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Abstract:  The problem of the increase of an ideal granular sub-
stance pile is considered. By using the variational formulation of 
the problem the existence of the solution in weak sense is proved. 
For the case of the small angle of gradient of the initial surface two 
numerical methods of solving are proposed. First one is based on the 
classical lagrangian technique, in the second the Herskovits' interior 
point algorithm is used. Numerical examples for 1-D and 2-D cases 
are presented. 
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1. Formulation of the problem

Let us assume that a substance spreads over a surface of the pile u(x, t), x E 
[2 C R 2 with a thin layer, the lower layers remain immovable and the particles 
have no mass inertia. We denote by   (x) = u(x, 0) the shape of the initial
surface, a is the substance angle of repose. Formation of the pile in [O, T] is 
described by the following relations (Prigozhin, 1986, 1993): 

• state equation:
v/ - V(mVu) = f in (0, T) x 0 , (1) 

where f(x, t) is the intensity of the external source, f(x, t)   O; 
I au 

m(x, t)   O is an unknown scalar function, u = at  ; 
• boundary conditions: 

v.(x, 0) = , u(x, t) I . = 0; (2) 
an 
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e surface conditions: 
v.(x, t)   -, 

u(x, t) > --+ IVv.(x, t)I::::; 1 = ltgal, 

IVu(.'E, t)I < 1 -+ m(x, t) = 0. 

(3) 

The problem is to determine the shape of the pile v.(x, t) E (0, T) x O with 
given a,  (x) and f(x, t). 

2. Variational formulation
Let O be a bounded subset of R 2 . We define 

V = HJ(O), V = L2 (0,T;V),H = L00 (0), 'H = L00 (0,T;H), 

where HJ (0) is the Sobolev space of distributions having a zero trace at the
boundary 80. We denote by V' the dual space of V. 

Assume that there exists u being a solution of (1)-(3)  such that v. E V, u' E 
V', m E 'H. Then, problem (1) - (3) cari be written in the following form: 

where 

u' - V(mVu) = f in 0 ,  u(x, 0) =ft, u(x, t)I = 0, (4) 
an 

(r2 (v.) - IVv,1 2 , m) = 0,

r2 (u) -1Vul 2   0, rn   0, u(:E, t)   -, 

for u(x, t) = ., 
for v.(x, t) >   . .  

(5) 

(6) 

Let us define the following function sets: 

K ,, = { v E V,vJ 80
= 0 I v(x) (x), 1Vv(x)J 2 ::::; f2 (u) } ,

Ku = { V E  VI v(t) E Ku, t E [O, T], } ,

V = { v' E V', v(0) = } 
Multiplying equation ( 4) by (u -v.), \/u EK . and using relation (5) and the 

following estimation: 

- (  V(mVu), u - u) = ( m v u ,  Vu - V u )  ::::; 

::::; ( m ,  JVulJVul -1Vul 2 ) ::::; ( m, f 2 (u) - JVuJ 2 ) = 0, 
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we obtain the quasi-variational formulation of our problem: 

(7) 

In other hand, the solution of quasi-variational inequality (7) is a solution 
of boundary problem (1) - (3) (Prigozhin, 1986). 

3. Existence of the solution
Let us assume that IV t, I :s; 'Y, when problem (7) can by written as a variational
inequality. We shall consider this inequality in the weak sense: 

where 

K o = { v E V,vl 80
= 0 I v(x) 2t, (x), lv'v(x)l 2 :s; 12 }, 

/C0 = { v E V I v ( t ) E K0 , tE[O, T ], } , 

V = { v' E V', v(O) =� } ·  

We shall approximate the solution u(x, t) of (8) by 

v,(kl(x, t) = v,n(x) fort E [nk, (n + l)k],

where v,n ( x) is defined by the inequality: 

with 

U V, - n n - n( n n-1 
) ( ) k 

,v , -v ,  2 f , u - u  ,

(n+l)k 

V,n, Vv, E K o , 

I o O nk = 6.t = T M, u =U, f = J f(O")dO", n = 1, ... , M  - 1 ,
nk 

or, equivalently, by the solution of the following minimization problem: 

where 

(8) 

(9) 

(10) 
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In turn, problem (10) has a unique solution and the sequence u(kl(x, t) con-
verges to a solution of evolution inequality (8) when k tends to 0 (Glowinski, 
Lions, Tremolieres, 1976). 

We propose here two numerical methods of solving this problem. The first 
one is based on the classical Lagrangian algorithm (Ekeland, Temam, 1976). 
The second one use the Herskovits' interior point techniques (Herskovits, 1986, 
1993). 

4 .  T h e  L a g r a n g i a n  m e t h o d

Let us define the Lagrangian: 

£,k (u ,p) = J k (u) + (p, 1Vul 2 
- · ,2 )

on V x H + , H + = {p E Hjp 2". 0 a.e. in D}.
There exists a saddle point of £, k , the first component of this point is uniquely 

determined and it is the only solution of problem (10) (Ekeland, Temam, 1976). 
We use the Uzawa method to compute the saddle point of ,e,k (Ekeland, 

Temam, 1976): 
• let us give p0 in H + ;
• with ps E H + being given, find us solution of

inf ,C,k (u s ,p s ); (11) 
u8EV 

• set p s + l as:
p s + l = (ps + ps (jv 'u s )l2 _ .--y2 ))+ , ps > 0. (12) 

There exists such interval 0 < a < ps < (3 that the Uzawa algorithm con-
verges to the saddle point of £,k when s ---+ oo: 

us ---+ V,n strongly in L 2 (!1), 

5 .  H e r s k o v i t s '  i n t e r i o r  p o i n t  a l g o r i t h m

B y  performing the space discretization of problem (10) we arrive at the following 
mathematical programming problem with non-linear inequality constraints: 

{ 
minimize J   (uh) 

subject to g(uh) ::; 0. 
(13) 

Here the vector Uh E R T is the discretization of u( X)' J   E R is the dis-
cretization of the functional J k , and function 9h e R m describes all inequality 
constraints. 

To simplify the notations we omit in what follows the index k and h. The 
Karush-Kuhn-Tucker first order optimality conditions of problem (13) can be 
expressed as follows: 

VJ(v.)+Vg(u)>..= 0, (14) 
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G(v,)>. = 0, 

g( v,) ::S: 0, 

where G('U,) denotes a diagonal matrix such that Gii('U,) = 9i(u). 
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(15) 

The Lagrangian of the problem is ,C(v,, A) = J(u) + At g(u), and its second 
m 

derivative becomes H(V,, A)= V2J (v,) + LVv2gi (v,).
i=l 

A Newton iteration for the solution of (14), (15) is defined by the following 
system: 

Vg(v,) l [u0 - 'U, l 
= _ [

V J(v,) + Vg(v,)A l 
G(v,) Ao - A G(u)A 

with the matrix B taken equal to a Newton estimate of H(u, A). Here, A is a 
diagonal matrix with Aii = Ai, 

The Herskovits' interior point algorithm solves iteratively the Karush-Kuhn-
Tucker system of the minimization problem with inequality constraints, not 
necessarily convex (Herskovits, 1986, 1993). Given an initial point at the interior 
6. of the inequality constraints, a sequence of interior points is obtained. At
each iteration, a feasible descent direction is defined and a line search in this
direction is performed in order to obtain a new interior point with a reduction
of the objective.

The algorithm is defined as follows: 
Parameters. a E (0, 1), 77 E (0, 1), 'P > 0 and v E (0, 1). 
Data. v, E 6., A > 0, B E R r x r symmetric and positive definite and positive 

w E R m . 
Step 1. Computation of a search direction. 

(i) Compute d0 and A0 by solving the linear system

Bd0 + Vg(v,)Ao = -Vf(u) ,

AVl(v,)do + G(v,)Ao = 0. 

If do = 0, stop. 

(ii) Compute d1 and A1 by solving the linear system

Bd1 + Vg(v,)A1 = 0, 

AVl(u)d1 + G(v,)A1 = -Aw.
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(iii) If df'vJ(u) > 0, set

P = min[ip II do 11 2; (a - l)d 'vJ(u)/di'vJ(v,)].

Otherwise, set 

P = 1P II do 11 2 
· 

(iv) Compute the search direction 

d=do+pd1, 

and also 

Step  2. Line search. 
Compute t, the first number of the sequence {1, v, v2 , v3 , ... } satisfying 

J(v.+td)::; J(u)+trydt 'v J (u) 
and 

gi(u + td) < 0 if .>.i   0, 
or 

gi(u + td)::; gi(v.) 
otherwise. 

Step 3. Updates. 

(i) Set

v, := u+td 

and define new values for 

w > 0 ,  

and 

B 

symmetric and positive definite. 

(ii) Go to Step 1. 

The global convergence of the algorithm is proved in Herskovits (1986, 1993). 
The present method is simple to code, strong and efficient. It does not involve 

penalty functions, active set strategies or quadratic programming subproblems. 
It merely requires the solution of two linear systems with the same matrix at 
each iteration, followed by an inexact line search. In practical applications, 
advantage of the structure of the problem and particularities of the functions in 
it, can be taken of in order to improve calculus efficiently. 
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Figure 1. 

6 .  N u m e r i c a l  r e s u l t s  

For the test examples below both of the presented algorithms were used. In the 
case of the interior point algorithm the numerical code developed by Professor 
J . Herskovits was applied.

The space discretization was performed by the exterior approximation me-
thod (Glowinski, Lions, Tremolieres, 1976). Moreover, in the Lagrangian algo-
rithm the point relaxation method to solve problem (11) was used. 

As it was expected, the interior point technique proved to be more efficient 
for this kind of problem. In each time step 5-10 iterations were required to 
obtain the numerical solution by the interior point algorithm instead of 100-200 
iterations when using the Lagrangian technique. We present here 1-D example 
calculated by the interior point algorithm and 2-D examples obtained by the 
Lagrangian techniques. 

E x a m p l e  1 (1-D case) We take O = [0, 1] and the initial surface having in-
clined parts. The sv,bstance angle of repose a = 45 ° . The space discretiza-
tion was performed with the step h = 0.02. In the time discretization we have 
/::it = 0.01. The external source of intensity f = 10 was taken at the point 
x = 0.3. The form of the pile for 20 (I' = 0.2) time iterations is presentedin 
Fig. 1. 

E x a m p l e  2 (2-D case) We choose O = [0, 1] x [0, l]. In space discretization we 
have h = 1/60 and in time discretization we have /::it = 0.01. Two sources of 
intensity J i = 2.0 and h = 1.0 are given at the points (1/2, 1/2) and (2/3, 2/3), 
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Figure 3. 
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respectively. The angle of repose of the sv,bstance is a = 45 ° . Fig. 2 presents
the form of the pile at the time T = 100 x  t; Fig. 3, T = 500 x  t; Fig. 4, 
T = 1000 x  t; Fig. 5, T = 2000 x  t.

Example 3 (2-D case) We choose D = [0,1] x [0,1]. In space discretization
we have h = 1/50 and in time discretization we have  t = 0.01. The source
of intensity f = 3.0 is given at the point (1/2, 1/2). The angle of  repose is
a = 45 ° . The angle of  gradient of the initial sv,rface is a/2. The form of the 
pile at the time T = 500 x  t is presented in Fig. 6. 
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