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Abstract: We investigate the identification problem for the one-
phase Stefan problem. As the inverse Stefan problem is not well
posed, an optimal control problem is considered instead. In the
paper we develop a dual dynamic programming approach to derive
sufficient approximate optimality conditions for that optimal control
problem. As a next step we formulate and prove a verification the-
orem for approximate solution. The verification Theorem 4.1 is the
basis for the development of a numerical algorithm. Having the ver-
ification theorem we do not need the convergence of our algorithm.
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1. Introduction

In the series of papers, Abdulla (2013, 2016), Abdulla, Cosgrove and Goldfarb
(2017), Budak and Vasileva (1972, 1973, 1974), Goldman (1997), the inverse
problems to the one-phase Stefan problem:

(aux)x + bux + cu− ut = f, in Ω, (1.1)

u (x, 0) = φ(x), 0 ≤ x ≤ s(0) = s0, (1.2)

a(0, t)ux(0, t) = g(t), 0 ≤ t ≤ T, (1.3)

a(s(t), t)ux(s(t), t) + γ(s(t), t)s′(t) = χ(s(t), t),
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0 ≤ t ≤ T, (1.4)

u(s(t), t) = µ(t), 0 ≤ t ≤ T, (1.5)

where

Ω = {(x, t) : 0 < x < s(t), 0 < t ≤ T} , (1.6)

a, b,c, f, φ, g, γ, χ, µ are given functions, were investigated. The inverse Stefan
problem (ISP) is to find a tuple

{u, a, b, c, f, g, s} (1.7)

that satisfy conditions (1.1)-(1.6) and

u(x, T ) = w(x), 0 ≤ x ≤ s(T ) = s∗,

where w(x), a final moment temperature measurement, and s∗, a final moment
ablation depth, are given. We also find in those papers the motivations to
study (ISP). The unknown parameters of the model, such as a, b, c, f, g are
very difficult to measure by experiments. Lab experiments pursued on the laser
ablation of biological tissues allow to measure the final temperature distribution
and final ablation depth. The aim of (ISP) is to achieve the identification of
some or all of the unknown parameters a, b, c, f, g.

It is worth to note that (ISP) is not well posed in the sense of Hadamard
(see, e.g., Goldman, 1997), i.e. in general, the solution may not exist; if it exists
it may not be unique and we cannot demonstrate continuous dependence on
the data. Just those issues caused that earlier variational methods, applied to
(ISP), failed and a new method was developed in Abdulla (2013, 2016). That
new approach treats the tuple (1.7) as controls and for the quadratic cost func-
tional the optimal control problem is formulated in suitable spaces of functions.
In Abdulla (2013, 2016) existence of the optimal control and convergence of the
sequence of discrete optimal control problems to the continuous optimal control
problem was proven. Next, in Abdulla and Goldfarb (2024) the Fréchet differ-
entiability of the functional and the existence of optimal control were proven in
Besov spaces, and also the necessary optimality conditions were presented. We
need to stress that just the existence of solutions to (1.1)-(1.6) requires that the
coefficients (a, b,c, f, φ, g, γ, χ, µ) belong to suitable Besov spaces (see Goldman,
1997).

The aim of this paper is to derive for the control problem from Abdulla,
Cosgrove and Goldfarb (2017) sufficient optimality conditions for approximate
minimum in the form of a verification theorem and then a construction of a
numerical algorithm, allowing to calculate with given ε > 0 an approximate
minimum. It is a continuation and extension of the method presented in Lip-
nicka and Nowakowski (2018b). The precise formulation will be given in the
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next section, after the formulation of the optimal control problem. Concerning
notations of spaces of functions as well as the control problem we follow the
paper by Abdulla, Cosgrove and Goldfarb (2017). However, we want to stress
that because we are not interested in the existence of the optimal control prob-
lem solution, as well as Fréchet differentiability, we weakened some restrictive
assumptions from Abdulla, Cosgrove and Goldfarb (2017), concerning the set
of controls.

2. The preliminaries and the control problem

2.1. The preliminaries

Denote by U a domain in R and by QT = (0, 1)× (0, T ]. For l ∈ Z+, by W l
p(U)

we mean a Banach space of measurable functions with finite norm

‖u‖W l
p(U) =

(

∫

U

l
∑

k=0

∣

∣

∣

∣

dku

dxk

∣

∣

∣

∣

p

dx

)1/p

,

for l /∈ Z+, and by Bl
p(U) we mean a Banach space of measurable functions with

finite norm

‖u‖Bl
p(U) = ‖u‖W l

p(U) + [u]Bl
p(U)

where

[u]Bl
p(U) =

∫

U

∫

U

∣

∣

∣

∂[l]u(x)
∂x[l] − ∂[l]u(y)

∂x[l]

∣

∣

∣

p
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dxdy.

If l ∈ Z+, the seminorm [u]p
Bl

p(U)
is given by

[u]Bl
p(U) =

∫ ∞

−∞

∫ ∞

−∞

∣

∣

∣

∂l−1u(x)
∂xl−1 − 2

∂l−1u( x+y
2 )

∂xl−1 + ∂l−1u(y)
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∣

∣

∣

p

|x− y|1+p dydx.

For 1 ≤ p < ∞, 0 < l1, l2, the Besov space Bl1,l2
p,x,t(QT ) is defined as the closure

of the set of smooth functions under the norm

‖u‖
B

l1,l2
p,x,t(QT )

=

(

∫ T

0

‖u(x, t)‖p
B

l1
p [0,1]

dt

)1/p

+

(
∫ 1

0

‖u(x, t)‖p
B

l2
p [0,1]
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)1/p

.

The Hölder space C
α,α/2
x,t (QT ) is the set of continuous functions with [α] x-

derivative and [α/2] t-derivatives, and for which the highest order x-derivatives
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satisfy Hölder conditions of order α − [α] and α/2 − [α/2], respectively. Put
D = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t ≤ T}, where l is always chosen in such a way that
s(t), occurring in (1.2), (1.4), satisfies s(t) ≤ l. Define, for fixed 0 < α < α∗,

H =C
3/2+2α∗,3/4+α∗

x,t (D) × C
1/2+2α∗,1/4+α∗

x,t (D)× (2.1)

C
1/2+2α∗,1/4+α∗

x,t (D) ×B
1,1/4+α
2,x,t (D) ×B

1/2+α
2 [0, T ] ×B2

2 [0, T ]

with the norm

‖(a, b, c, f, g, s)‖ = max
(

‖a‖
C

3/2+2α∗,3/4+α∗

x,t (D)
, ‖b‖

C
1/2+2α∗,1/4+α∗

x,t (D)
,

‖c‖
C

1/2+2α∗,1/4+α∗

x,t (D)
, ‖f‖

B
1,1/4+α
2,x,t (D)

, ‖g‖
B

1/2+α
2 [0,T ]

, ‖s‖B2
2 [0,T ]

)

.

2.2. The control problem

The optimal control problem that we investigate is the following one: for given
β0, β1, β2 ≥ 0

minimize the functional

J(v) =β0

∫ s(T )

0

|u(x, T ; v) − w(x)|2 dx (2.2)

+β1

∫ T

0

|u(s(t), t; v) − µ(t)|2 dt+ β2 |s(T ) − s∗|
2

over the control set V = {v = (a, b, c, f, g, s) ∈ H} subject to the state con-
straints

(aux)x + bux + cu− ut = f, in Ω, (2.3)

u (x, 0) = φ(x), 0 ≤ x ≤ s(0) = s0, (2.4)

a(0, t)ux(0, t) = g(t), 0 ≤ t ≤ T, (2.5)

a(s(t), t)ux(s(t), t) + γ(s(t), t)s′(t) = χ(s(t), t), 0 ≤ t ≤ T. (2.6)

We would like to stress that the above control problem differs from that consid-
ered in Abdulla, Cosgrove and Goldfarb (2017) in the definition of the control set
V. We do not impose any restrictions on the set V, as this is done in Abdulla,
Cosgrove and Goldfarb (2017). In that paper, Fréchet differentiability is stud-
ied and, as a corollary, the necessary optimality conditions are derived. Those
investigations require well-posedness of the Neumann problem (1.1)-(1.4). We
deal with sufficient optimality of first order and well-posedness of (1.1)-(1.4)
is not essential. This is also the reason why we have to define a solution to
(2.3)-(2.6). For given v ∈ V we call a function u ∈ W 2,1

2 (Ω) (Sobolev space
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of functions) a solution to (2.3)-(2.6) if it satisfies them pointwise and almost
everywhere. The set of pairs (v, u), satisfying, (2.3)-(2.6), is called admissible
and denoted by Ad. We shall assume that the values of all controls v ∈ V
are contained in a set V = A× B× C× F×G× S ⊂ R

6, S = [s0, s
∗], s0 > 0.

We do not assume that V is closed or that it has nonempty interior. However,
boundedness of V is to some extent a necessary and natural assumption and we
introduce it because of the dynamic programming inequality.

3. ε-optimality

We follow the same dual approach as in Lipnicka and Nowakowski (2018a) for
constructing the ε-dual dynamic programming theory for the ε-optimal problem
(compare Lipnicka and Nowakowski, 2022a,b, 2023). The main idea of dual
dynamic programming is to extend the primal space Ω to a larger space and
carry over all calculations, related to dynamic programming, to that new space,
including value function. The essential point in the dual dynamic programming
approach is that we do not deal directly with a value function, but with some
auxiliary function, defined in a dual set, satisfying ε-dual dynamic inequality and
then we derive sufficient ε-optimality conditions for a primal ε-value function.

Let P⊂ R
2 be an open set of the variables p = (y0, y), y0 < 0, y ∈ R. Let

P ⊂ R
4 be an open set of the variables (t, x, p), (x, t) ∈ Ω, p ∈ P , i.e.

P = {(t, x, p) ∈ R
4 : (x, t) ∈ Ω, p ∈ P }. (3.1)

Denote by W 1:2(P ) the specific Sobolev space of functions with real values of
the variables (t, x, p), having the first order weak or generalized derivative (in
the sense of distributions) with respect to t, x and up to the second order weak
derivatives with respect to the variable p. The primal and dual variables are
independent and the functions in the space W 1:2(P ) enjoy different properties
of continuity and differentiability with respect to t, x and p. Let V (t, x, p) of
W 1:2(P ) be a (auxiliary) real valued function, defined on P , and satisfying the
following condition:

V (t, x, p) = y0Vy0(t, x, p) + yVy(t, x, p) = pVp(t, x, p), (3.2)

for (t, x, p) ∈ P . Here, Vy0 , Vy and Vp denote the partial derivatives with respect
to the dual variables y0, y and p = (y0, y), respectively. Since we consider Neu-
mann problem in a weak form, we formulate the inequality of ε-dual dynamic
programming also in a weak form, i.e. to be satisfied pointwise and almost
everywhere. Let us fix ε > 0 and any y0ε < 0. We require that the func-
tion V (t, x, p) satisfy the second order partial differential inequality of ε-dual
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dynamic programming in a weak form, for (x, t) ∈ Ω, p ∈ P :

εy0ε ≤
∂

∂t
V (t, x, p) − sup

v∈V

{(aVx(t, x, p))x + ybVx(t, x, p) − ycVy(t, x, p) − yf

−y0(1/T ) |−Vy(T, x, p) − w(x)|2} − y0 sup
s≤l

{β1(1/l) |−Vy(t, s, p) − µ(t)|2

(3.3)

+(1/l)(1/T )β2 |s− s∗|
2} ≤ 0,

Vy0(0, x, p) = 0, 0 ≤ x ≤ s0, p ∈ P, (3.4)

Vy0x(t, s, p) = 0, 0 ≤ t ≤ T, s ∈ S, p ∈ P . (3.5)

Denote by p(t, x), (x, t) ∈ Ω, the dual trajectory, while u(t, x), (x, t) ∈ Ω stands
for the primal trajectory. Let us put

u(t, x, p) = −Vy(t, x, p) for (t, x, p) ∈ P . (3.6)

Using the function u it is possible to come back from the dual trajectories
p(t, x), lying in P , to the primal trajectories u(t, x), (x, t) ∈ Ω. Further, we
confine ourselves only to those admissible trajectories u(·), for which there exist
functions p(t, x) = (y0, y(t, x)), (t, x, p(t, x)) ∈ P , y(·) ∈ H1(Ω), y(T, x) = 0,
(x, T ) ∈ Ω, such that u(t, x) = u(t, x, p(t, x)) for (x, t) ∈ Ω. Thus, denote

Adu = {(v, u) ∈ Ad : there exist p(t, x) = (y0, y(t, x)), y(·) ∈ H1(Ω),

y(T, x) = 0, (x, T ) ∈ Ω, (T, x, p(T, x)) ∈ P , (3.7)

(x, T ) ∈ Ω, ψ : R3 7→ R
2, y(0, x) = ψ(0, x),

(0, x, y0, ψ(0, x)) ∈ P , (0, x) ∈ Ω, ψ(0, ·) ∈ H1(Ω)

such that u(t, x) = u(t, x, p(t, x)), (x, t) ∈ Ω}.

Actually, this means that we are going to study the problem (2.2) possibly in
some smaller set Adu, which is determined by the function (3.6). Therefore,
in order to define a dual optimal value Sū

D, we need a function ū(t, x, p) =
−V̄y(t, x, p), where V̄ is a solution to (3.3) with the second inequality replaced
by equality. Then, it is necessary to change the definition Adu to Adū by
replacing in it u(t, x, p(t, x)) by ū(t, x, p(t, x)). Hence, a dual optimal value Sū

D

for problem (2.2) is defined by the formula

Sū

D := inf
(v,u)∈Adū

{ − y0(β0

∫ s(T )

0

|u(x, T ; v) − w(x)|2 dx (3.8)

+ β1

∫ T

0

|u(s(t), t; v) − µ(t)|2 dt+ β2 |s(T ) − s∗|
2
)}.
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We named Sū

D dual optimal value in contrast to the optimal value

S = inf
(v,u)∈Ad

J(v)

as Sū

D depends strongly upon the dual trajectories p(t, x), which, in fact, de-
termines the set Adū. Moreover, an essential point is that the set Adū is, in
general, smaller than Ad i.e. Adū ⊂ Ad and thus the dual optimal value Sū

D

is greater than the optimal value S, i.e. Sū

D ≥ (−ȳ0)S (ȳ0 corresponds to op-
timal dual trajectory). In our problem of finding the set Adū, first we must
find the function V , i.e., solve equations (3.3) with (3.2), and then define the
set of admissible dual trajectories (see below). It is not an easy work, but then
we will have a possibility of finding that a suspected trajectory is really opti-
mal with respect to all trajectories lying in Adū. Of course, one can wonder
whether we are able to find V̄ or is the set Adū nonempty? The answer is not
simple. In some cases we can solve that problem, in many cases we cannot do it,
similarly as in the classical calculus of variation with the Weierstrass approach.
That is one of the motivations for investigating the approximate minimum. An
approximate minimum always exists.

Let us fix y0ε < 0, ε > 0, u, and denote the corresponding to them suitable

value of (3.8) by S
u,y0

ε

D . We shall call each value S
u,y0

ε

εD , satisfying inequality
below, for the above fixed y0ε < 0 and ε > 0,

S
u,y0

ε

D ≤ S
u,y0

ε

εD ≤ S
u,y0

ε

D − εy0ε , (3.9)

the dual ε-optimal value for (2.2) This means that we are looking for such a
control vε, which will lead state uε to endowing the cost functional J(v) with
such a value that

J(vε) ≤ J(v) + ε (3.10)

for all (v, u) ∈ Adu. Then, we call the pair (vε, uε) ∈ Adu ε-optimal relative
to all (v, u) ∈ Adu. We would like to stress that when taking into account the

definition (3.9) of S
u,y0

ε

εD we need to assume in the definition of dual optimal
value the same function u (which generates Adu) and the same fixed y0ε , as in
the ε-optimal value. The sets, over which we take infimum, must be the same.
Otherwise, we do not get inequality (3.10).

For the above fixed y0ε < 0, ε > 0, V and Adu we define the set of dual
trajectories

P ={p(t, x) = (y0ε , y(t, x)), (t, x) ∈ Ω;

(t, x, p(t, x)) ∈ P , y(·) ∈ H1(Ω) exist (v, u) ∈ Adu,

u(t, x) = −Vy(t, x, p(t, x)), (t, x) ∈ Ω, y(T, x) = 0, (T, x) ∈ Ω}.
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Having the above notions and inequality, in the next section we formulate and
prove our main theorem, the so called verification theorem, being, in fact, equiv-
alent to sufficient ε-optimality conditions for our problem (2.2).

4. ε-optimality - the verification theorem

Assume that there exists a W 1:2 solution V (t, x, p) of (3.3) on P , such that (3.2)
holds and

u(t, x, p) = −Vy(t, x, p), (t, x, p) ∈ P.

This means that we have, for fixed y0ε < 0, ε > 0, well defined Adu and P. We
assume that for each (v, u) ∈ Adu there exists p ∈ P. This is not anyhow a
restrictive assumption as we can achieve that by taking smaller Adu.

Theorem 4.1 Let (vε, uε) ∈ Adu, pε(t, x) = (y0ε , yε(t, x)), yε(·) ∈ H1(Ω), pε ∈
P, yε(T, x) = 0, (T, x) ∈ Ω, be a function such that uε(t, x) = −Vy(t, x, pε(t, x))
for (t, x) ∈ Ω. Suppose that

d

dt
V (t, x, pε(t, x)) − (aε(x, t)Vx(t, x, pε(t, x)))x (4.1)

+ yε(t, x)bε(x, t)Vx(t, x, pε(t, x)) − yε(t, x)cε(x, t)Vy(t, x, pε(t, x))

− yε(t, x)fε(x, t) − y0ε(1/T ) |−Vy(T, x, pε(T, x)) − w(x)|2

− y0εβ1(1/l) |−Vy(t, sε(t), pε(t, sε(t))) − µ(t)|2

− y0εβ2(1/l)(1/T ) |sε(T ) − s∗|
2 ≤ 0.

Then (vε, uε) is an ε-optimal pair relative to all (v, u) ∈ Adu.

Proof The idea of the proof is similar to that of the verification theorem from
Lipnicka and Nowakowski (2018a), although we deal with completely different
equations (2.3)-(2.6) and (3.3). This is why we follow here with all details.

Take any p ∈ P and a pair (v, u) ∈ Adu with u(t, x) = u(t, x, p(t, x)) =
−Vy(t, x, p(t, x)). By applying transversality condition (3.2) we derive that

d

dt
V (t, x, p(t, x)) − (a(x, t)(Vx(t, x, p(t, x)))x = y0ε(

d

dt
Vy0(t, x, p(t, x))

(4.2)

− (a(x, t)(Vy0x(t, x, p(t, x)))xy(t, x)(
d

dt
Vy(t, x, p(t, x))

− (a(x, t)(Vy(t, x, p(t, x))))x
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and using the fact that u(t, x) = −Vy(t, x, p(t, x)), (t, x) ∈ Ω, we obtain

−
d

dt
Vy(t, x, p(t, x)) + (a(x, t)(Vy(t, x, p(t, x))))x (4.3)

+ b(x, t)(Vy(t, x, p(t, x)))x + c(x, t)Vy(t, x, p(t, x)) = −f(x, t).

Joining (4.2) and (4.3), we come to

∂

∂t
V (t, x, p(t, x)) − (a(x, t)(Vx(t, x, p(t, x)))x + y(t, x)b(x, t)Vx(t, x, p(t, x)) =

(4.4)

y0ε(
d

dt
Vy0(t, x, p(t, x)) − (a(x, t)(Vy0x(t, x, p(t, x)))x

+ y(t, x)c(x, t)Vy(t, x, p(t, x)) + y(t, x)f(x, t).

Next, we apply to (4.4) the inequality (3.3) along p(t, x) :

y0εε ≤y
0
ε(
d

dt
Vy0(t, x, p(t, x)) − (a(x, t)(Vy0x(t, x, p(t, x)))x (4.5)

− y0ε(1/T ) |−Vy(T, x, p(T, x)) − w(x)|2

− y0εβ1(1/l) |−Vy(t, s(t), p(t, s(t)))

−µ(t)|2 − y0εβ2(1/l)(1/T ) |s(t) − s∗|
2
.

Proceeding as above, but using (4.1), we get the inequality

− y0ε(1/T ) |−Vy(T, x, pε(T, x)) − w(x)|2 (4.6)

−y0εβ1(1/l) |−Vy(t, sε(t), pε(t, sε(t))) − µ(t)|2

−y0εβ2(1/l)(1/T ) |sε(t) − s∗|
2

+ y0ε(
d

dt
Vy0(t, x, pε(t, x))

− (aε(x, t)(Vy0x(t, x, pε(t, x)))x ≤ 0.

By integrating (4.5) over [0, T ] × Ω (remember that Ω is defined by s(t) and
take into account (3.4), (3.5)) we come to

y0εε ≤− y0ε

∫ s(T )

0

|−Vy(T, x, p(T, x)) − w(x)|2 dx (4.7)

− y0ε

∫ T

0

β1(s(T )/l) |−Vy(t, s(t), p(t, s(t))) − µ(t)|2 dt

− y0εβ2(s(T )/l) |s(T ) − s∗|
2

+ y0ε

∫

Ω

Vy0(T, x, p(T, x))dx.
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Similarly, from (4.6) we obtain

− y0ε

∫ sε(T )

0

|−Vy(T, x, pε(T, x)) − w(x)|2 dx (4.8)

− y0ε

∫ T

0

β1(sε(T )/l) |−Vy(t, sε(t), pε(t, sε(t))) − µ(t)|2 dt

− y0εβ2(sε(T )/l) |sε(T ) − s∗|
2

+ y0ε

∫

Ω

Vy0(T, x, pε(T, x))dx ≤ 0.

Taking into account the definition of P both (4.7) and (4.8) imply

−εy0ε − y0ε

∫ s(T )

0

|−Vy(T, x, p(T, x)) − w(x)|2 dx

−y0ε

∫ T

0

β1(s(T )/l) |−Vy(t, s(t), p(t, s(t))) − µ(t)|2 dt

−y0εβ2(s(T )/l) |s(T ) − s∗|
2 ≥

− y0ε

∫ sε(T )

0

|−Vy(T, x, pε(T, x)) − w(x)|2 dx

− y0ε

∫ T

0

β1(sε(T )/l) |−Vy(t, sε(t), pε(t, sε(t))) − µ(t)|2 dt

− y0εβ2(sε(T )/l) |sε(T ) − s∗|
2
.

Thus, (uε, vε) is an ε-optimal pair relative to all (u, v) ∈ Adu.

From (4.8) we infer that knowing the auxiliary function V , satisfying (3.3),
we have the explicit formulae for an ε-optimal value of J in terms of Vy0 and
pε(0, x) = (y0ε , ψ(0, x)), i.e. we come to the following

Corollary 4.2 Assume the same as in Theorem 4.1. Then, the ε-optimal
value of the functional J may be expressed as

−y0εJ(vε) = −y0ε

∫

Ω

Vy0(0, x, y0ε , ψ(0, x))dx.

5. Numerical algorithm

In order to illustrate the above theory, we use the following numerical algorithm.

1. Define two natural numbers Nd and Np that determine how many times
we will repeat some steps of the calculation procedure, namely

(a) Nd defines how many different domains we will consider (see step 4.).
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(b) Np defines how many different parameters we will consider for a given
domain (see step 6.).

2. Define an empty set M .
We start the algorithm with the empty set. We will add elements to it
during calculations.

3. Repeat steps (4) - (9) Nd times (for Nd different domains).
4. Define the shape of a domain

Ω = {(x, t) : 0 < x < s(t), 0 < t ≤ T} :

(a) Define the value T . This parameter is used to specify the interval in
which the variable t is defined.

(b) Define the function s(t). This function defines one of the edges of
Ω. The shape of s(t) is very important in the implementation of the
numerical procedure

5. Repeat steps (6) - (9) Np times (for Np different parameters).
6. Let the set of parameters for the problem (2.3) - (2.6): be as follows:

(a) Take functions a, b, c. These are the parameters of the equation (2.3).

(b) Take function f . This function defines the right hand side of the
equation (2.3).

(c) Take function φ and s. These functions define the boundary condition
(2.4).

(d) Take function g. This function defines the condition (2.5).

(e) Take functions γ, χ. These functions define the condition (2.6).

7. Define the control v = (a, b, c, f, g, s) ∈ H, where H is defined by (2.1).
8. Solve the problem (2.3) - (2.6) for the above specifications.
9. Save all parameters from the above calculations (steps 6 and 8) in the set
M .

10. Define the functional (2.2) by:

(a) the numbers β0, β1, β2 ≥ 0,

(b) the functions w(x), µ(t) and s∗.

11. Calculate (2.2) for all elements from M . The value of (2.2) informs us
about the type of solution of the main problem.

12. Denote the controls of the problem (2.3) - (2.6), for which the value of
(2.2) is minimal as v̂.
Start computations in the dual space.

13. Define ε > 0. This is the accuracy of approximation.
14. Define y0 < 0.
15. Define the set P , where P = {p = (y0, y), y0 < 0, y ∈ R}.
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16. Define P ⊂ R
4; it is an open set of variables (t, x, p), (x, t) ∈ Ω, p ∈ P ,

i.e. P = {(t, x, p) ∈ R
4 : (x, t) ∈ Ω, p ∈ P }.

17. For v̂ calculate the solution of (2.3). Suspect that this solution is optimal.
18. Solve equation (3.2) in order to find V .
19. Solve inequality (3.3) in order to define the relationship between the set

P and the function V with the given ε.
20. For the set Adu, defined by (3.7), take uε(t, x) = −Vy(t, x, pε(t, x)) for

(t, x) ∈ Ω. Check whether uε(t, x) and vε(t, x) satisfy (4.1).

(a) If yes - (vε, uε) is an ε-optimal pair relative to all (v, u) ∈ Adu.

(b) If not - repeat the algorithm once again.

6. Numerical example

In this section one concrete numerical example is given. This example is in-
tended not to show a solution to a real problem, but rather to clarify all the
steps, needed to complete the computations in accordance with our algorithm.

6.1. The example

Taking the above algorithm, the calculation procedure, for a concrete case, is
as follows.

Ad step 1. Let Nd = 5 and Np = 100.

Ad step 2. Let M = ∅.

Ad step 3. Repeat steps (4) - (9) Nd = 5 times.

Ad step 4. Define the domain Ω.

In our case, the domain is defined in the following way.

Take T = 1 and the curve s(t). We define s(t) as a polygonal chain, specified
by a sequence of points ((0, s1), (0.25, s2), (0.5, s3), (0.75, s4), (1, 1)), where
s1, s2, s3, s4 ∈ (0, 1). For example, let s(t) be the polygonal chain, specified by
((0, 0.4339), (0.25, 0.2787), (0.5, 0.3577), (0.75, 0.5431), (1, 1)) (see Fig. 1).

Ad step 5. Repeat steps (6) - (9) Np = 100 times.

Ad step 6. Define all parameters as random values and constant or linear
functions with random coefficients.

In this example, the parameters are defined as a = 0.6323, b = 0.0975,
c = 0.2784 and f = x+ t.

Ad step 7. Assume the control v = (a, b, c, f, g, s) ∈ H generated in pre-
vious steps.
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Figure 1. Domain Ω

Ad step 8. Solve the problem (2.3) - (2.6). The solution u is illustrated in
Fig. 2.

Ad step 9. Save all parameters from steps 6 and 8 in the set M .

Ad step 10. Let numbers β0, β1 and β2 be random positive numbers.
For example, let β0 = 1, β1 = 0.25, β2 = 0. Also, let functions w(x) = 0,
µ(t) = −(t− 1)(t+ 19), and s∗ = 0.

Ad step 11. Calculate the value of the functional for all elements from M .

Ad step 12. In this step, we calculate the minimal value of the functional.
We denote by v̂ the controls of the problem (2.3) - (2.6), for which the value of
(2.2) is minimal. In our example, this is satisfied for a = 0.6323, b = 0.0975,
c = 0.2784, f = x+ t, and s defined in step 4.

Define the dual space. To this end, realize the following steps:

Ad step 13. Define ε > 0: ε = 0.01.

Ad step 14. Define y0 < 0: y0 = −0.5.

Ad step 15. Define the set P = {p = (y0, y), y ∈ {−2.5,−0.4, 0.25}}.

Ad step 16. Define P = {(t, x, p) ∈ R
4 : (x, t) ∈ Ω, p ∈ P }. Points (t, x)

we define as a set of nodes on mesh, which was generated for the domain Ω.

Ad step 17. We calculate the solution of (2.3). It is the best solution,
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Figure 2. Solution u of the problem (2.3) - (2.6)

taking into account the value of the functional. We want to know, whether
this solution satisfies the sufficient conditions from the verification theorem. In
other words, is this solution an optimal solution for the main problem?

Ad step 18. Solve equation (3.2). We obtain the solution V .

Ad step 19. Solve inequality (3.3). We obtain the relationship between the
set P and the function V with the given ε.

Ad step 20. The last step gives us an answer, as to whether our minimal
(considering the value of the functional) solution is optimal. For the set Adu
we obtain that the theory is satisfied and our solution is an ε-optimal solution.

7. Conclusions

We apply the dual dynamic programming to the construction of sufficient ap-
proximate optimality conditions for solving the problem of identification of the
unknown parameters a, b, c, f , g in the one-phase Stefan problem (2.3) - (2.6).
The obtained verification Theorem 4.1 is the basis for developing a numerical al-
gorithm. We calculate numerically the set of parameters (a, b, c, f , g, s). If the
set of parameters, together with the auxiliary function V, satisfy the conditions
of Theorem 4.1, they represent an approximate solution of the identification
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problem. Having the verification theorem, we do not need the convergence of
our algorithm.
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