
C o n t r o l  a n d  C y b e r n e t i c s  

vol. 2 7  (1998) No. 2 

O n  e x i s t e n c e  o f  e n e r g y  m i n i m i z i n g  c o n f i g u r a t i o n s  f o r  
m i x t u r e s  o f  t w o  i m p e r f e c t l y  b o n d e d  c o n d u c t o r s  

by 

R o b e r t  L ipton 

Department of Mathematical Sciences, Worcester Polytechnic Institute, 
100 Institute Rd., Worcester, MA 01609, USA 

A b s t r a c t :  We consider a domain filled with a suspension of heat 
conducting spheres of conductivity <T P embedded in a matrix of lesser 
conductivity <Tm. It is assumed that there exists a thermal contact 
resistance at the sphere - matrix interface. The contact resistance 
is characterized by a scalar /3, which has dimensions of conductivity 
per unit length. A current flux is prescribed on the domain boundary 
and we seek the energy minimizing configuration among all suspen-
sions satisfying a resource constraint on the total volume of spheres. 
We establish the existence of an energy minimizing configuration 
within the class of polydisperse suspensions of spheres. The opti-
mal suspension depends upon the size of the domain and consists of
spheres of radii greater than or equal to R cr 

= 13- 1 (<T;;,1 - <T; 1 ) - 1 

or no spheres at all. Here R cr is the ratio between the interfacial 
resistance and the mismatch between the resistivity of each phase. 

K e y w o r d s :  Stekloff eigenvalue, optimal design, contact resis-
tance 

1 . I n t r o d u c t i o n

We consider suspensions of thermally conducting spheres embedded in a ma-
trix of lesser thermal conductivity. We allow the suspensions to contain spheres 
of different radii. This class of suspensions is referred to as the class of poly-
disperse suspensions of spheres. The suspension is contained inside a convex 
domain D c R 3 with Lipschitz continuous boundary 8D. The conductivities of 
the spheres and matrix are assumed isotropic and are specified by <T P and <Tm 
respectively, with <Tp > <Tm. We treat the technologically important case when 
there is an interfacial contact resistance between the two phases. The contact 
resistance is characterized by a scalar /3 with dimensions of conductivity per 
unit length. Experiments show that for small particles, the presence of an in-
terfacial barrier can diminish or even negate the effect of a highly conducting 
reinforcement, see, Garret and Rosenberg (1974), Every, Tzou, Hasselman and 
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Raj (1992), and Hashin (1962). This phenomena is in striking contrast to what 
occurs for perfectly bonded composites where there is no interfacial thermal bar-
rier. Indeed, for perfectly bonded composites it is known, that the addition of 
highly conducting particles will always increase the effective conductivity inde-
pendently of particle size. Recent studies focusing on special micromechanical 
models and dilute monodisperse suspensions of spheres strongly suggest that 
the effective conductivity decreases with decreasing particle size, see: Chiew 
and Glandt (1987), Every, Tzou, Hasselman and Raj (1992), and Hasselman 
and Donaldson (1992). The low volume fraction results of Chiew and Glandt 
(1987) and the micromechanical models of Every, Tzou, Hasselman and Raj 
(1992) show that the effective conductivity tends to that of a porous matrix 
in the limit of infinitesimally small particle size. More generally for periodic 
suspensions it is shown in Lipton (1997) that the effective property tends to 
that of a porous matrix in this limit. This behavior is seen in the experimental 
results of Hasselman and Donaldson (1992). From the perspective of engineer-
ing applications, it is of importance to know how to design suspensions with 
energy dissipation properties at least as good as that of the matrix. Recently it 
has been shown by Lipton (1996, 1998) that if a reinforcement particle's second 
Stekloff eigenvalue, p2, is greater than R c r = (3- 1 / ( u ; 1 - u;;;,1 ) - 1 , then the en-
ergy dissipation of the suspension will not decrease when the particle is added 
to the suspension. For a spherical particle of conductivity up this means that 
the particle will not lower the energy dissipation of the composite when the 
particle's radius is less than R en see Theorem 1.1. In light of this, it is evident 
that minimizing sequences of designs will not consist of arbitrarily fine suspen-
sions. In fact we show that the existence theory for the optimal design becomes 
a problem of shape optimization. The author recognizes that polydisperse sus-
pensions of spheres do not represent the most general physical or mathematical 
case, however it is a first step towards a general theory of existence for these 
problems. 

We present the mathematical formulation of the problem. The region occu-
pied by the ith sphere in the suspension is denoted by Bi, and the configuration 
of spheres given by their union UBi is denoted by A. The two phase interface is 
denoted by r = U8Bi- We assume that the spheres are strictly contained inside
0 ,  ie., A c  r2 and r n 8 0  = 0. The local resistivity tensor inside the composite
is described by u - 1 (XA ) = u ; 1 x AiA + u;;;,1 (1 - XA ), where XA equals one in A
and zero otherwise. For a prescribed distribution of current g E H- 112 (8 !:1), 
such that f80 gds = 0, the energy dissipated inside the composite is given by
E(A, g), where 

and 

E(A, g) = min{C(A,j) : j E L 2 (0 )3 , div j = 0, j · n = g on 8 0 }  (1) 

(2) 
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Here div j = 0 holds in the sense of distributions, ds is the element of surface 
area, and the vector n is the unit normal pointing into the matrix phase. The 
first term of the functional C(A,j) is associated with bulk energy dissipation, 
while the second term gives the energy dissipation at the two-phase interface. 
The minimzer ] A is precisely the heat flux inside the composite. The associated 
temperature uA is related to the heat flux through the constitutive law ]A = 
cr(xA)VuA in each phase. The equilibrium equations for the temperature are 
given in Section 3. Existence of solution for the equilibrium equations follows 
from the Lax-Milgram lemma: this is easily established along the lines given in 
Lene and Leguillon (1982). 

We consider the problem of minimizing the energy dissipation among poly-
disperse suspensions, subject to a resource constraint on the total volume oc-
cupied by the spheres. We introduce the class C0p of all polydisperse suspen-
sions containing a finite number of spheres, satisfying the resource constraint 
meas(A) :S 0pmeas (D). Here 0P is an upper bound on the volume fraction occu-
pied by the suspension. Note that there are no constraints on the size or number 
of spheres for configurations in C0p . We suppose that the spheres do not touch 
each other. To make this requirement precise we consider a suspension in C0p

consisting of N spheres and denote the center and radius of the ith sphere by Xi 
and Ti respectively. We surround the ith sphere by an open ball Si with center 
Xi and slightly larger radius (1 + .>-)ri, where A is a fixed positive constant. We 
require that the open balls do not overlap, ie., 

Si n S j = 0 i -/- j , (3) 
and 

Si n 8D = 0 i = 1, 2, . . .  N. (4) 
The class of suspensions in C0p satisfying (3) and ( 4) is denoted by C0p.>-·

For a prescribed current flux g E H-112, such that J n gds = 0 we consider
the problem, 

min{E(A, g) : A E Cep,>-} (5) 
In this paper it is shown that an energy minimizing configuration exists in 

the class C0p,>-. Moreover the optimal suspension depends upon the size of the 
domain D, and consists of spheres with radii greater than or equal to R cr , or no 
spheres at all: see Theorem 1.4. Here R cr has the dimensions of length and is 
the ratio between the interfacial thermal resistance and the mismatch between 
the thermal resistivity of each phase. We remark that the class C0p,>- is suffi-
ciently large to allow for the potential appearance of fine structure in minimizing 
sequences of configurations. In fact the composite sphere assemblages of Hashin 
(1962) can be approached by sequences of configurations in C0p,>-· We note that 
the restriction to suspensions of spheres that do not touch is a technical one 
and is only used to apply the methods of optimal shape design as presented in 
Pironneau (1984). 
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The functional without the interfacial energy term in (2) has been widely 
studied. Indeed, in the absence of surface energy, it is well known from the 
fundamental work of Lurie and Cherkaev (1986) and Murat and Tartar (1985) 
that problems of the type (5) are most often illposed and exhibit minimizing 
sequences composed of arbitrarily fine mixtures of the two conductors. 

Recently Ambrosio and Buttazzo (1993) have considered functionals with 
bulk energies similar to the first term in (2) augmented by a penalization pro-
portional to the perimeter of the two phase interface. They allow for arbitrary 
configurations of the two phases, placing a resource constraint on the better 
conductor. The perimeter penalization used in Ambrosio and Buttazzo's work 
rules out the appearance of arbitrarily fine mixtures in minimizing sequences by 
assigning an infinite value to them. 

Their penalization gives the necessary compactness and forces the optimal 
configuration to lie within the class of sets of finite perimeter that are (up to 
subsets of measure zero) open. 

The approach taken here does not use an explicit perimeter penalization, but 
instead the penalization opposing the formation of fine scale mixtures follows 
from the thermal contact resistance at the two phase interface. The explicit 
mechanism by which fine scale minimizing sequences are eliminated is seen in 
the following inequality established in Lipton (1996, 1998). 

THEOREM 1.1 E n e r g y  dissipation inequality. 
Let B denote a sphere of radius a such that A U B  is a suspension in C0p

,>-, then, 

E(A U B, g) 2 E(A, g), (6) 

i f  

(7) 

for all g E H - 112 (80 ) such that f80 gds = 0. 

We remark that this is a special case of a more general inequality that holds 
for suspensions of particles with Lipschitz boundaries obtained in Lipton (1996, 
1998). For completeness we provide a proof of Theorem 1.1 in Section 5. 

It is evident from Theorem 1.1 that R cr gives the critical sphere radius for 
which the benefits of a highly conducting inclusion are spoiled by the contact re-
sistance at the particle surface. It follows that if a suspension contains spheres of 
radii less than R cr then there is no advantage to keeping them in the suspension. 

At this point it is it is necessary to check that there exist suspensions in 
C0p

,>- for which the corresponding energy dissipation E(A, g) is less than the 
energy dissipation E(0, g) associated with pure matrix material. To answer this 
question positively we introduce the following geometric quantity associated 
with the configuration A and boundary data g given by: 

T(A, g) = R cr - { l]l 2 dx / ( { (] · n) 2 ds). 
JA leA 

(8) 
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Here ] is the current field generated inside the domain when filled with pure 
matrix material and subjected to the prescribed boundary data g. We now state 
the following theorem that is proved in Section 6: 

THEOREM 1.2 IfT(A,g) S O  then E(A,g) S E(0,g). 

For any given configuration A it is evident from (8) that the particle conduc-
tivity and interfacial resistance may be chosen to make R c r sufficiently small so 
that the quantity T(A, g) is negative. Thus for any configuration in C0v

,>-there 
is a choice of particle conductivity and interfacial resistance for which the con-
figuration has lower energy dissipation than pure matrix material. Conversely 
for fixed material properties and boundary data, the condition T(A, g) S O is 
seen to be sufficient for a configuration to reduce the energy dissipation below 
the unreinforced value. As an example we consider boundary data of the form 
g = :J • n, where n is the outward directed unit normal vector on the boundary
of !1 and J is a constant vector in R 3 . For this case the requirement T(A, g) s 0
is equivalent to 

( -1)-1 > R a - er· (9) 

Here (a-1) is the volume average of the reciprocal radii for a suspension of 
N spheres with radii a 1, a2 , . . .  , aN given by: 

N
( - 1 ) = "  :- 1 IYila 

 
a
, IAI'i=l 

(10) 

where, IYi  I is the volume of the it h sphere and IAI is the volume of the suspension.
Thus it is evident from Theorem 1.2 that if the "harmonic mean" of the sphere 
radii is greater than R cr then the configuration reduces the energy dissipation 
below the unreinforced value. The inequality (9) is established Section 6. 

We next introduce the subclass SC0v
,>-, of suspensions in C0v

,>- consisting 
only of spheres with radii greater than of equal to R cr · In view of Theorem 1.1, 
we see that the size of the domain !1 effects the optimal configuration. Indeed, 
the domain may have physical dimensions for which the class of configurations 
SC0p ,>- is empty. Thus, the class C0p ,>- consists of spheres of radius less than 
R cr . For this case, it is evident that the optimal configuration is made from 
pure matrix material with no particles at all. We summarize these observations 
in the following, 

THEOREM 1.3 N e c e s s a r y  conditions o f  optimality.  
I f  the configuration A is a minimizer for problem (5), then A E SC ep ,>-, or 
A=0. 

We now assert the existence of an energy rn.inimizing configuration in the 
class Cep ,>-· 
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THEOREM 1.4 Exsistence o f  an energy minimizing suspension. 
There exists a minimizing configuration A for problem (5) and A E S C 0p

,>- or 
A=0. 

Clearly, Theorem 1.3 implies that all energy minimizing configurations must 
lie in the class S C 0p

,>- or consist of no spheres at all. Thus for domains for 
which the class S C 0p

,>- is not empty, our analysis focuses on proving the exis-
tence of minimizers within the class S C 0p

,>-· Existence is proved through the 
direct method of the calculus of variations and we may use the methods dis-
cussed in Pironneau (1984). It is shown in Section 2 by means of elementary 
arguments that the set of characteristic functions associated with all configura-
tions in S C 0p

,>- is closed and compact with respect to strong L 1 convergence. In 
Section 3, the functionals E ( A ,  g) are shown to be continuous with respect to L 1 

convergence and existence follows. Section 4 provides a derivation of the energy 
estimates used in section 3. In this Section, a higher regularity result for the 
trace of the temperature on either side of the two phase boundary is obtained. 
This is used to establish a Poincare like inequality from which uniform bounds 
on the energy dissipation follow. We establish Theorem 1.1 in Section 5 and 
conclude the paper by proving Theorem 1.2 and inequality 9 in Section 6. 

2. Compactness of the design space
We consider a sequence { A11} 1 of configurations in S C 0P 

,>- and state the fol-
lowing: 

THEOREM 2.1 Given { A11} 1 such that A 11 E S C 0p
,>-, v = 1, 2, . . .  , there exsists

a subsequence also denoted by { A 11}  1 and a configuration A E S C 0p
,>-for which 

meas(A11 D A)--+ 0. Equivalently we have XA v --+ XA, strongly in L 1 (D). 

Proof: 
We first note that any configuration A 11 of "p" particles can be represented by a 
vector y_11 of length 4p consisting of the radius and center of each sphere in the 
suspension. The maximum length of any such vector is attained by the vector 
describing the configuration associated with packing D with spheres of radius 
R c r · The number of spheres in this packing is denoted by £. We see that all 
configurations in S C 0p

,>- correspond to a closed bounded set of vectors in R 4 P . 
The compactness of the design space in L 1 (D) follows immediately. 

Remark.  Since the minimum sphere size is bounded below by R c r it is clear 
that any convergent sequence { A 11}  =l contains the same number of spheres for 
sufficiently large indices v. 

3. Continuity of the energy dissipation functional
In this section we establish the continuity of the functional E(A,g) .  We state 
the following theorem: 
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THEOREM 3.1 Continuity  o f  t h e  energy  dissipation. 
Given a sequence {A"}  1 in SC0p ,>-and a set A in SC 0p,>-, such that meas(A" I::,. 
A)--+ 0 ,  then 

lim E(A",g) = E(A,g) 
V-+00 

(11) 

Proof :  
With out loss of generality, may suppose that the limit configuration A consists
of "p" spheres. From the remark following Theorem 2.1 we assume that we 
are far enough out in the sequence, so that each configuration A "  consists of p 
spheres. 

For the configuration A "  we introduce the characteristic function Xi associ-
ated with the ith sphere. The characteristic functions of the spheres are related 
to the characteristic function of the configuration A" by XAv = :Z:::f=l xr .  More-
over, the convergence of {A"}  l to A imply x r  -+ Xi strongly in L 1 where Xi 
is the characteristic function of the ith sphere in the configuration A. The proof 
is facilitated by introducing the equations of state solved by the temperature 
uAv for the configuration A".  The heat flux is related to the gradient of the 
temperature by the constitutive law: j Av = a"(x) 'vuAv and 

(12) 

Across the interface one has 

(13) 

and 

(14) 

Here I ' "  is the two phase interface a"(x)  = apXAv + a m (l - XAv ), and [uAv] = 
uAv IP - uAv I=, where the subscripts indicate the side of the interface where the 
trace is taken. The requirement, fan gds = 0 is the solvability condition for the 
equation of state, and the temperature UAv E H 1 (D\ r " ) is determined uniquely 
up to a constant. Exsistence of solution for the boundary value problem (3.2)-
(3.4), follows from the Lax-Milgram lemma; this is easily established along the 
lines given in Lene and Leguillon (1982). We provide a usefull weak formulation 
of the boundary value problem (12) - (14). Introducing the space of vector fields 
1Q = ( w0, w1 , . . .  , wp ) belonging to H 1 (f2)P+1, the weak formulation is given by: 

p L r (xr ap 'vuAv . 'vwi)dx + r ( l  - XAv ) am 'vuAv . 'vwodx +
i=l J n  J n  

i=p 

+ /3 8 .lBr [uAv l ( Wi - wo)ds - !an wogds = 0, (15) 
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for all w. E H 1 ( n )P+ 1 . Here 8 B f  denotes the boundary of the it h sphere in the
configuration Av . One can establish the existence of a sequence of constants 
{cv } ;;"'=1 such that the normalized sequence of temperatures {uAv - cv } ;;"'=l is 
uniformly bounded, ie., 

sup lluAv - cv l!Hl (n\rv) < 0 0 (16) 
V 

This estimate is derived in Section 4: see Theorem 4.2. The normalized 
temperature is a solution of the equation of state (12)-(14) and for the remainder 
of this Section we continue to denote it by uAv . Next we observe that there is a 
uniform bound on the Lipschitz constant associated with the boundary of any 
sphere B f ,  that holds independently of the indices i and v. Thus we may apply 
the Theorem of D. Chenais (1975) to assert the exsistence of a positive number 
K and p + 1 linear and continuous extension operators, lvf0 , M'{, . . .  , 1v1; such
that for all AV = uf=l B f  E SCep ,Al

M t :  H 1 (D \ (AV U r v )) - -, H 1 (R 3 ) , 

M [ :  H 1(Br ) --, H 1 (R 3 ) , 

for i = 1, 2, . . .  ,P, where

!!Mt!!::; K a n d  l!Mfll ::; K 
for i = 1, 2, . . .  , p. 

It is evident from (16) and (19) that 

and 

sup l!MtuAv IIH1(n) < 0 0
V 

sup l!Mf UAv l!Hl (n) < oo, 
V 

for i = 1, 2, . . .  ,p. 

(17) 

(18) 

(19) 

(20) 

(21) 

From (20) and (21) we may pass to a subsequence if necessary to find that 
there exists functions ug"' u r '  . . .  ' u f  all in H 1 ( n,) such that: 

(22) 

and 

(23) 
for i = 1, 2, . . .  , p. 

It follows from the weak formulation (15) that the choise w0 = M0uAv , Wi = 
M [ uAv , i = 1, 2, . . .  ,P, gives:

(24) 
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From the weak convergence (22), it follows that: 

lim E(Av , g) = f u0gds.
V---> 00 J EID. 

225 

(25) 

Next we let XA denote the characteristic function of A and XA = :z:::t:r Xi, 
where Xi is the characteristic function of the ith sphere in the limit configuration 
A. It is evident from (25) that the theorem follows once we show that, u00 = 
u0(1 - XA) + I:!:'.f Xiuf° is the solution of: 

t f (xiap 'vu'(° · 'vwi)dx + f (1 - n ) a m ' v u 0  · 'vwadx + 
i=I Jn. Jn 

+ /3 t f
V 

(u'f - u'o)(wi - wa)ds - f wagds = 0, (26) 
i=I laB; lan. 

for all w in H 1 (D)P+l, where 8Bi is the boundary of the ith sphere in the limit 
configuration. To establish this we will pass to the limit in the weak formulation 
(15) to show that it agrees with (26). 

We observe first that the weak convergence 'v NI[uAv - > 'vuf°, i = 1, 2, . . .  ,P
and 'v MouAv - 'vu'; ' '  together with the strong convergence of xr to Xi, implies
that the first two terms of (15) converge to the first two terms of (26). To 
expedite the presentation we denote the differences uf° - u 0  and Wi - w0,

defined everywhere on D, by [u00]i and /5i respectively. We consider the difference 
between the third terms of (15) and (26), given by: 

/ 3 { t  laB'{ [uAv ]15ids - t laB; [u00]il5ids}

/ 3 { t  {laB'{ ([uAv] - [u00]i)/5ids 

+ ( r [u00]il5ids - r 
V 

[u00]i/5ids)} }.
laBr laB; 

We show for each term in the sum (27) that the difference 

To do this we observe, 

(27) 

(28) 

(29) 
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where nv is the unit normal pointing out of fJB'{. Extending the normal inside 
B:(, we apply the divergence theorem to find: 

{ ([uAv] - [u00]i )8i ds lasr 
{ ((M(uAv - MouAv) - [u00]i )8i nv · nv ds lasr l xr{(v '  M(uAv - v'uf') + (v'uo' - v' MouAv)} · nv 8i dx (30) 

+ l x r  {(M(uAv - uf ')  + (uo' - MoUAv )}(div nv 8i + nv · v'8i )dx .

For the i t h sphere, the extension of the unit normal vector is simply (x -
xr)(ar)- 1 and div nv = 3(ar)- 1, where ai and xr are the radii and cen-
ter of the i t h sphere in the configuration A V . Clearly the products x r  nv = 
xr(x - xr)(ar)- 1 and xrdiv nv converge strongly in L 2 to :frn and X.i div n, 
where n is the extended normal associated with the limit configuration. Thus 
from the weak convergence (22) and (23) of the extended fields, it follows from 
(30) that the difference (28) vanishes in the limit. Last, we observe that for 
each term in the sum (27) the difference:

(31) 

vanishes in the limit; this follows from the continuity of the trace, see Lions 
and Magenes (1972). Thus passing to the limit in (15) we recover (26) and the 
Theorem follows. 

4. The Poincare inequality and the energy estimate

In this Section we provide the energy estimates for the temperature satisfying 
the equations of state given by (3.2) - (3.4). In view of the discussion in Sections 
2 and 3 we will only consider potentials associated with configurations in the 
class SC0p,» consisting of at most p spheres. For these configurations there 
exsists a boundary layer L>-. of thickness ½ R cr in which no sphere of conductivity
Clp is present. We let n denote the subset of n obtained by removing the
boundary layer L>-. from 12, ie., f2 = 12 \ L>-.. 

We start with an elementary observation on the regularity of the temperature 
on the two phase interface. The trace of the temperature on the two phase 
interface is denoted by uAv IP and uAv Im where the subscripts m and p denote 
the side of the interface where the trace is taken. We give the following: 
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Proof: 
We observe from (3.2) - (3.4) that in each phase the solution uAv satisfies the 
following set of Neumann problems: 

r O"p"vUAv '"v<pdx = -/3 H- 1/2(aB v ) < [uAv ], <p > H1f2(BB  )' lBr i i 

for all <p E H1 (B::), i = 1, 2, . . .  ,P, and 

r O"rn"vUAv '"v<pdx = -/3 H-1/2(rv) < [uAv ], <p >Hl/2(rv)
ln\Av 

+ H-1/2(0) < g,'-f! >Hl/2(0)>

for all <p E H 1 (D, \ Av ). 

(32) 

(33) 

Observing that UAv E H 1 (n \ r v ) we see that the jump [uAv] lies in H 1 12 ( rv ) 
and we appeal to the regularity theory for the Neumann problem, (see Grisvard, 
1980) to conclude that uAv E H 2 (0 \ r v ). The Lemma now follows from the 
Sobelev imbedding theorem. 

R e m a r k .  Since r v is of class C00
, we can iterate the procedure used to 

prove Lemma 4.1 to find that UAv lp and UAv lm lie in C 0 0 (r v ). 
Letting d be the diameter of the domain n and setting w3 equal to the

volume of the unit sphere in three dimensions we state the following Poincare 
like inequality: 

THEOREM 4.1 For any sequence of configurations in the class S C0p , >- consisting 
of p spheres, there exists a constant M = 2( 31t 1 )

2 (3w 13) 2 IDl 2 13 , such that for
all temperatures uAv satisfying the equations of state: 

(34) 

The proof of Theorem 4.1 proceeds in two steps, first we introduce the Riesz 
and double la yer potentials given by: 

(35) 

and 

(36) 

where n is the outward pointing normal and E(x, y) is the Newtonian potential 
I Y - xl-1• 

We state the following: 
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LEMMA 4.2 
d3 

< 3IL,\I {V1;3(l'vuAvl)(x)

+ pv(l[uA v ]l)(x)}.

Proof: 
For x and y in n we write:

(
lx - yl c 

UAv (x ) - uAv (y ) = - Jn D r UAv (x + rw )dr - L [ u A v (x + rj w )], 
0 j = l

(37) 

(38) 

where 0 ::; £ ::; p, w = (y - x)/IY - xl. Here x + TjW lies on the intersection
of the / h  interface and the line segment connecting the points x and y, and 
[] indicates the jump of uAv across the surface of a spherical particle. Next 
we integrate (38) with respect to the y variable over the boundary layer L,\ to 
obtain: 

IL ,\ l(uAv (x ) - cv) = - r dy r
lx - yl 

Dr UAv (x + rw )drJL>- Jo 
£ 1 dy (I : [uAv (x + TjW)]). 

L>. j = l

We write 

IL ,\ ll(uAv (x ) - cv)I I r dy r
lx - yl

D r UAv (x + rw )dr lJL>- Jo 

+ I}
>. 

dy (t , [uAv (x + rj w )])I.

(39) 

(40) 

Proceeding as in Gilbarg and Trudinger (1983), the first term in (40) is 
estimated above by: 

1 1 1x - yl d3 I dy D r uAv (x + rw )dr l ::; -{Vi;3(l 'vuAv l)(x). 
L>. O 3 ( 41) 

From the convexity of the domain n we may integrate the second term in 
(40) using the polar coordinates dy = p2 dpdw , to obtain

(42) 

where Di is the solid angle subtended by the ith sphere and x + r j(w )w ranges 
over all points on its surface. We apply a standard change of variables, ( cf., 
Jackson, 1975), to obtain: 

t i i  l[uAv (x + rj (w )w )]ldw = tJ t l[uAv]l lany E (x , y ) ldsy, (43) 
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and the Lemma follows. 
Application of Lemma 4.2 and Cauchy's inequality gives: 

(44) 

From Gilbarg and Trudinger (1983) we have: 

(45) 

Next we estimate the surface layer term on the right-hand side of (44). We 
write, 

Pv(l[uAv]I) =  P[(l[u Av]I), (46) 
i=l 

where P[(l[uAv]I) = faBr l[uAv (y)]I 1any E (x , y)idsy , Application of Cauchy's
inequality gives: 

(47) 

The Po in care inequality now follows from ( 44), ( 45), ( 4 7) and the following 
estimate: 

LEMMA 4.3 

f o  IP[(l[uAv]l) l2dx

< (3w /3) 2 1n 12/3 h
Br ([uAv (y)]) 2dsy ,

Proof: 

(48) 

Let K ( x ,  y) l8nyE (x , y)I, write l[uAv ]IK = (l[uAv ]12 K ) 1 12 K 1 12
, and apply

Cauchy's inequality to obtain: 

(49) 

Elementary estimates, (cf., Jackson, 1975), show that: 

(50) 
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thus, 

(51) 

Let W c D, be a thin shell containing the boundary 8B:( then, 

(52) 

For x E D \ W we have K(x, y) S Ix - Yl- 2 and application of Fubini's 
theorem gives: 

< r ( r Ix - Yl- 2 dx)([uAv ]) 2 dsy laBr ln \w  

< sup{V1;3(l)(x)} r ([uAv ]) 2dsy 
yEn laBr 

< (3w;1 3 )2 1n 12 /
3 h B r  ([uAv ]) 2dsy - (53) 

To estimate the second term on the right-hand side of (52) we recall from
Lemma 4.1, that [uAv l lies in c0 ( rv ) thus II [uAv l II Loo (8Br )  s 0 0  and

{ ( { ([uAv ]) 2 Kdsy )dx S 47rlWI ll([uAv ]) 2 jjL0 0 (aB )- (54) 
l w  laBt 

Lemma 4.3 follows upon choosing HI such that its volume tends to zero. 
We conclude this Section by providing a uniform estimate on the normalized 

temperature fields given by: 

THEOREM 4.2 Given a sequence of suspensions consisting of p spheres in the 
class SC 0p,-"' the associated temperature uAv satisfies: 

where 

sup lluAv - cv l!H1 (n\rv) < oo, (55) 

(56) 

Proof: 
We observe that uAv - cv is a solution to the equations of state (3.2)-(3.4) and: 

E(Av , g) r guAvds = r g(uAv - c v )ds 
lan lari 

< llgll H- 1 /2(/m)lluAv - cv llH112can)
< llgll H- 1 /2(ani lluAv - cv llH1 (n\rv). (57) 



On existence of energy minimizing configurations 

From the Poincare inequality (34), it follows that 

Next, set a = min{ ap , am , ,6} and make the substitution 
1Q = ( UAv, UAv, • . . , UAv) in (3.5) to obtain: 

It is evident from (57), (58), and (59) that 

sup r lv'uA" l 2dx :::; oo, sup r ([uA" ]) 2ds :::; oo, 
l l  ln l l  lrv 

and the theorem follows in view of (58) and (60). 

5. Proof of the energy dissipation inequality

231 

(59) 

(60) 

We start by introducing the second Stekloff eigenvalue p2 of a particle E. When 
I: has Lipschitz continuous boundary the variational formulation for the second 
Stekloff eigenvalue is given by: 

. f a E (ap v'cp · n) 2ds 
P2 = rmn 

div(crp 'i7cp)=D JE CTp v'cp · v'cpdx 
(61) 

cf. Kuttler and Sigillito (1968). Separation of variables shows that for a sphere 
of radius a and conductivity ap that P2 = ap / a . 

We now give the proof. For any g E H - 112 (8D) for which f a n gds = 0, we 
write the difference .6.E = E(A U E, g) - E(A, g) as 

· .6.E = C(A, ]) - C(A, ]) + D(E, ]), (62) 

w h e r e ] =  argmin{C(A U E , j ) } ,  3 = argmin{C(A,j)}, and D(E,]) is given by

D(E,3) = ,s-1{ { (3 · n) 2ds - { ,B(a;;.1 - a; ; 1)] · ]dx}. (63) 
l a E J E 

Noting that the feild] is an admissible trial for the variational principle (1.1), 
we have: 

C(A,3) - C(A,])   0. (64) 

Thus 

.6.E   D(E,J). (65) 
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Now, the equations of state for the temperature u E H 1 (!1\ ( r  U 8:E)) imply that 
] = ap Vu in :E, [a(xA)Vu · n] = 0 on 8:E, and J · n12 = ap V u ·  n12 , on 8:E. Thus
from (63) and (65) we obtain: 

b.E;::,:,B-1{ / (ap Vu · n)2 ds - f ,B(a; ; , ,1-a; 1 )ap Vu · ap Vudx } . (66) la  J  
From (61), it follows that: 

(67) 

for all cp E H 31 2 (:E) such that div (ap V cp) = 0, in :E. 
Comparing the right-hand side of (66) with (67), we discover that 

(68) 

for 

(69) 

Theorem 1.1 follows noting that p2 = ap / a for a sphere of radius a.
We observe that strict inequality in(68) follows from strict inequality in (69), 

provided that Vu is not identically equal to zero on :E. 

6. A proof of Theorem 1.2 
We write the energy dissipation due to a distribution of current on the domain 
boundary as: 

E(A, g) = min{C(A,j) : j E 1 2 (!1)3 , div j = 0, j • n = g on 8!1} (70) 

where 

Next we write the energy dissipated in the unreinforced domain as: 

E(0,g) = min{C:  j E L 2 (n )3 , div j = 0, j • n = g on 8!1}

where 

C = h a;;,,1 j - j d x .  

(72) 

(73) 

We set ] = argminE(0, g) and observe that it is an admissible trial field for
(70). Substitution of] into (70) gives the estimate: 

E(A, g) :s; E(0, g) + (a;;/ - ai:;- 1
) ( / (J. n) 2 ds)T (A, g) 
JaA 

(74) 
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where T(A, g) is given by (1.8) and Theorem 1.2 follows. 
Lastly, we establish the inequality given by (1.9). Indeed, for the choice 

g = ]  • n the quantity T(A, g) is given by. 

T(A, g) = R cr - r l]l 2 dx/ r (J · n) 2 ds.
JA laA 

The inequality follows from T(A,g)::; 0 upon noting that 

and 
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