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Abstract: We consider optimal control problems for gas flow
in pipeline networks. The equations of motion are taken to be rep-
resented by a first-order system of hyperbolic semilinear equations
derived from the fully nonlinear isothermal Euler gas equations. We
formulate an optimal control problem on a network and introduce
a tailored time discretization thereof. In order to further reduce
the complexity, we consider an instantaneous control strategy. The
main part of the paper is concerned with a nonoverlapping domain
decomposition of the optimal control problem on the graph into lo-
cal problems on smaller sub-graphs—ultimately on single edges. We
prove convergence of the domain decomposition method on networks
and study the wellposedness of the corresponding time-discrete op-
timal control problems. The point of the paper is that we establish
virtual control problems on the decomposed subgraphs such that the
corresponding optimality systems are in fact equal to the systems ob-
tained via the domain decomposition of the entire optimality system.

Keywords: optimal control, gas networks, Euler’s equation,
semilinear PDE, nonoverlapping domain decomposition

1. Introduction

We consider a semilinear hyperbolic system for gas flow in a network of pipes
that is derived from the Euler equations for compressible fluids in cylindrical
pipes. The overall goal is to control the flow of gas in an optimal way such
that at the so-called entry nodes the gas is provided at a certain pressure and
at a set of so-called exit nodes the pressure and flow conditions are realized.
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The control instruments in the system are valves and compressors which, in
turn, are modeled as switching boundary conditions, followed by continuous
profile controls. Indeed, the decision to open a valve is followed by a continuous
opening of the valve, and, correspondingly, once a decision is made to close
the valve, the valve actually closes continuously. A similar explanation holds
for the action of compressors; see the mathematical description below. The
control costs are taken to be tracking cost for the flow and the pressure plus
a penalization of the control costs. The entire optimal control problem can be
put into the framework of mixed-integer nonlinear optimal control for partial
differential equations (MINOC-PDE)—an extension of finite-dimensional mixed-
integer nonlinear programming (MINLP). Clearly, there is no general theory for
this kind of problem available. See, e.g., the recent survey paper by Hante et al.
(2017) for further information.

The aim of this article to create an avenue, along which one can proceed in
order to reduce the size and the complexity of the problem until current methods
from the literature become feasible in order to handle the problem. This is
organized as follows: The first step is to introduce a proper time discretization
of the problem, namely a semi-implicit-explicit Euler discretization, which turns
the problem into a sequence of static semilinear problems. The second step is
to apply the concept of “instantaneous” or “rolling horizon control” that turns
the problem into a sequence of one-step optimal control problems for a given
time level. The third step, and this is the essence of this paper, is to apply a
tailored nonoverlapping domain decomposition in a way similar to Lagnese and
Leugering (2004) and, more recently, Leugering (2017), in order to reduce the
size and the complexity of the problem to reasonably small networks—even to
a single pipe. This is done via an iterative scheme: first for the mere simulation
problem and then for the corresponding optimality systems. We will show that
in both cases the iterations converge, so that in the limit the solutions satisfy
the original problem or the original optimality system on the entire network.
It is important to note that thereby the optimal control problem on the entire
network is iteratively decoupled to optimal control problems on the smaller
sub-networks by using the so-called “virtual controls”. See, e.g., Hundhammer
and Leugering (2001) for an application of the instantaneous control paradigm
in the context of domain-decomposition to wave equations on networks. The
paper, therefore, aims at both the parallelization of the optimal original control
problem and a size reduction in order to finally apply tailored MINLP methods
(as developed in, e.g., Gugat et al., 2016; Schmidt et al., 2017) to the smaller
sub-networks. These actual MINLP techniques are, however, not in the scope
of the present paper and, thus, we refer to a forthcoming publication for the
fully discrete-continuous problem.

In Leugering (2017) one of the present authors followed the described con-
cept for a semilinear elliptic model derived from the one under study in this
article. The results in Leugering (2017) paved the way to the analysis of the
current article. However, the proofs are different and so are the regularity results.
Moreover, in the current article we provide the modeling and the correspond-
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ing mathematical handling of “discrete elements”, like valves and compressors.
In this respect, the results obtained in the current article are novel and better
tuned to the actual gas network problem arising in the considered application.
For the sake of brevity, in this paper, we refrain from elaborating on the ac-
tual convergence behavior of the instantaneous control scheme. Suffice it to say
that as long one is interested in controlling between equilibrium configurations,
which actually is the main focus in gas network optimization, one typically en-
joys fast convergence; see Hundhammer and Leugering (2001) and Lagnese and
Leugering (2004). The application of the instantaneous control method to time-
varying real-world gas network problems is subject to a forthcoming publication.
See, however, Gugat et al. (2017), where the instantaneous control method has
been applied for small networks.

2. Modeling of single pipes and entire networks

We now provide the modeling necessary in order to formulate the optimal control
problems.

2.1. Modeling of gas flow in a single pipe

The Euler equations are given by a system of nonlinear hyperbolic partial dif-
ferential equations (PDEs), which represent the motion of a compressible non-
viscous fluid or gas. They consist of the continuity equation, the balance of
moments, and the energy equation. The full set of equations is given by

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(p+ ρv2) = −
λ

2D
ρv|v| − gρh′,

∂t

(

ρ(
1

2
v2 + e)

)

+ ∂x

(

ρv(
1

2
v2 + e) + pv

)

= −
kw
D

(T − Tw) ;

see Smoller (1983), Brouwer et al. (2011), LeVeque (1992, 2002). Let ρ denote
the density, v the velocity, and p the pressure of the gas. We further denote by λ
the friction coefficient and by D the diameter of the pipe. The gas temperature
is denoted by T , the temperature of the pipe’s wall by Tw, and e denotes the
internal energy of the gas. Finally, g is the gravitational acceleration, h′ = h′(x)
is the constant slope of the pipe, and kw is the pipe’s heat transfer coefficient.
The variables of the system are ρ, T , and the mass flow q = aρv, where a is the
cross-sectional area of the pipe. We also denote by c the speed of sound, i.e.,
c2 = ∂ρp (for constant entropy). In particular, in the subsonic case (|v| < c) that
we consider in the sequel, two boundary conditions have to be imposed on the
left end and one at the right end of the pipe. We consider here the isothermal
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case only. Thus, for horizontal pipes, i.e., h′ = 0, we have

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x
(p+ ρv2) = −

λ

2D
ρv|v|.

In the particular case, where we have a constant speed of sound c =
√

p/ρ and
only consider small velocities |v| ≪ c, we arrive at the semilinear model; see
Osiadacz (1996):

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂p

∂x
= −

λ

2D
ρv|v|.

(1)

2.2. Network modeling

Let G=(V,E) denote the here considered graph of the gas network with nodes
V ={n1, n2, ..., n|V |} and edges E = {e1, e2, . . . , e|E|}. Node indices are denoted
j ∈ J = {1, . . . , |V |}, while edges are labeled with i ∈ I = {1, . . . , |E|}. For
the sake of uniqueness, we associate to each edge a direction. Accordingly, we
introduce the edge-node incidence matrix with entries

dij =











−1, if node nj is the left node of the edge ei,

1, if node nj is the right node of the edge ei,

0, otherwise.

In contrast to the classical notion of graphs in discrete mathematics, the graphs
considered here are known as metric graphs, which means that the edges are
continuous curves. In fact, we consider straight edges along which differential
equations hold. The pressure variables pi(nj) coincide for all edges incident at
node nj, i.e., for all edge indices i ∈ Ij := {i = 1, . . . , |E| : dij 6= 0}. We express
the transmission conditions at the nodes in the following way. We introduce the
edge degree δj := |Ij | and distinguish between multiple nodes nj with δj > 1,
whereas for simple nodes nj we have δj = 1. The corresponding index sets are
denoted by JM and J S. The set of multiple nodes contains serial nodes, i.e.,
nodes with edge degree δj = 2. The set of simple nodes further decomposes
into those simple nodes J S

D at which Dirichlet (i.e., pressure) conditions hold,
and Neumann nodes J S

N that are flow-controlled. With this, the continuity
conditions across an uncontrolled node reads

pi(nj , t) = pk(nj , t), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij ,

where Jc and Jv denote the serial nodes of compressors and valves that we
interpret as controlled transmission conditions; see below for the details. The
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nodal balance equation for the flows can be written as a classical Kirchhoff-type
condition

∑

i∈Ij

dijqi(nj , t) = 0, j ∈ JM.

As already mentioned, we assume that valves and compressors are serial
nodes nj , i.e., j ∈ JM with δj = 2. At such a node we have an incoming edge
with unique index i ∈ I+

j , where I+
j := {i ∈ Ij : dij = 1}, and an outgoing edge

with unique index k ∈ I−
j := {k ∈ Ij : dkj = −1}.

We now provide the network model of (1), see its complete description un-
der System 1. It is obvious from System 1 that for svj (t) = 1, i.e., the case, in
which the valve at node nj is open, the classical transmission conditions hold,
while for svj (t) = 0, the outgoing flow and—according to the Kirchhoff condi-
tion, which still holds—the incoming flow is zero. Similarly, for scj(t) = 1, the
compressor is active, resulting in pressure control such that the pressure in the
outgoing pipe is increased with respect to (w.r.t.) the pressures of the incom-
ing pipes. To the best knowledge of the authors, System 1 with the switching
functions svj (t), s

c
j(t) ∈ {0, 1}, even for the simplest possible network, namely -

a two-link system with a compressor or valve at the connection point, has not
been considered for the semilinear problem so far. Even for smooth relaxations
of svj (·) and s

c
j(·), no published result seems to be available.

System 1. Gas network model; x ∈ (0, ℓi) and t ∈ (0, T )

∂tpi(x, t) +
c2i
ai
∂xqi(x, t) = 0, i ∈ I

∂tqi(x, t) + ∂xpi(x, t) = −
λc2i

2Dia2i

qi(x, t)|qi(x, t)|

pi(x, t)
, i ∈ I

pi(nj , t) = pk(nj , t), j ∈ JM \ (Jc ∪ Jv), i, k∈Ij

gj(pi(nj , t), qi(nj , t)) = uj(t), j ∈ J S, i ∈ Ij
∑

i∈Ij

dijqi(nj , t) = 0, j ∈ JM

s
v
j (t) (pi(nj , t)− pk(nj , t)) + (1− s

v
j (t))qi(nj , t) = 0, j ∈ Jv, i ∈ I+

j , k ∈ I−

j

s
c
j(t)

(

uj(t)−C

(

(

pk(nj , t)

pi(nj , t)

)sign(qk(nj ,t))κ

− 1

))

+(1− s
c
j(t)) (pi(nj , t)− pk(nj , t)) = 0 j ∈ Jc, i ∈ I+

j , k ∈ I−

j

pi(x, 0) = pi,0(x), qi(x, 0) = qi,0(x), i ∈ I

For more details on the compressor model see, e.g., Schmidt et al. (2015),
Rose et al. (2016), or the chapter by Fügenschuh et al. (2015) of the recent book
by Koch et al. (2015). Note that we can replace the transmission conditions at



196 G. Leugering, A. Martin, M. Schmidt, M. Sirvent

the compressor node by the bilinear transmission conditions as follows:

uj(t)− C

(

(

pk(nj , t)

pi(nj , t)

)sign(qk(nj ,t))κ

− 1

)

= 0

⇐⇒

(

uj(t) + C

C

)sign(qk(nj ,t))/κ

=
pk(nj , t)

pi(nj , t)
.

If we replace uj(t) by

uj(t) =

(

uj + C

C

)sign(qk(nj ,t))/κ

and ensure uj ≥ 1, the original transmission condition at the compressor node
can be replaced with

pi(nj , t)uj(t)− pk(nj , t) = 0

if the compressor is active. Otherwise, the classical continuity condition for the
pressure holds. This results in a bilinear boundary control.

3. The optimal control problem, time discretizations, and

an instantaneous control approach

We are now in the position to formulate optimal control problems on the level
of entire gas networks. There are many different approaches towards optimiz-
ing and/or control the flow of gas through pipeline networks. One of these
approaches aims at optimizing discrete decision variables, such as on-off-states
for valves and compressors. We refer to Hante et al. (2017); Gugat et al. (2016,
2017); Schmidt et al. (2017), refrain in the sequel from discussing issues of valves
and compressors in detail, and focus on the continuous aspects of the problem.
The combined discrete and continuous optimization will be the subject of future
research. We now describe the general format of an optimal control problem
associated with the semilinear model equations of the previous section:

min
(p,q,u,s)∈Ξ

I(p, q, u, s) s.t. (p, q, u, s) satisfies System 1, (2)

where

I(p, q, u, s) :=
∑

i∈I

∫ T

0

∫ ℓi

0

Ii(pi, qi) dxdt+
ν

2

∑

j∈J S∪Jc

∫ T

0

|uj(t)|
2 dt

+
1

2

∫ T

0

∑

j∈Jv

|svj (t)|
2 dt+

1

2

∫ T

0

∑

j∈Jc

|scj(t)|
2 dt

(3)
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and

Ξ :={(p, q, u, s) : pi ∈ [
¯
pi, p̄i], qi ∈ [

¯
qi, q̄i], i ∈ I,

uj ∈ [
¯
uj , ūj], j ∈ J S ∪ Jc,

svj ∈ {0, 1}, j ∈ Jv, s
c
j ∈ {0, 1}, j ∈ Jc}

(4)

holds. In (3), ν > 0 is a penalty parameter and Ii(·, ·) is a continuous function
on the pair (pi, qi). In (4), the quantities

¯
pi,

¯
qi, p̄i, q̄i are given constants that

determine the feasible pressures and flows in the pipes, while
¯
uj , ūj describe

control constraints. In the continuous-time case the inequalities are considered
as being satisfied for all times and everywhere along the pipes. In the sequel,
we will not consider control and state constraints and even reduce to a time
semi-discretization.

To this end, we consider a time discretization of System 1 such that [0, T ]
is decomposed into break points 0 = t0 < t1 < · · · < tN = T with ∆tn :=
tn+1 − tn for n = 0, . . . , N − 1. Accordingly, we abbreviate pi,n(x) := pi(x, tn),
qi,n(x) := qi(x, tn). Next, we apply a semi-implicit Euler scheme, which takes
pi in the friction term in an explicit manner. The resulting semi-discretized
system provided in the form of System 2. With this, we obtain the optimal

System 2. Semi-discretized model; x ∈ (0, ℓi), n = 0, . . . , N − 1

1

∆tn
pi,n+1(x) +

c2i
ai
∂xqi,n+1(x) =

1

∆tn
pi,n(x), i ∈ I

1

∆tn
qi,n+1(x) + ∂xpi,n+1(x)

= −
λc2i

2Dia2i

qi,n+1(x)|qi,n+1(x)|

pi,n(x)
+

1

∆tn
qi,n(x), i ∈ I

pi,n+1(nj) = pk,n+1(nj), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij

gj(pi,n+1(nj), qi,n+1(nj)) = uj,n+1, j ∈ J S
, i ∈ Ij

∑

i∈Ij

dijqi,n+1(nj) = 0, j ∈ JM

s
v
j,n+1 (pi,n+1(nj)− pk,n+1(nj))

+(1− s
v
j,n+1)qi,n+1(nj) = 0, j ∈ Jv, i ∈ I+

j , k ∈ I−

j

s
c
j,n+1 (pi,n+1(nj)uj − pk,n+1(nj))

+(1− s
c
j,n+1) (pi,n+1(nj)− pk,n+1(nj)) = 0, j ∈ Jc, i ∈ I+

j , k ∈ I−

j

pi(x, 0) = pi,0(x), qi(x, 0) = qi,0(x), i ∈ I
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control problem on the time-discrete level:

min
(p,q,u,s)∈Ξ̂

Î(p, q, u, s) :=
∑

i∈I

N
∑

n=1

∫ ℓi

0

Îi(pi,n, qi,n) dx+
ν

2

N
∑

n=1

∑

j∈J S∪Jc

|uj,n|
2

+
1

2

N
∑

n=1

∑

j∈Jv

|svj,n|
2 +

1

2

N
∑

n=1

∑

j∈Jc

|scj,n|
2

s.t. (p, q, u, s) satisfies System 2.

(5)

In (5), we consider discretized and edge-wise given cost functions, e.g.,

Îi(pi,n, qi,n)(x) :=
1

2

(

|pi,n(x) − pdi,n(x)|
2 + |qi,n(x) − qdi,n(x)|

2
)

for x ∈ (0, ℓi), i ∈ I, and tracking targets pdi,n and qdi,n. Moreover, Ξ̂ is the
discretized version of Ξ. It is clear that (5) involves all time steps in the cost
functional. We would like to reduce the complexity of the problem even further.
To this aim, we consider what has come to be known as instantaneous control ;
see Choi et al. (1993, 1999). This approach has also been used for the control of
vibrating string networks in Hundhammer and Leugering (2001), for the control
of wave equations in networks in Hinze (2002), for traffic flows in Herty et al.
(2007), or for the control of linear wave equations in Altmueller et al. (2010).
Very recently, a similar approach has been applied for MPEC-type optimal
control problems in Antil et al. (2017) and for mixed-integer optimal control
problems with PDEs in Gugat et al. (2017). The approach amounts to reducing
the sums in the cost function of (5) to the time-level tn+1. This strategy is known
as rolling horizon approach, the simplest case of the moving horizon paradigm;
consult, e.g., Hinze and Volkwein (2002), Hundhammer and Leugering (2001).
Thus, for each n = 0, . . . , N − 1 and given pi,n, qi,n, we consider the problems

min
(p,q,u,s)∈Ξ̂

Ĩ(p, q, u, s) :=
∑

i∈I

∫ ℓi

0

Îi(pi,n+1, qi,n+1) dx

+
ν

2

∑

j∈J S∪Jc

|uj,n+1|
2 +

1

2

∑

j∈Jv

|svj,n+1|
2 +

1

2

∑

j∈Jc

|scj,n+1|
2

s.t. (p, q, u, s) satisfies System 2 at time level n+ 1.

(6)

It is now convenient to discard the actual time level index n + 1 and redefine
the states at the former time as input data. To this end, we introduce

αi :=
1

∆tn
, βi =

αiai
c2i

, f1
i := βipi,n(x),

f2
i := αiqi,n(x), gi(x; qi(x)) :=

λc2i
2Dia2i

qi(x)|qi(x)|

pi,n(x)
,

and rewrite System 2 as System 3.



Domain decomposition for optimal control of gas networks 199

System 3. Constraint system of Problem (7); x ∈ (0, ℓi)

βipi(x) + ∂xqi(x) = f
1
i , i ∈ I

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f
2
i , i ∈ I

pi(nj) = pk(nj), j ∈ JM \(Jc∪Jv), i, k ∈ Ij

gj(pi(nj), qi(nj)) = uj , j ∈ J S, i ∈ Ij
∑

i∈Ij

dijqi(nj) = 0, j ∈ JM

s
v
j (pi(nj)− pk(nj)) + (1− s

v
j )qi(nj) = 0, j ∈ Jv, i ∈ I+

j , k ∈ I−

j

s
c
j (pi(nj)uj − pk(nj)) + (1− s

c
j) (pi(nj)− pk(nj)) = 0, j ∈ Jc, i ∈ I+

j , k ∈ I−

j

This results in the final optimal control problem to be discussed below:

min
(p,q,u,s)∈Ξ̂

Î(p, q, u, s) s.t. (p, q, u, s) satisfies System 3. (7)

4. Domain decomposition

4.1. Initial definitions and formulations

In this section, we provide an iterative nonoverlapping domain decomposition
that can be interpreted as an Uzawa method; compare Algorithm 3 in Glowinski
and Le Tallec (1989) and see the monograph of Lagnese and Leugering (2004)
for details. The idea for this algorithm originates from a decoupling of the
transmission conditions at all multiple nodes. In order to present the main ideas,
we concentrate on that case first in Section 4.2. After that, we decompose the
full graph into sub-graphs in Section 4.3, where we cut the connecting edges
at possibly artificial serial nodes. To this end, we define the flow vector qk :=
(dikqi(nk))

⊤
i∈Ik

and the pressure vectors pk := (pi(nk))
⊤
i∈Ik

at a given node nk,

k ∈ JM. Moreover, given a vector z := (zi)i∈Ik
, we define

Sk(z)i :=
2

dk

∑

j∈Ik

zj − zi.

Then, (Sk)2 = I, i.e., the mapping is idempotent, and Sk(e) = 1 for e :=
(1, . . . , 1)⊤ ∈ R

dk . Using this notation, we now establish the general concept.
For any σ > 0 we set

−qk + σpk = σSk(pk) + Sk(qk). (8)

Applying Sk to both sides of (8), we obtain

∑

i∈Ik

dikqi(nk) = 0. (9)
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With this, (8) reduces to

pi(nk) =
1

dk

∑

j∈Ik

pj(nk), i ∈ Ik,

which, in turn, implies

pi(nk) = pj(nk), k ∈ JM, i, j ∈ Ik. (10)

Clearly, if the transmission conditions (9) and (10) hold at the multiple node nk,
then (8) is also fulfilled. Thus, (8) is equivalent to the transmission conditions
(9), (10). This new condition (8) is now relaxed in an iterative scheme (using l
as iteration number) as follows:

−(qk)l+1+σ(pk)l+1 = σSk((pk)l)+Sk((qk)l) =: (gk)l+1, gk = (gik)
⊤
i∈Ik

. (11)

We obtain the relation

(gk)l+1 = Sk(2σ(pk)l − (gk)l). (12)

This gives rise to the definition of a fixed point mapping. To this end, we need
to look into the behavior of the interface, i.e., the transmission nodes, in terms
of gk, k ∈ JM, i.e.,

g ∈ X := Πk∈JMΠi∈Ik
R, ‖g‖2X :=

∑

k∈JM

∑

i∈Ik

1

σ
|gik|

2 (13)

and T : X → X with

(T g)i,k = Sk(2σ(pk)− gk)i, k ∈ JM, i ∈ Ik,

(T g)k = {(T )i,k, i ∈ Ik},

T g = {(T g)k, k ∈ JM}.

(14)

Now,

‖T g‖2X =
∑

k∈JM

∑

i∈Ik

1

σk
|Sk(2σ(pk)− gk)i|

2

holds. We use the facts

∑

i∈Ik

(Skgk)2i =
∑

i∈Ik

(gk)2i

and

∑

i∈Ik

(Skqk)i(S
kgk)i =

∑

i∈Ik

qki g
k
i
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to obtain

‖T g‖2X = ‖g‖2X − 4
∑

k∈JM

∑

i∈Ik

(gki − σkpi(nk))pi(nk). (15)

We now formulate a relaxed version of a fixed point iteration: For ε ∈ [0, 1), we
set

gl+1 = (1 − ε)T (gl) + εgl. (16)

So far, the relations concerning the iteration at the interfaces do not involve the
state equation explicitly. For the analysis of the convergence of the iterates, we
need to specify the equations.

4.2. The nonoverlapping domain decomposition

For the ease of presentation, we first look at a graph that does not contain valves
or compressors and we only consider the situation of flow-controlled boundary
nodes. Thus, at this point we consider an edge that connects two multiple nodes
or one multiple node and a controlled simple node. We are interested in the
errors between the solutions of System 3 and the solutions of

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , x ∈ (0, ℓi), i ∈ I,

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; q

l+1
i (x)) = f2

i , x ∈ (0, ℓi), i ∈ I,

−dijq
l+1
i (nj) + σpl+1

i (nj) = gl+1
kj , j ∈ JM, i, k ∈ Ij ,

qi(nj) = uj, i ∈ Ij , j ∈ J S
N ,

(17)

where gl+1
kj satisfies (12). Notice that the third position in (17) describes a

set of equations, one for each edge incident at node nj . Thus, we introduce
q̂l+1 := ql+1 − q and p̂l+1 := pl+1 − p. Then, q̂l+1 and p̂l+1 solve a nonlinear
differential equation with nonlinearity gi(q̂

l+1
i + qi) − gi(qi), zero right-hand

sides and homogeneous boundary conditions at the simple nodes. As we noted
above, the full transmission conditions are equivalent to (8). Hence, the error
satisfies the same iterative Robin-type boundary conditions as ql+1 and pl+1.
We consider the following integration by parts formula after multiplying by a
test function φ:

0 =
∑

i∈I

∫ ℓi

0

(

βip̂
l+1
i + ∂xq̂

l+1
i

)

φi dx

=
∑

k∈JM

∑

i∈Ik

dikp̂
l+1
i (nk)φi(nk) +

∑

i∈I

∫ ℓi

0

(

βip̂
l+1
i φi − q̂l+1

i ∂xpi
)

dx,

0 =
∑

i∈I

∫ ℓi

0

(

αiq̂
l+1
i + ∂xp̂

l+1
i + gi(q̂

l+1
i + qi)− gi(qi)

)

qi dx.
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We obtain

−
∑

k∈JM

∑

i∈Ik

dik q̂
l+1
i (nk)p̂

l+1
i (nk)

=
∑

i∈I

∫ ℓi

0

(

βi(p̂
l+1
i )2 + αi(q̂

l+1
i )2 + (gi(q̂

l+1
i + qi)− gi(qi))q̂

l+1
i

)

dx.

Moreover, we have
∑

k∈JM

∑

i∈Ik

dik q̂
l+1
i (nk)p̂

l+1
i (nk) = −

∑

k∈JM

∑

i∈Ik

(gik − σpi(nk))pi(nk).

This identity is used in (15), evaluated for the error

‖T g‖2X = ‖g‖2X − 4
∑

k∈JM

∑

i∈Ik

((gki )
l − σk(p̂

k
i )

l)(p̂eki )
l.

We obtain

‖gl+1‖2X = ‖T gl‖2X

= ‖gl‖2X − 4
∑

i∈I

∫ ℓi

0

(

βi(p̂
l
i)

2 + αi(q̂i)
2 + (gi(q̂

l
i + qi)− gi(qi))q̂

l
)

dx.

We assume monotonicity of the nonlinear term

(gi(x; s)− gi(x; t))(s − t) ≥ 0, x ∈ (0, ℓi), i ∈ I. (18)

Then, the error iteration is

‖gl+1‖2X ≤ ‖T gl‖2X = ‖gl‖2X − 4
∑

i∈I

∫ ℓi

0

(

βi(p̂
l
i)

2 + αi(q̂i)
2
)

dx (19)

and, thus, the error does not increase. That it actually decreases to zero is shown
below. Before, we look at the relaxed version of the iteration (16). Taking norms,
we obtain

‖gl+1‖2X ≤ ‖gl‖2X − 4(1− ε)
∑

i∈I

‖q̂i‖
2 + ‖p̂i‖

2. (20)

We iterate in (19) or (20) down from l to zero and obtain

{gl} is bounded, ‖p̂li‖
2, ‖q̂li‖

2 → 0, l → ∞.

But according to the error equations, if p̂i → 0 holds strongly, then also ∂xq̂i,
and in a similar way also ∂xp̂i, strongly tends to zero. Thus, the full sequence
of traces converges.

Theorem 1 Under the monotonicity assumption (18), for each ε ∈ [0, 1) the
iteration (16) with (11), (13), and (14) converges as l → ∞. The convergence
of the solutions is in the H1-sense (see (29)) on the entire network. Moreover,
the traces at the decomposition nodes converge.

Before we embark on the domain decomposition of the optimal control prob-
lems, we discuss the extension to sub-graph decomposition.
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Figure 1. Two-link network of Example 1.

4.3. Sub-graph decomposition

We consider the graph G = (V,E) being decomposed into sub-graphs Gm =
(Vm, Em) for m = 1, . . . ,K. For the ease of presentation, we split the origi-
nal graph only at serial nodes j ∈ JM. We assume that the sub-graphs are
connected according to an adjacency structure Am,n = 1 if the two sub-graphs
Gm and Gn with m,n ∈ {1, . . . ,K} are connected. Otherwise, Am,n = 0 holds.
We denote the edge sets of sub-graph Gm, m ∈ {1, . . . ,K}, by Im. The serial
transmission nodes between sub-graph Gm and Gn are denoted by the set JM

m,n.
Moreover, we assume that all valves and compressors are contained in the inte-
rior of the sub-graphs. To express this, we introduce the set JM,o

m of multiple
nodes of Gm that are not in JM

m,n. Accordingly, Jm,c and Jm,v are the com-
pressor and valve nodes contained in Gm. Thus, after domain decomposition,
System 3 then yields System 4.

System 4. Domain-decomposed system; x ∈ (0, ℓi), m = 1, . . . ,K

βip
l+1
i (x) + ∂xq

l+1
i (x) = f

1
i , i ∈ Im

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; q

l+1
i (x)) = f

2
i , i ∈ Im

p
l+1
i (nj) = p

l+1
k (nj), j∈JM,o

m \ (Jm,c ∪ Jm,v), i, k∈Ij

gj(p
l+1
i (nj), q

l+1
i (nj)) = uj , j ∈ J S

m, i ∈ Ij
∑

i∈Ij

dijq
l+1
i (nj) = 0, j ∈ JM,o

m

s
v
j

(

p
l+1
i (nj)− p

l+1
k (nj)

)

+ (1− s
v
j )q

l+1
i (nj) = 0, j ∈ Jm,v, i ∈ I+

j , k ∈ I−

j

s
c
j

(

p
l+1
i (nj)uj − p

l+1
k (nj)

)

+(1− s
c
j)
(

p
l+1
i (nj)− p

l+1
k (nj)

)

= 0, j ∈ Jm,c, i ∈ I+
j , k ∈ I−

j

−dijq
l+1
i (nj) + σpi(nj)

l+1

= σpk(nj)
l + dkjqk(nj)

l =: gl+1
kj , j∈JM

m,n, n : Am,n = 1, i, k ∈ Ij

Example 1 We consider a serial situation, consisting of two links, labeled with
i = 1, 2, that are coupled at x = 0. The first link stretches from x = −1 to
x = 0, while the second stretches from x = 0 to x = 1; see Fig. 1. We choose
αi = βi = 1, γi = λc2i /(2Dia

2
i ) = 0, and the distributed loads are given by
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Table 1. Iteration history of g11, g21 in Example 1.

Iteration: 0 1 2 3 4 5

g11 0.000000 0.890987 1.009400 1.072349 1.080715 1.085163
g21 0.000000 0.445494 0.682320 0.713794 0.730526 0.732750

Figure 2. The two-link serial network of Example 1; see Fig. 1. x-axis: spatial
coordinate x ∈ [−1, 1]. y-axis: mass flow. The reference solution is printed in
bold.

f1
1 (x) = 1, f2

1 (x) = 1, f1
2 = 1, f2

2 = 2. We plot the first five iterations of the
domain decomposition and provide the nodal errors. The reference solution is
obtained using the MATLAB routine bvp4c with a tolerance of 10−4; see the bold
lines in Fig. 2. For the fixed point behavior of the gkj at the interface, consult
Table 1.

The error after five iterations in the continuity conditions for the pressures
is 8.87× 10−4 and the final error in the flow is 2.25× 10−4. After 20 iterations,
the corresponding errors are 7.92× 10−12 and 1.71× 10−12, respectively. If we
now choose γ = 5 and take 20 iterations we obtain the errors 2.84 × 10−9 and
4.08 × 10−10, respectively. The corresponding plots in Fig. 2 do not show any
difference w.r.t. the reference solution.

Example 2 We now consider the situation in which a compressor is located in
the middle of the two links. Otherwise, the model is as in Example 4.1. The
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Figure 3. The two-link serial network with activated compressor (u0 = 5). x-
axis: spatial coordinate x ∈ [−1, 1]. y-axis: mass flow.

domain decomposition is as follows:

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , i = 1, 2,

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; q

l+1
i (x)) = f2

i , i = 1, 2,

ql+1
1 (−1) = 0, ql+1

2 (1) = 0,

−ql+1
1 (0) + σp1(0)

l+1u0 = σp2(0)
l + q2(0)

l,

−ql+1
2 (0) + σp2(0)

l+1 = σp1(0)
lu0 + q1(0)

l.

We take 20 iterations and put the control u0 = 5. The flow of the last iter-
ation is plotted on top of the MATLAB reference solution, obtained as above;
for illustration see Fig. 3. The errors are 3.550273 · 10−7 and 1.665880 · 10−7,
respectively.

Remark 1 We consider the situation of the last example, analyze a particular
iteration l+1 and omit this index, while keeping the previous index, in order to
identify the data of the problem. In particular, for the edge 2 we have

β2p2(x) + ∂xq2(x) = f1
2 , x ∈ (0, ℓ2),

α2q2(x) + ∂xp2(x) + g2(x; q2(x)) = f2
2 , x ∈ (0, ℓ2),

−q2(0) + σp2(0) = σp1(0)
l(s(u − 1) + 1) + q1(0)

l, q2(1) = q̄2.

(21)

If s = 1, the control u ≥ 1 is applied, as the pressure is then higher than in the
previous pipe. Otherwise, the control 1 is applied, as then the pressures are the
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same. We may introduce v = u− 1 and have v ≥ 0. The control v then appear-
ing in the Robin-type boundary condition is multiplied by the binary variable s
and by σp1(0)

l from the previous iteration. Thus, the constellation above is a
Robin-type boundary control problem for a single link. In Gugat et al. (2016),
the authors have established particular situations in which a master-sub-problem-
strategy, where the master problem consists in optimizing the discrete variables,
i.e., deciding whether the compressor is active or not, and the sub-problem con-
cerns the continuous optimization, i.e., the pump control, converges. In that
study it was required that the control-to-state map of the sub-problem is smooth,
strictly monotone, and either convex or concave. Further developments that
alleviate the assumptions were presented in Schmidt et al. (2017). A similar
situation has been studied in Buchheim, Kuhlmann and Meyer (2016) for an
integer control problem for a semilinear Laplace boundary value problem, where
also the concavity of the control-to-state-map turned out to be the crucial argu-
ment. We therefore ask the question whether the flow q is concave as a function
of u. For its answer, we would like to resort to a maximum principle and trans-
form problem (21) into a second-order problem. This is done by differentiating
the first equation of (21) with respect to x and inserting the resulting expres-
sion for ∂xp2 into the second equation. The pressure terms in the boundary and
transmission conditions are then pi(nj) = −∂xqi(nj)/βi. We ignore the edge
index and formulate an optimal control problem for the single edge 2:

min
s∈{0,1},u∈[1,ū]

‖q − qd‖L2(0,1) +
ν

2
(s2 + u2)

s.t. αβq − ∂xxq + βg(x; q) = βf2 − ∂xf
1,

q(0) +
σ

β
∂xq(0) = φs(u − 1) + µ,

q(1) = q̄.

(22)

Here, φ = σ/β1 ∂xq1(0)
l, µ = φ−q1(0)

l. In order to demonstrate the concavity of
q as a function of u, using differential calculus, we need to show that ∂uuq(u) < 0.
This, however, requires that g(x; ·) be twice differentiable. Obviously, the func-
tion g(x; q) = γ(x)q(x)|q(x)| is first-order continuously differentiable, while the
second derivative is not well defined at x = 0, being otherwise identical to the
Heavyside function. Its Bouligand second derivative is the set {−1, 1}. We

now use the smoothed function gε(x; q) = γ(x)(ε + |q(x)|2)
1

2 q(x). We can now
differentiate the constraints of (22) w.r.t. u and obtain for w := Duq(u) and
z := Duuq(u):

αβz − ∂xxz + βD2gε(x; q(u))z = −βD2
2gε(x; q(u))w

2, (23a)

q(0) +
σ

β
∂xz(0) = 0, (23b)

z(1) = 0. (23c)

As the flow is in the positive direction by construction, q(u) is positive for pos-
itive controls. This can also be proven using the maximum principle for (22).
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Figure 4. Network of Example 3.

The term βD2
2gε(x; q(u))w

2 is positive and, hence, the right-hand side of (23a)
is negative. According to the maximum principle, z is negative and, therefore,
q(u) is concave as a function of u > 0. Thus, for ε > 0, we have achieved
the situation alluded to above. This amounts to saying that up to a relaxation
parameter, we can achieve a global solution at the iteration level l+1 and ε > 0
using the techniques of Gugat et al (2016). This property is reminiscent to the
results in Ahmad Ali et al. (2016), where additional control and state constraints
are considered. However, the nonlinearity does not formally fit into the frame-
work of Ahmad Ali et al. (2016). The extension of these results for constrained
problems with the nonlinearity discussed here is the subject of a forthcoming
publication. Having achieved the optimal control in (22) for edge 2, we can use
it in the iteration for the edge 1, according to (21). It ought to be noted that the
question if the global optimum is stable as the domain decomposition iteration
converges is open. See, e.g., Pertsinidis et al. (1998) for a sensitivity analysis
for MINLPs.

Example 3 We consider the serial situation displayed in Fig. 4, where the
edges 1, 2 are connected by the node n0 (at x = 0), the edges 3, 4 are connected
to edge 1 via node n1 (at x = 1) and to edge 2 via node n2 (at x = 1). At
x = 0, i.e., the node between edges 1, 2, we have an active compressor, i.e.,
sc0 = 1. We decompose the network at the two serial nodes between edges 1, 3
and 2, 4 at x = 1, respectively. With this configuration, we have I0 = {1, 2},
I1 = {1, 3}, I2 = {2, 4}. At the simple nodes of edges 3 and 4, we consider
controlled boundary flows. We write down the system in a more explicit way:

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , x ∈ (0, ℓi), i = 1, . . . , 4,

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; q

l+1
i (x)) = f2

i , x ∈ (0, ℓi), i = 1, . . . , 4,

pl+1
1 (0)u0 = pl+1

2 (0),

ql+1
1 (0) + ql+1

2 (0) = 0,

ql+1
3 (0) = u3, q

l+1
4 (0) = u4,

−ql+1
1 (1) + σp1(1)

l+1 = σp3(1)
l + q3(1)

l =: gl+1
31 ,

−ql+1
3 (1) + σp3(1)

l+1 = σp1(1)
l + q1(1)

l =: gl+1
11 ,

−ql+1
2 (1) + σp2(1)

l+1 = σp4(1)
l + q4(1)

l =: gl+1
42 ,

−ql+1
4 (1) + σp4(1)

l+1 = σp2(1)
l + q2(1)

l =: gl+1
22 .
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It is then obvious that the domain decomposition method converges.

Examples 1, 2 and 3 show that a network with compressors and valves can be
decomposed into sub-graphs down to individual edges using the nonoverlapping
domain decomposition procedure.

Theorem 2 Let the assumption of Theorem 1 be valid. Then, the sub-graph
iteration (4) converges as l → ∞ in the H1-sense.

5. Domain decomposition for optimal control problems

We now consider the optimal control problem (7) with two modifications: First,
we fix a given switching structure s. Second, we only consider flow boundary
controls. The latter means that we replace gj(pi(nj), qi(nj)) = uj by qi(nj) = uj
for j ∈ J S, i ∈ Ij . The corresponding optimality system provided in the form
of System 5.

System 5. Optimality system of Problem (7) with fixed switching structure and
flow boundary control; x ∈ (0, ℓi)

βipi(x) + ∂xqi(x) = f
1
i , i ∈ I

αiqi(x) + ∂xpi(x) + gi(x; qi) = f
2
i , i ∈ I

βiφi(x)− ∂xψi(x) = −κi(pi − p
0
i ), i ∈ I

αiψi(x)− ∂xφi(x) + ∂qgi(x; qi)φi = −κi(qi − q
0
i ), i ∈ I

qi(nj) = uj , ψi(nj) = 0, j ∈ J S, i ∈ Ij

pi(nj) = pk(nj), φi(nj) = φk(nj), j∈JM \ (Jc∪Jv), i, k ∈ Ij
∑

i∈Ij

dijqi(nj) = 0,
∑

i∈Ij

dijψi(nj) = 0, j ∈ JM

s
v
j (pi(nj)− pk(nj)) + (1− s

v
j )qi(nj) = 0, j ∈ Jv, i ∈ I+

j , k ∈ I−

j

s
v
j (φi(nj)− φk(nj)) + (1− s

v
j )ψi(nj) = 0, j ∈ Jv, i ∈ I+

j , k ∈ I−

j

s
c
j (pi(nj)uj − pk(nj)) + (1− s

c
j) (pi(nj)− pk(nj)) = 0, j ∈ Jc, i ∈ I+

j , k ∈ I−

j

s
c
j (ψi(nj)uj − ψk(nj)) + (1− s

c
j) (φi(nj)− φk(nj)) = 0, j ∈ Jc, i ∈ I+

j , k ∈ I−

j

uj = −
1

ν
φi(nj), j ∈ J S, i ∈ Ij

uj = −scjpi(nj)ψi(nj), j ∈ Jc, i ∈ Ij

The idea is to use a domain decomposition similar to the one discussed so
far. We design a method that allows to interpret the decomposed optimality
System 5 as an optimality system of an optimal control problem formulated
on a sub-graph or, ultimately, on an individual edge. To fix the ideas, we first
concentrate on systems without valves and compressors as before. The reason
is that we do not intend to decompose the systems at such nodes. Instead, we
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focus on the decomposition at serial nodes again. To this end, we introduce the
following local system, involving two edges, labeled with i, k ∈ Ij :

βip
l+1
i (x) + ∂xq

l+1
i (x) = f1

i , i ∈ I,

αiq
l+1
i (x) + ∂xp

l+1
i (x) + gi(x; q

l+1
i ) = f2

i , i ∈ I,

βiφ
l+1
i (x)− ∂xψ

l+1
i (x) = −κi(p

l+1
i − p0i ), i ∈ I,

αiψ
l+1
i (x)− ∂xφ

l+1
i (x) + ∂qgi(x; q

l+1
i )φl+1

i = −κi(q
l+1
i − q0i ), i ∈ I,

−dijq
l+1
i (nj) + σpl+1

i (nj)− µφl+1
i (nj) = gl+1

kj , i, k ∈ Ij ,

dijψ
l+1
i (nj) + σφl+1

i (nj) + µpl+1
i (nj) = hl+1

kj , i, k ∈ Ij ,

gl+1
kj = dkjq

l
k(nj)) + σplk(nj)− µφlk(nj), i, k ∈ Ij ,

hl+1
kj = −dkjψ

l
k(nj) + σφlk(nj) + µplk(nj), i, k ∈ Ij ,

(24)

where x ∈ (0, ℓi). System (24) reflects a situation, where the domain decompo-
sition is applied at a serial node that connects two edges.

Example 4 We consider a serial situation, where two links are coupled at x = 0
and the pressure is controlled at the two ends with x = 1. The transmission
node at x = 0 is the one where we apply the domain decomposition. We have
the following academic scenario for demonstrating the domain decomposition
for optimality systems. On both edges we apply a distributed load f1

i (x) = 0,
f2
i (x) = 1000 for all x ∈ (0, 1) and i = 1, 2. We would like to track the constant

targets f2,d
i (x) = 1, x ∈ (0, 1), i = 1, 2, and choose βi=1, αi=1000, and κi=100

for i = 1, 2. As iteration parameters, we use µ = 0 and σ = 1. As above, we
solve the optimality system using the MATLAB routine bvp4c for obtaining the
reference solution and compare it with the result of our domain decomposition
method. We print the solution of the domain decomposition iterations on top of
the reference solutions, for the optimal states and the adjoints, respectively. For
the results see Figs. 5 and 6 for the states, the adjoints, and the nodal errors,
respectively. Since the situation is fully symmetric, we only plot the solution in
x ∈ [0, 1].

Example 5 Here, we consider the same network as in the previous example
but change the physical data. We recall that f1,2

i represent previous pressure
and flow functions along the edges i = 1, 2. Assume those are constant and
equal, say, f1

1 = f1
2 = 1 for all x ∈ (0, 1), while f2

1 = −f2
2 = α. We may take

αβ =: c = 1000, which is fine for the time discretizations discussed above, in
particular if we choose the spatial discretization ∆x = 1/1000. We first ignore
the nonlinearity. Then, the flow is 1 and −1 on edges 1 and 2, respectively, while
the pressure is equal to 1 in both pipes. If we take these as tracking goals, the
domain decomposition iteration should finally reveal these solutions with controls
ui = 1. This is what we observe in Fig. 7. The error behavior is as above.

We now take the same configuration and tune the nonlinearity. This gives
new equilibria. By setting γ = 0.1, we obtain the results shown in Fig. 8, where
also the change in the adjoints can be seen.
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Figure 5. Optimal control of the two-link serial network of Example 4. Up-
per diagram: optimal states (with mass flow on the y-axis). Lower diagram:
adjoints. x-axis: spatial coordinate x ∈ [0, 1].
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Figure 6. Optimal control of the two-link serial network of Example 4. Nodal
errors over the course of the iterations (x-axis).

Let us now consider the following optimization problems on a single edge.
The idea is to introduce a virtual control that aims at controlling the classical
inhomogeneous Neumann conditions, including the iteration history at the in-
terface as the inhomogeneity to the Robin-type condition that appears in the
decomposition. To this end, it is sufficient to consider three cases:

a) The edge i connects a controlled flow-node j ∈ J S
N node with a multiple

(serial) node k ∈ JM at which the domain decomposition is active.
b) The edge i connects a controlled pressure-node j ∈ J S

D with multiple
(serial) node k ∈ JM at which the domain decomposition is active.

c) The edge i connects two multiple (serial) nodes j, k ∈ JM.
We concentrate on the last case as it is the most complex one. The two other
cases are completely analogous. Thus, in the case of a single edge i with no
connection to a controlled node, we consider the problem

min
qi,pi,vij ,vik

I(qi, pi, vij , vik) :=
κ

2

(

‖qi − q0i ‖
2 + ‖pi − p0i ‖

2
)

+
1

2µ
v2ij +

1

2µ
v2ik

+
1

2µ
(µpi(nk)− hik)

2 +
1

2µ
(µpi(nj)− hij)

2

s.t. βipi + ∂xqi = f1
i , x ∈ (0, ℓi),

αiqi + ∂xpi + gi(x; qi) = f2
i , x ∈ (0, ℓi),

− dijqi(nj) + σpi(nj) = gkj + vij , i, k ∈ Ij ,

− dikqi(nk) + σpi(nk) = gjk + vik, i, j ∈ Ik,

where the hij , hik appear in the domain decomposition of the optimality system
in (24) and are taken at the iteration level l. We now also involve valves and
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Figure 7. Optimal control of the two-link serial network of Example 5 without
nonlinearity. Upper diagram: optimal states (with mass flow on the y-axis).
Lower diagram: adjoints. x-axis: spatial coordinate x ∈ [0, 1].
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Figure 8. Optimal control of the two-link serial network of Example 5 with
nonlinearity. Upper diagram: optimal states (with mass flow on the y-axis).
Lower diagram: adjoints. x-axis: spatial coordinate x ∈ [0, 1].
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compressors that are present in the sub-graphs Gm and formulate the analogous
optimal control problem on the sub-graph Gm:

min
qi,pi,vij ,vik

I(qi, pi, vi, vj) :=
κ

2

∑

i∈Im

(

‖qi − q0i ‖
2 + ‖pi − p0i ‖

2
)

+
1

2µ

∑

j∈JM
m,n,Am,n=1

∑

i∈Ij

(

v2ij + (µpi(nj)− hij)
2
)

s.t. βipi(x) + ∂xqi(x) = f1
i , x ∈ (0, ℓi), i ∈ Im,

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , x ∈ (0, ℓi), i ∈ Im,

qi(nj) = uj, j ∈ J S
m, i ∈ Ij ,

pi(nj) = pk(nj), j ∈ JM,o
m \ (Jm,c ∪ Jm,v), i, k ∈ Ij ,

∑

i∈Ij

dijqi(nj) = 0, j ∈ JM,o
m ,

svj (pi(nj)− pk(nj)) + (1− svj )qi(nj) = 0,

j ∈ Jv,m, i ∈ I+
j , k ∈ I−

j ,

scj (pi(nj)uj − pk(nj)) + (1 − scj) (pi(nj)− pk(nj)) = 0,

j ∈ Jc,m, i ∈ I+
j , k ∈ I−

j ,

− dijqi(nj) + σpi(nj) = gkj + vij ,

j ∈ JM
m,n, n : Am,n = 1, i, k ∈ Ij .

(25)

Here, we omitted the iteration indices l for the sake of convenience. Note that
the constraints of (25) are the same as in System 4, except for the case that we
only consider flow boundary control here and that we add the virtual controls.
The corresponding optimality conditions are given in System 6.

Let us remark the following. Problem (25) and the corresponding optimality
System 6 on the sub-graphGm are now completely decoupled from the analogous
problems on all other sub-graphs Gn, n 6= m. This means that we can actually
decompose the optimization problem given on the graph into a set of local
optimization problems given on the sub-graphs.

Example 6 We continue with Example 3. The corresponding virtual control
problem regarding the decomposition at the nodes n1 and n2, where the edges 1
and 3 as well as 2 and 4 meet at x = 1, respectively, is then given by
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Figure 9. Network of Example 7

System 6. Optimality system of Problem (25); x ∈ (0, ℓi)

βipi(x) + ∂xqi(x) = f1i , i ∈ Im

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2i , i ∈ Im

βiφi(x) − ∂xψi(x) = −κi(pi − p0i ), i ∈ Im

αiψi(x)− ∂xφi(x) + ∂qgi(x; qi(x))φi = −κi(qi − q0i ), i ∈ Im

qi(nj) = uj , ψi(nj) = 0, j ∈ J S
m, i ∈ Ij

pi(nj) = pk(nj), φi(nj) = φk(nj), j ∈ JM,o
m \ (Jm,c ∪ Jm,v), i, k ∈ Ij

∑

i∈Ij

dijqi(nj) = 0,
∑

i∈Ij

dijψi(nj) = 0, j ∈ JM,o
m

svj (pi(nj)− pk(nj)) + (1− svj )qi(nj) = 0, j ∈ Jv,m, i ∈ I+
j , k ∈ I−

j

svj (φi(nj)− φk(nj)) + (1 − svj )ψi(nj) = 0, j ∈ Jv,m, i ∈ I+
j , k ∈ I−

j

scj (pi(nj)uj − pk(nj)) + (1− scj) (pi(nj)− pk(nj)) = 0, j ∈ Jc,m, i ∈ I+
j , k ∈ I−

j

scj (ψi(nj)uj − ψk(nj)) + (1− scj) (φi(nj)− φk(nj)) = 0, j ∈ Jc,m, i ∈ I+
j , k ∈ I−

j

−dijqi(nj) + σφi(nj) + µpi(nj) = gkj , j ∈ JM
m,n, n : Am,n = 1, i, k ∈ Ij

dijψi(nj) + σφi(nj) + µpi(nj) = hkj , j ∈ JM
m,n, n : Am,n = 1, i, k ∈ Ij

uj = −
1

ν
φi(nj), j ∈ J S, i ∈ Ij

uj = −scjpi(nj)ψi(nj), j ∈ Jc, i ∈ Ij
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min
u,v

I((qi, pi)
4
i=1, v11, v31, v22, v42, u0, u3, u4) :=

4
∑

i=1

κ

2

(

‖qi − q0i ‖
2 + ‖pi − p0i ‖

2
)

+
1

2µ

(

v211 + (µp1(1)− h11)
2
)

+
1

2µ

(

v231 + (µp3(1)− h31)
2
)

+
1

2µ

(

v222 + (µp2(1)− h22)
2
)

+
1

2µ

(

v242 + (µp4(1)− h42)
2
)

s.t. βipi(x) + ∂xqi(x) = f1
i , x ∈ (0, ℓi), i = 1, . . . , 4,

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , x ∈ (0, ℓi), i = 1, . . . , 4,

− q1(1) + σp1(1) = gl+1
31 + v11, −q3(1) + σp3(1) = gl+1

11 + v31

− q2(1) + σp2(1) = gl+1
42 + v12, −q4(1) + σp4(1) = gl+1

22 + v42,

p1(0)u0 = p2(0), q1(0) + q2(0) = 0, q3(0) = u3, q4(0) = u4.

Example 7 We expand the model of the last example by a valve parallel to the
compressor; see Fig. 9.

We have 8 edges and 8 nodes. Edge 1 has a simple flow-controlled node n6 at
x = 0. The edges 1, 2 are coupled at node n4, where x = 1. Similarly, edge 4 has
a simple node at n7, where x = 0, and is coupled to edge 3 at x = 1 via node n5.
These two serial links (1, 2) and (3, 4) are connected through nodes n2, n3 to
edges 5, 7 and 6, 8 at x = 0, respectively. These are triple junctions. Finally,
the compressor is located at n0 = nc between links 5, 6 at x = 1, while the valve
connects edges 7, 8 at n1 = nv, where x = 1. The model is given by

βipi(x) + ∂xqi(x) = f1
i , (26a)

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , (26b)

p1(1) = p2(1), p3(1) = p4(1), (26c)

q1(1) + q2(1) = 0, q3(1) + q4(1) = 0, (26d)

p2(0) = p5(0) = p7(0), p6(0) = p3(0) = p8(0), (26e)

q2(0) + q5(0) + q7(0) = 0, q6(0) + q3(0) + q8(0) = 0, (26f)

p5(1)u0 = p6(1), q5(1) + q6(1) = 0, if sc0 = 1, (26g)

p5(1) = p6(1), q5(1) + q6(1) = 0, if sc0 = 0, (26h)

p7(1) = p8(1), q7(1) + q8(1) = 0, if sv1 = 1, (26i)

q7(1) = 0, q8(1) = 0, if sv1 = 0, (26j)

q1(0) = u6, q4(0) = u7, (26k)

where we again have x ∈ (0, 1) and i = 1, . . . , 8. Constraints (26c) and (26d)
describe the serial nodes, where we will apply the domain decomposition. The
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transmission nodes n2 and n3 are described in (26e) and (26f), the compressor’s
nodal conditions are given by (26g) and (26h). Similarly, (26i) and (26j) are
the valve conditions. Finally, the control and the demand are provided in (26k).
The corresponding virtual control problem is given by

min
u,v

I((qi, pi, u, s)
8
i=1, v14, v24, v35, v45, u0, u6, u7)

s.t. (26a), (26b), (26e), (26f), (26g), (26h), (26i), (26j), (26k),

− q1(1) + σp1(1) = gl+1
14 + v14, −q2(1) + σp2(1) = gl+1

24 + v24,

− q3(1) + σp3(1) = gl+1
35 + v35, −q4(1) + σp4(1) = gl+1

45 + v45,

(27)

where the costs are similar to those of the previous example. In addition, these
costs may involve the switching parameters s. Problem (27) can be seen as a
mixed-integer nonlinear program (MINLP) on the sub-graph consisting of the
edges 2, 3, 5, 6, 7, 8 involving the compressor at node n0 and the valve at node n1

with Robin-data

−q2(1) + σp2(1) = gl+1
24 + v24 =: rl2, −q4(1) + σp4(1) = gl+1

45 + v45 =: rl4.

For each given l, the sub-graph problem admits a minimal solution w.r.t. both
u and s. While the optimization w.r.t. the continuous variables results in the
decomposed optimality system, a similar conclusion cannot be drawn for the dis-
crete optimization part, as there is no such optimality system w.r.t. the switching
variables. Moreover, there is no sensitivity analysis available for such problems.
Therefore, even given the fact that the right-hand sides rl2, r

l
4 converge, as l → ∞,

it may happen that the globally optimal switching changes infinitely often in the
course of the convergence.

An analysis of the situation addressed at the end of the example and scenar-
ios that avoid this Zeno-phenomenon are the subject of future research.

6. Wellposedness and convergence

6.1. Uniqueness of the primal problem’s solution

For a given switching structure s ∈ S, the flow boundary controlled problem

βipi(x) + ∂xqi(x) = f1
i , x ∈ (0, ℓi), i ∈ I,

αiqi(x) + ∂xpi(x) + gi(x; qi(x)) = f2
i , x ∈ (0, ℓi), i ∈ I,

qi(nj) = uj, j ∈ J S, i ∈ Ij ,

pi(nj) = pk(nj), j ∈ JM \ (Jc ∪ Jv), i, k ∈ Ij ,
∑

i∈Ij

dijqi(nj) = 0, j ∈ JM,

svj (pi(nj)− pk(nj)) + (1− svj )qi(nj) = 0, j ∈ Jv, i ∈ I+
j , k ∈ I−

j ,

scj(pi(nj)uj − pk(nj))

+(1− scj)(pi(nj)− pk(nj)) = 0, j ∈ Jc, i ∈ I+
j , k ∈ I−

j

(28)
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on G admits a unique solution. In order to prove this, we introduce the first-
order differential expression

A(p, q) :=

(

∂xqi
∂xpi

)

i∈I

.

For defining a proper differential operator, we introduce the spaces

H := {(p, q) : (p, q) = (pi, qi)i∈I ∈ Πi∈IL
2(0, ℓi)

2},

H1 := H ∩ Πi∈IH
1(0, ℓi)

2,

D(A) := {(p, q) = (pi, qi)i∈I ∈ H1 : qi(nj) = 0, j ∈ J S, i ∈ Ij ,

pi(nj) = pk(nj), j ∈ JM, i, k ∈ Ij ,
∑

i∈Ij

dijqi(nj) = 0, j ∈ JM}.

(29)

Here we have taken the situation without valves and compressors. For an open
valve and a shut-down compressor, we have the canonical pressure and flow
transmission conditions as in the definition above. If the valve is closed, we have
two extra no-flow conditions at the valve node. If the compressor is switched
on, we have a pressure transmission condition involving the control uj. For a
given pressure ratio uj , the corresponding transmission can be integrated into
the domain D(A), otherwise the bilinear term has to be taken into account via
shifting it into the state equation. The norm in H is given by

‖(p, q)‖2H := 〈(p, q), (p, q)〉 :=
∑

i∈I

∫ ℓi

0

(

p2i + q2i
)

dx.

Obviously, H is a Hilbert space and we have the dense inclusion D(A) ⊂ H . A
simple calculation shows

〈A(p, q), (p, q)〉 = 0,

and that, in fact, A is skew-adjoint. Then, clearly, with Di := diag(βi, αi),
D+A has a bounded inverse on H . Now, the Nemytskii operator N : H1 → H
with N(p, q)i(x) := (0, γi(x)|qi(x)|qi(x))

⊤, i ∈ I, is compact, as the embedding
(in 1d) of H1(0, ℓi) → L4(0, ℓi) is compact (and monotone on H). This implies
that the equation

(D +A+N)(p, q) = F
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admits a unique solution for F ∈ H . The same arguments apply for the problems
on a sub-graph Gm:

βipi(x) + ∂xqi(x) = f1
i , x ∈ (0, ℓi), i ∈ Im,

αiqi(x) + ∂xpi(x) + gi(x; qi) = f2
i , x ∈ (0, ℓi), i ∈ Im,

qi(nj) = uj , j ∈ J S
m, i ∈ Ij ,

pi(nj) = pk(nj), j ∈ JM,o
m \ (Jc,m ∪ Jv,m), i, k ∈ Ij ,

∑

i∈Ij

dijqi(nj) = 0, j ∈ JM,o
m ,

svj (pi(nj)− pl+1
k (nj)) + (1− svj )qi(nj) = 0, j ∈ Jv,m, i ∈ I+

j , k ∈ I−
j ,

scj(pi(nj)uj − pk(nj))

+(1− scj)(pi(nj)− pk(nj)) = 0, j ∈ Jc,m, i ∈ I+
j , k ∈ I−

j ,

−dijqi(nj) + σpi(nj) = gkj + vij , j ∈ JM
m,n, n : Am,n = 1, i, k ∈ Ij .

Moreover, we may also apply the same methods in order to show that the
corresponding optimality systems admit a unique solution. We skip the details
here.

6.2. Smoothness of the control-to-state-map

Let q̂t(û), p̂t(û) be the solution of Problem (28) with u replaced by u + tû and
let q, p be the solution of (28) at t = 0. We denote by q̃ = q̂t − q, p̃ = p̂t − p the
differences of these solutions and obtain

βip̃i(x) + ∂xq̃i(x) = 0, x ∈ (0, ℓi), i ∈ I,

αiq̃i(x) + ∂xp̃i(x) + gi(x; q̃i + qi)− gi(qi) = 0, x ∈ (0, ℓi), i ∈ I,

q̃i(nj) = tû, j ∈ J S, i ∈ Ij ,

p̃i(nj) = p̃k(nj), j ∈ JM \ (Jv ∪ Jc), i, k ∈ Ij ,
∑

i∈Ij

dij q̃i(nj) = 0, j ∈ JM,

svj (p̃i(nj)− p̃k(nj)) + (1− svj )q̃i(nj) = 0, j ∈ Jv, i ∈ I+
j , k ∈ I−

j ,

scj(p̃i(nj)(uj + tûj) + p̃i(nj)tûj − p̃k(nj))

+(1− scj)(p̃i(nj)− p̃k(nj)) = 0, j ∈ Jc, i ∈ I+
j , k ∈ I−

j .

(30)
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Dividing by t and letting t→ 0, we arrive at the sensitivity problem

βip
′
i(x) + ∂xq

′
i(x) = 0, x ∈ (0, ℓi), i ∈ I,

αiq
′
i(x) + ∂xp

′
i(x) + g′i(x; qi)q

′
i = 0, x ∈ (0, ℓi), i ∈ I,

q′i(nj) = û, j ∈ J S, i ∈ Ij ,

p′i(nj) = p′k(nj), j ∈ JM \ (Jv ∪ Jc), i, k ∈ Ij ,

∑

i∈Ij

dijq
′
i(nj) = 0, j ∈ JM,

svj (p
′
i(nj)− p′k(nj)) + (1− svj )q

′
i(nj) = 0, j ∈ Jv, i ∈ I+

j , k ∈ I−
j ,

scj(p
′
i(nj)uj + pi(nj)ûj − p′k(nj))

+(1− scj)(p
′
i(nj)− p′k(nj)) = 0, j ∈ Jc, i ∈ I+

j , k ∈ I−
j .

(31)

For the solution q′, p′ of (31), we may apply standard techniques. As the
cost function in (7) is convex, Problem (7) admits a unique solution according
to the classical Weierstraass theorem. One can then verify the conditions for the
Ioffe–Tichomirov theorem, see Kogut and Leugering (2011), in order to establish
the first-order optimality conditions (5). The following theorem summarizes the
previous assertions.

Theorem 3 Under the assumption (18), for (f1
i , f

2
i )i∈I ∈ Πi∈IL

2(0, ℓi)
2, there

exists a unique solution (q, p) ∈ D(A) of (30). In addition, the mapping from
u into q, p is Gateaux differentiable. Moreover, the optimal control problem (7)
admits a unique solution. The optimal solution is characterized by the optimality
system of first-order (5).

6.3. Convergence

For the proof of convergence, we concentrate on the decomposition at a serial
node. The decomposition of the problem on a graph into separate problems on
sub-graphs then follows as described above. To this end, we introduce the errors
p̄l+1 := pl+1−p, q̄l+1 := ql+1− q, and, accordingly, ĝl+1 := gl+1− g, which is to
be understood in the vectorial sense. We consider serial nodes nj with adjacent
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edges i, k ∈ Ij and obtain

βip̄
l+1
i (x) + ∂xq̄

l+1
i (x) = 0, x ∈ (0, ℓi), i ∈ I,

αiq̄
l+1
i (x) + ∂xp̄

l+1
i (x) + (gi(x; q̄

l+1
i + qi)− gi(x; qi) = 0, x ∈ (0, ℓi), i ∈ I,

βiφ̄
l+1
i (x) − ∂xψ̄

l+1
i (x) = −κi(p̄

l+1
i ), x ∈ (0, ℓi), i ∈ I,

αiψ̄
l+1
i (x)− ∂xφ̄

l+1
i (x) + ∂qgi(x; q̄

l+1
i + qi)ψ

l+1
i

+(∂qgi(x; q̄
l+1
i − ∂qgi(x; qi))pi = −κi(q

l+1
i ), x ∈ (0, ℓi), i ∈ I,

−dij q̄
l+1
i (nj) + λp̄l+1

i (nj)− µφ̄l+1
i (nj) = ḡl+1

kj , i, k ∈ Ij ,

dijψ̄
l+1
i (nj) + λφ̄l+1

i (nj) + µp̄l+1
i (nj) = h̄l+1

kj , i, k ∈ Ij ,

ḡl+1
kj = dkj q̄

l
k(nj)) + λp̄lk(nj)− µφ̄lk(nj), i, k ∈ Ij ,

h̄l+1
kj = −dkj ψ̄

l
k(nj) + λφ̄lk(nj) + µp̄lk(nj), i, k ∈ Ij .

(32)

Moreover, we define

(ḡ, h̄) ∈ X := Πk∈JMΠi∈Ik
R

2, ‖(ḡ, h̄)‖2X :=
∑

k∈JM

∑

i∈Ik

(

|ḡik|
2 + |h̄ik|

2
)

and T : X → X with

(T (ḡ, h̄)i,j :=
(

2(λp̄lk(nj)− µφ̄k(nj))− ḡlkj , 2(λφ̄k(nj)
l + µp̄k(nj)

l)− h̄lkj
)

for i, j ∈ Ik. Now,

‖T (ḡ, h̄)‖2X =
∑

k∈JM

∑

i∈I

(

|ḡl+1
ik |2 + |h̄l+1

ik |2
)

=
∑

k∈JM

∑

i∈I

(

(ḡlik)
2 − 4dik q̄i(nk)

l
(

λp̄i(nk)− µφ̄li(nk)
))

+
∑

k∈JM

∑

i∈I

(

(h̄lik)
2 + 4dikψ̄

l
i(nk)

(

λφ̄li(nk) + µp̄li(nk)
))

holds. We multiply the state equation for the errors pi, qi by φi and ψi, respec-
tively, and perform summations and integration by parts in order to obtain

‖T (ḡ, h̄)‖2X =
∑

k∈JM

∑

i∈I

(

|ḡl+1
ik |2 + |h̄l+1

ik |2
)

=
∑

k∈JM

∑

i∈I

(

|ḡlik|
2 + |h̄lik|

2
)

= −4λ
∑

i∈I

∫ ℓi
0

(

βi((p̄
l
i)

2 + (φli)
2) + αi(q̄

l
i)

2 + (ψ̄l
i)

2) + ∂qgi(x; q̄i + qi)ψ̄
2
i

+(∂qgi(x; q̄i + qi)− ∂qgi(x; qi))ψ̄iψ + (gi(x; q̄i + qi)− gi(x; qi))q̄i

+κ(q̄iψ̄i + φ̄ip̄i
)

dx

−4µ
∑

i∈I

∫ ℓi
0

(

κ((p̄i)
2 + (q̄i)

2) + ∂qgi(x; q̄i + qi)q̄iψ̄i

+(∂qgi(x; q̄i + qi)− ∂qgi(x; qi))ψq̄i

−(gi(x; q̄i + qi)− gi(x; qi))ψ̄i

)

dx.
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Now,
1. ∂qgi(x; s) ≥ |s|,
2. gi(x; q̄i + qi)− gi(x; qi) = gi(x; θq̄i + qi)q̄i,
3. (∂qgi(x; q̄i + qi)− (∂qgi(x; q̄i + qi)− gi(x; qi))ψ̄ ≤ |(1− θ)q̄i|q̄iψ̄i,
4. ∂qgi(x; q̄i + qi)− ∂qgi(x; qi)) ≤ ‖γi‖|q̄i| =: Li|q̄i|

hold and with these statements we can estimate

‖T (ḡ, h̄)‖2X

=
∑

k∈JM

∑

i∈I

(

|ḡl+1
ik |2 + |h̄l+1

ik |2
)

=
∑

k∈JM

∑

i∈I

(

|ḡlik|
2 + |h̄lik|

2
)

=− 4λ
∑

i∈I

∫ ℓi

0

(

(λiαi + (µ−
1

2
λ)κ+ λ∂qgi(x; θq̄i + qi)

−Li((µ+
1

2
)|ψi|+ µ|ψ̄i|)|q̄i|

2 + (λβi + (µ−
1

2
λ)κ)|p̄i|

2

+λβi|φ̄i|
2 + (λαi −

1

2
λκ+ λ∂qgi(x; q̄i + qi)− Li

1

2
|ψ|)|ψ|2i

)

dx.

(33)

This estimate has to be adjusted in a straightforward way for the case of a
decomposition at a boundary control node. It is obvious from (33) that for
sufficiently large αi, βi, the coefficients of the quantities with p̄2i , q̄

2
i , φ̄

2
i , ψ̄

2
i in

(33) can be made uniformly positive. It is also evident from (33) that the choice
of the parameters αi, βi, κ will depend on the flows qi, ψi (in case µ = 0) and
additionally on the errors q̄i, ψ̄i if λ, µ > 0. This means that the convergence is
local.

Theorem 4 Under the positivity assumptions for the coefficients and the mono-
tonicity assumption (18), the iterations converge and the solutions ql = (qli, p

l
i)i∈I

of the iterative process (32), describing the local optimality systems on the indi-
vidual edges, converge to the solution of the optimality system (24). The con-
vergence takes place in the H1-sense. Moreover, the traces at the decomposition
nodes also converge.

We finally remark that the same theorem applies to the nonoverlapping domain
decomposition using sub-graphs.

7. Conclusion

In this paper, we first reduced the original time-dependent optimal control prob-
lem (2) for the gas flow in a given network via a semi-implicit-explicit time
discretization scheme first to (5) and then to an optimal control problem for a
single time step (7). The latter problem has to be solved in an instantaneous con-
trol paradigm. We designed an iterative nonoverlapping domain decomposition
at multiple nodes in the spirit of Lagnese and Leugering (2004) and Leugering
(2017) in order to decompose both the system of equations on the entire net-
work and the optimality System 6 to suitable sub-networks, containing valves
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and compressors. As a result, the iterations converge in natural norms and,
moreover, for the optimality system, the decomposed systems are, in fact, opti-
mality systems for virtual optimal control problems (25) on the corresponding
sub-networks. We provide numerical evidence for both iterations, i.e., for the
solutions to the system on the network and for the optimal solutions together
with their adjoints, respectively. The results pave the way for MINLP solution
techniques for problems involving the on-off-control of valves and compressors
in combination with continuous controls at simple nodes and, e.g., continuous
compressor controls. By using the proposed domain decomposition method,
the size and the complexity of the MINLP problems to solve can now be con-
trolled. Besides this, the method developed here provides a completely parallel
treatment of the considered optimal control problems.
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