = � L((n -1) • wi)

n 
i=l 

(13) 

and the measure of andness of an OWA operator is defined as a complement of 
the orness measure, i.e. 

andness(W) = l - orness(W) (14) 

Yet another measure, the entropy (dispersion), measures the degree to which 
all the elements aggregated are taken into account equally, and is defined as 

Disp(W) = - L Wi ln Wi (1 5) 

As we outlined above, before we use the OWA operators, we need to deter­
mine the weights. Yager (e.g. Yager, 1993a) presented several approaches to 
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obtain the weighting vector. On the basis of those two measures (the orness 
and the entropy), he introduced a whole family of parameterized OWA opera­
tors that have the property of reducing the process of selecting the weighting 
vector to one or two parameters. In addition, he proposed a mechanism allowing 
to learn the weights from data by determining the value of the parameters that 
minimize some error function. 

5. The concept of importance

In practice, in addition to linguistic labels that provide an imprecise descrip­
tion for values in atomic conditions in the query, the user may also want to 
add information about importance of individual elements ( criteria of querying). 
Once the user searches the database with respect to several criteria, he may 
consider some of them as more important than the others (Fig.5). Although 
the concept of importance has a direct influence on an individual criterion, it is 
rather considered in the context of aggregation. 

In the context of the OWA operators the inclusion of importances is still 
an open issue. The idea of how to include importances was proposed by Yager 
(1987) as a general framework. He describes the inclusion of importances in an 
individual criterion as closely related to the reduction of the influence on the 
query aggregation of these atomic conditions values' which are considered of low 
importance. 

In case of the AND-like aggregation, the element with the lowest value plays 
the most significant role, so a natural solution is to transform this value into 
a high one to reduce its influence on the query aggregation. In the OR-like 
aggregation, on the other hand, it is the large values that play substantial role 
during the process of aggregation. Hence, we need to reduce those which are 
less important. 

Thus, the structure of importance inclusion is different for the AND-like 
and the OR-like aggregation. Since the OWA operator acts like a universal 
aggregator, between the above two extremes, the inclusion of importances should 
be changeable along with the changes of the aggregation character. 

In the source paper, Yager (1988), on the OWA aggregation the following 
approach was proposed. We assume the following function: 

F(x) = F(a1, ... , an) (16) 

where the arguments (a1, ... , an) and the vector of importances [o:1
]j=l, ... ,n are

modified in the following way 

b1 = H(a1 a.1) 

where H: [O, 1] x [O, 1] ------, [O, 1] is, e.g., 

b_i = (a.1 V p) · (a1 )':t.; VP 

(17) 

(18)
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QRI •• 
select street, total_area, price, floor_number 

from · Real_estate 

where very important f-i total_area is Moderate

Most of and important H price is Inexpensive I 
and ! low importantceH floor_number is High

Figure 5. The query QR which is subject to the inclusion of importances 

where: q is the degree of orness (13), and p is the degree of andness (14). 
For instance, we have: 

• for the pure AND, i.e. for Wn = 1, p = 1, q = 0,
F1(x) = . min a/1.; (19) 

3=1, ... ,n 

• for the pure OR, i.e. for W1 = 1, p = 0, q = 0,
F2(x) = . max CY.jaj (20) 

3=1, ... ,n 

A modification of the above was given by Yager in the framework of multi­
criteria decision making, Yager (1993b), as 

For instance, we have: 

• for a E (0, 1)
F30(x) = F2(x) = . max CY.jaj for p = 0 (the pure OR) (22) 

J=l, ... ,n 

F3b(x) = . min aj(CY.j - 1) + 1 for p = 1 (the pure AND) (23) 
3=1, ... ,n 

• fora=0
F4(x) = p (24) 

• for a= 1
F5(x) = ai (25) 

EXAMPLE 5.1 Assume that: A= (l; 0.8; 0), W = (0; 0.5; 0.5), CY.1 = 1, a.2 = 0.5, 
a.3 = 0. The OWA-based aggregation yields OW A(A, W) = 0.4, and the degree 
of andness (14) is 

andness(W) = 0.75 
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Then, (21) yields 

a1 1·1+(1-1)·0.75=1 

a2 0.5 · 0.8 + (1 -0.5) · 0.75 = 0.775 

a3 0-0+(1-0)·0.75=0.75

and the new vector A" is 

Aa = [1 0. 775 0. 75f 

D.A. LAZAR 

Finally, for the OWA-based aggregation with importance, OW A(Aa , W), 
according to (4), we use the new vector Aa , and obtain 

OW A(Aa , W) = 1 · 0 + 0.775 · 0.5 + 0.75 · 0.5 � 0.763 

Notice that the inclusion of importances a1, a2, a3 in the aggregation in­
creased the overall aggregated value. 

In our discussion, it was implicitly assumed that the importances are pro­
vided by the user as numeric values from [0, 1]. This may be not really comfort­
able, and a linguistic scale may be preferable, see Larsen and Yager (1993). 

6. The concept of a linguistically quantified aggregation

In this part, we want to describe the relaxation of aggregation operators based 
on a linguistic quantifier which represents the second level of relaxation in our 
fuzzy querying system. 

In practice, very often the user needs to manipulate the query aggregation 
process. Traditional query constructs do not give the user too much of a choice 
when deciding which aggregation to perform as only two options exist, the OR­
like aggregation that chooses the biggest partial matching degree the AND-li.ke 
aggregation that takes the lowest one. No intermediate cases are supported 
by most of standard systems. A linguistic quantifier guided aggregation would 
provide here general enough tools. 

The standard query languages allow for two quantifiers only, the universal 
quantifier "all", and the existential quantifier- "at least one". On the other hand, 
the human discourse comprises a large set of quantifiers as, e.g., almost all, most, 
nearly half, around n, etc. To bridge this gap, Zadeh (1983) introduced the idea 
of a linguistic quantifier along with its formal representation within the fuzzy 
sets theory. Zadeh suggested a fuzzy subset Q of [0, 1] ( or more generally, the 
real line) as a description for a proportional linguistic quantifier ( e.g. most). 

When we disscuss the linguistic quantifier guided aggregation, we always 
consider the evaluation of a linguistcally quantified proposition. Quantified 
propositions exemplified by "almost all flats are small", "most houses are ex­
pensive", "nearly a half of apartments are two-roomed" etc. are usually written 
as: 

QY's are F (26)
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where Q is a linguistic (imprecise) quantifier ( e.g. almost all), Y represents a class of objects (e.g. flats) and Fis a property that must be satisfied by objects 
Y (e.g. small). The problem is then to find the truth value of such a statement which, due to Zadeh, proceeds in two steps: In the first step we calculate the following expression: 

1 n r = - Laj where aj = µA(Yj), Yj E Y (27) 
j=l (2 8) For example, the linguistic quantifier "most" can be defined by the following membership function 

{ 1 for y 2 0.8 µmost(Y) = 2y - 0.6 for 0.8 > y 2 0.3 0 for y < 0.3 (29) 

In 198 8, Yager proposed to use the OWA aggregation operator (4) as a computational tool for the linguistically quantified propositions Yager (198 8). In the first step of evaluating the truth of a linguistically quantified statement we calculate the weighting vector W (3) associated with the quantifier Q: 
(30) 

next we compute the OWA based aggregation as in (4) using weights calculated in the first step: 
k Fq(a1, ... , an)= L Wjbj 

j=l 

(31) 
In general, (30) provides a convenient definition of OWA weights correspond­ing to a given fuzzy linguistic quantifier. The idea of using fuzzy linguistic quantifiers in a query language was sug­gested by Kacprzyk, Zadrozny and Ziolkowski in a series of papers ( e.g. Kacprzyk and Ziolkowski, 198 6). When there exists a table R defined on a set of attributes {A1, ... , An } and represented by a collection of tuples {t1, ... , tn }, the essence of their proposal is the determination of the extent to which a tuple satisfies the following expression: "(quantifier) out of {A1 (comp1) v1, ... ,An (compn) vn } match" where (quantifier) is a linguistic imprecise quantifier (e.g. almost all, most) and ( comp1) is a comparator (operator). Each evaluation of such an expression (for each tuple) returns an overall matching degree (omd). To rep­resent linguistic quantifiers ((quantifier)), Zadeh's approach to fuzzy linguistic quantifiers was employed, yielding for each tuple i 

omdj = µq (¼ t imdkj) (32) 
k=l 
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where µQ is a fuzzy definition of linguistic quantifier Q, imdkj stands for a 
partial matching degree of criterion k in tuple j. This work was then practi­
cally implemented in the system called FQUERY III+ presented in Kacprzyk, 
Zadrozny and Ziolkowski (1989). 

7. An interactive refinement of the OWA's weights

In this section we propose to employ Yager's OWA operators for representing 
linguistic quantifiers in the query language, extending the traditional OWA­
based aggregation with an interactive refinement mechanism for the OWA's 
weights. 

The choice of an aggregation operator, that is usually made a priori, is often 
incompatible with the very essence of aggregation the user has in mind. One of 
the crucial features of human behaviour is instablity and context-dependency. 
In general, the aggregation operator depends on the particular domain and time 
instant, and is seldom satisfactory in general. This implies efforts to seek more 
"appropriate" aggregation, and especially Yager has investigated this problem 
in detail (e.g. Yager, 1993a;b;l994). Yager (1994) exemplified that in some 
cases the user may exhibit different and untypical aggregation behaviour. For 
example, when the user deals with the medical diagnosis, the appearance of a 
set of indications symptomatic for a disease will make him or her more confident 
in diagnosing a patient as having the disease than any one of those indications 
alone, and the lack of that set of indications will make the user more confident 
that a patient is not having a specific disease. 

Depending on the weights of the OWA operator, we may implement a spe­
cific type of their corresponding linguistic quantifier for guiding the aggregation. 
While the OWA operators are a comfortable and flexible tool for guiding the 
aggregation from the conceptual point of view, we must first determine appro­
priate weights what may be nontrivial. Yager (1993a) exhaustively considered 
this problem showing different approaches to obtaining these weights. 

Basically, the main weak point of the linguistcally quantified OWA-based 
aggregation is that the OWA weights definition (30) for the aggregation is of an 
ad hoe type. 

Before we proceed, let us continue with our example of the real estate 
database. Assume that a relaxed query QR (Fig.3) reflects the user's typical 
subjective concept of a desired apartment. His search in the real estate database 
with the query QR resulted in an empty answer (assuming threshold: >. = 0.6). 
In such a situation, the user will try to search again for entries ( data) that would 
be dose and satisfactory (threshold equals at least to 0.6) to his former concept 
of the desired apartment. Let the user decide to relax the query QR (Fig.3) 
using the relaxation of the aggregation operator. Then, the aggregation of the 
query QR, quantified with the linguistic quantifier "most", is softend with the 
another (less "rigid") linguistic quantifier "medium" ( corresponding somehow 
to the average-type aggregation) resulting in new relaxed query Q;;;.

edium
· The 
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37,50! 31500,0 0,60l 
Batorego 37,00! 32000,00: 0,60j 
Grzybowska 36,00! 41000,00! 0,60/ 
Armii Ludowe[ ... j 36,00! 29000,00! 5! 0,60i.._ 
Batorego 37,50! 31500,00i 13! 0,60l 
Broniwoja 36,50! 32500,00! 13! 0,60l 

.. 

... 
Bial-ostocka 20,00! 36000,00! 14! 0,60j ... 

36,00! 39500,00! 16i 0,60j ... 
35,00! 31000,00! r 0,60l 

... 

37,00! 32000,00! 13! 0,60j ... 
36,00! 32500,00! 13! 0,60l 
37,00! 32000,00! 13! 0,60i 

user selects this as "best record" 

subgroup R
A subgroup R 

8 

Figure 6. A sample answer to the query Q;;,,edium 

answer R for the query Q;;,,edium includes records being the closest match to QR 

(threshold: .X = 0.6). 
However, as we look closer at the records R (Fig. 6), we may notice that 

some of them may represent an unequal degree of satisfaction to the user. For 
example, in the answer R we may distinguish two distinct subgroups of records 
RA and RB . Although they have similar values of the overall matching degree 
(omdj = 0.6) they have considerably different distributions of values of the 
individual (partial) matching degrees ( imdkj). In case of subgroup RA , values 
of the individual matching degree ( imdkj) are distributed unequally: some of 
them have very high values (near or equal to 1) while the others have very low 
values (near or equal to 0). In case of subgroup RB , values of the individual 
matching degree ( imdkj) are distributed equally: all of them are close to 0.6. 
In our example, we cannot judge "objectively", i.e. taking into account this 
answer alone, which of the records in R (Fig. 6) comply better or worse with 
the user's demand, though our subjective feeling may be decisive. The ultimate 
judge is clearly the user himself who will take the final decision as to which 
records in the answer are the most suitable from his point of view. 

From such a point of view the answer R can only be viewed as an collection 
of admissible records that may be interesting to the user, i.e. as a point of 
departure. Having such an admissible answer, the user may need to refine the 
aggregation in order to obtain a more consistent (with his or her feeling) answer·. 
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Admissible answers may thus be a reference point for starting to shape what we 
may call an ideal answer. Hence, our aim is to provide the ability to construct an 
OWA operator, i.e. Win (3), that in the best way would model the aggregation 
for the current collection of data. 

Pointing out the records which are ( considered by the user) the best in an 
admissible answer would give hints for that refining. Clearly, the most suitable 
paradigm is here a interactive, man-machine cooperation, and this is generally 
accepted, e.g., in new releases of relational DBMSs' ( e.g. CASE Generator 1991, 
FoxPro2.6., Application Builders 1994). 

Finally, we suggest a so-called refinement process of the OWA's weights, a 
procedure for refining the OWA-based aggregation that involves a basic form of 
user - DBMS interaction. Since it is the weigthing vector W = [w1 ... wnf 
which has a substantial influence on the definite shape the OWA-based aggre­
gation, we adjust the initial parameters wi of the vector W in order to obtain 
an aggregation leading to an ideal answer. We modify the weights W so as to 
reinforce (increase) values of the overall matching degrees ( omd

j
) for records 

that are considered by the user as the most satisfactory among the acceptable 
ones in an admissible answer. Although during the interaction the user is asked 
to choose one best record, other records that have similar distributions of values 
of the individual matching degrees ( e.g. RA and RB in Fig.6) are adjusted as
well. Thanks to such a weight refining, the best record(s) may increase their 
overall matching degree values. Increasing the values of the best records moves 
them to the top of the collection of discriminated records that stand for the 
answer. 

A weights refining procedure 

The weights refining procedure module is illustrated in the scheme of refinement 
process of the OWA's weights (Fig.7). In our approach, we use mainly the 
steepest descend method. We suggest this method in order to calculate an 
error measure to provide the change of parameter that we use for minimizing 
the difference between the observed overall matching degrees (an admissible 
answer) and the desirable one ( an ideal answer). The error measure between 
the observed output a1 w1 + ... + an Wn and the desired output vs ( value of 
satisfaction) is 

(33) 

In order to adjust the value for each parameter Wi, we compute first the 
following changes of w/s 

llwi = Ew, = -[vs - (a1w1 + ... + anwn)]ai 

and we obtain the vector 

(34) 

(35)
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Then, we update the initial vector W with the vector � W multiplied by a constant value LR (learning rate) 

Wnew = Wold - �w. LR (36) 
The last step of this procedure is the weight normalization norm(Wnew) which yields 

Wnew = [w1 · · · Wn] 
where 

(37) 
(38) 

The vector Wnew comprises the new refined weights that can be used for determining the new OWA-based aggregation. In practice the refinement procedure starts with a simple form of the user - DBMS interaction. During an interaction session within the browser modulein the refinement process of OWA's weights (Fig.7), the user chooses the bestrecord from a collection of records that are provided as an answer. Then, havingparameters of the best record (the vector A) obtained in the browser moduleand parameters of the weighting vector W from the OWA's weights module,new weights are calculated in a weights refining procedure module according tothe algorithm described above.
EXAMPLE 7.1 Assume that we continue with the the answer R obtained from the query Q;;,

edium. Assume also that among the records belonging to Lhe answer R we have chosen as the best the record with A = (1; 0.8; 0). The weighting vector is Winitial = (0.33; 0.33; 0.33)T. Then, we calculate the changes of weights �W = (w1, ... ,wn)T according to (34) and require vs = 1. Thus 
�Wl Ew

1 
= -[1- (1 · 0.33+ 0.8 · 0.33 + 0 · 0.33)] · 1 = -0.406 

�W2 Ew
2 

= -[1- (1 · 0.33 + 0.8 · 0.33 + 0 · 0.33)] · 0.8 = -0.3248 
�W3 Ew

3 
= -[1- (1 · 0.33 + 0.8 · 0.33 + 0 · 0.33)] · 0 = 0 

[ �W1 l [ -0.406 l�w = �:: -0-�248
So, we transform the initial vector W with the vector (�W) multiplied by constant value LR according to (36). Initially, lacking experience, we set LR = 0.95, i.e. 

[ 0.33 l [ -0.406 l [ 0. 716 lWnew = 0.33 - -0.3248 · 0.95 � 0.6390.33 0 0.33 
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Figure 7. Scheme of the refinement process of the OWA's weights 



A fuzzy relaxation mechanism for relational dbms querying 399 

36,001 41000,001 

36,001 29000,001 

37,501 31500,001 

36,501 32500,001 

20,001 36000,001 

36,001 39500,001 

35,001 31000,001 

37,001 32000,001 

36,001 32500,001 

37,001 32000,001 

subgroup R
A subgroup R 

8 

Figure 8. A sample of the refined answer to the query Q;;;,edium 

and the normalization (37) gives 
[ 0.425 l Wnew = 

0.379 0.196 and 
OWA(A, Wnew) � 0.73 In comparison with the initial value of aggregation OW A(A, Winitial) � 0.6, the OWA-based aggregation with the new vector Wnew increased its value, OW A(A, Wnew ) = 0.732, which is quite natural. When we look at the rest of the refined answer R from Fig.6 we may notice (Fig.8), that records which have unequal distributions of values of the individual matching degrees (RA) increased their OWA-based aggregation values (omd), and this is also the case of the best record derived in Example 2. In case of subgroup RA, where values of the individual matching degree ( imd1 ) are distributed unequally, the records increased their overall matching 
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degrees. In case of subgroup RB , where values of the individual matching degree 
(imdj) are distributed equally, the records remain unchanged. The reason is 
that this particular user paid more attention to higher values of only some of 
the attributes, and less attention to their even distribution. 

Notice that a similar general idea of modification of an aggregation opera­
tor's parameters has also been proposed in the context of information retrieval 
by Naito, Ozawa, Hayashi and Wakami (1994). However, they applied the pro­
cedure, also based on the minimization of a squared error, to the tuning of 
parameters in some T-norm and S-norm only. In this paper the method is 
applied to the tuning of an OWA operator. 

It should be noticed that a similar method for the determination of OWA's 
weights has been proposed by Yager (1994). However, the rationale is there 
different. Namely, Yager starts with a set of examples "values of arguments and 
results of their OWA aggregations", then - by using the degree of orness - finds 
some "ideal" result of OWA aggregation. Then he uses minimization of the 
sum of squared errors between the particular results of OWA aggregation and 
the above ideal result. So, Yager does not have OWA weights initially. In this 
paper, the rationale is different. Namely, having obtained some results of OWA 
aggregation, with OWA weights, we tacitly assume that there may be the same 
results of aggregation (in the sense of values) which are, though, different from 
the point of view of the user ( e.g. because not all criteria have been accounted 
for). So, we start with some OWA weights, assuming some of them as "ideal" 
(i.e. assigning the aggregation result equal 1), and then refine OWA weights 
already available. We proposed the aggregation result of 1 and it is a default 
value, but the user may also specify other values. So, the rationale behind our 
work is different then that of Yager's. 

8. Conclusions

In this paper we proposed an interactive weights refinement method for the 
OWA operators, an approach that would accommodate the (individual, sub­
jective) user's needs and intentions in the OWA-based aggregation in query 
relaxation for the DBMSs. 
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