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Abstract: The object of this paper is to further investigate
the notion of shape and topological derivatives in the light of the
general notion of Hadamard semidifferential for a function defined
on a subset of a topological vector space.

The use of semitrajectories and the characterization of the ad-
jacent tangent cone provide simple tools for defining Hadamard
semi-differentials and differentials without a priori introduction of
geometric structures such as, for instance, a differential manifold.
Such a simple notion retains all the operations of the classical differ-
ential calculus, including the chain rule, for a large class of non-
differentiable functions, in particular, the norms and the convex
functions. It also provides a direct access to functions defined on
a lousy set or a manifold with boundary.

This direct approach is first illustrated in the context of the clas-
sical matrix subgroups of the general linear group GL(n) of invertible
n×n matrices, which are the prototypes of Lie groups. For the shape
derivative we have groups of diffeomorphisms of the Euclidean space
R

n with the composition operation, and the adjacent tangent cone
is a linear space; for the topological derivative we have the group
of characteristic functions with the symmetric difference operation
and the adjacent tangent cone is only a cone at some points.
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1. Introduction

The object of this paper is to further investigate the notion of shape and topologi-
cal derivatives in the light of the general notion of Hadamard semidifferential for
a function defined on a subset of a topological vector space (Delfour, 2020a,b)).

In Differential Geometry, defining the differential of a function, which is de-
fined on a subset of a topological vector space, requires the a priori specification
of some differential structure with a linear tangent space at each point of the
subset.

The use of semitrajectories in a subset of a topological vector space and
the characterization of the adjacent tangent cone provide simple tools to de-
fine Hadamard semidifferentials and differentials without a priori introducing
a differential manifold structure and without the requirment that the semitra-
jectories be smooth or even continuous. This can be seen as a relaxation of the
notion of Lie derivative (Marsden and Ratiu, 1994, Sec. 4.3, pp. 120–121). The
notion of Hadamard semidifferential retains all the operations of the classical dif-
ferential calculus, including the chain rule for a large class of non-differentiable
functions, such as the norms and convex functions (Delfour, 2023b). It also
provides a direct access to functions, defined on a lousy set or a manifold with
boundary such as a finite line in dimension two, where the adjacent tangent
cone is a half line at both ends.

The approach is first illustrated in the context of matrix subgroups of the
general linear group GL(n) of invertible n×n matrices, which are the prototypes
of Lie groups. This simple, quick, and direct approach was advocated in Lange
(2024).

For shape derivatives, the subset is a group of diffeomorphisms of mappings
from the Euclidean space R

n into itself with the composition operation, and
the adjacent tangent cone is a linear space. For the topological derivative,
the subset is the group of characteristic functions X(Rn) with the symmetric
difference operation, but the adjacent tangent cone is only a cone at some points
(Delfour, 2018a).

The emerging point of view is to consider the elements of the group X(Rn) of
characteristic functions χΩ of Lebesgue measurable subsets Ω ⊂ R

n as a subset
of the space of distributions D(Rn)′. It is conjectured that the whole adjacent
tangent cone TχΩ

(X(Rn)) is contained in the ambient space of distributions
D(Rn)′. In Section 6.2 the compact d-rectifiable subsets E generate semitan-
gents that are Radon measures; in Section 6.3 the Velocity Method generates
tangents that are distributions in H1

0 (R
n)′ (Delfour, 2016, sec 3.1. pp. 234–235,

Delfour 2018a, sec. 4.1, pp. 967–968). As a result, the adjacent tangent cone
TχΩ

(X(Rn)) is not a linear space and it does not only contain measures, but we
do not know how large it is.
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Section 2 of the present paper recalls the main definitions and theorems
from Delfour (2020b, sec. 4) for the Hadamard semidifferential of a function
defined on a subset of a topological vector space (TVS). It also briefly discusses
the relation between the Hadamard semidifferential and numerical aspects, such
as, for instance, automatic differentiation. Section 3 considers linear mappings
from R

n to R
n, that is, n×n matrices, as a preliminary to nonlinear mappings.

Section 4 considers the Stiefel manifold of rectangular n×d matrices. Section 5
considers diffeomorphism groups of nonlinear mappings and revisits the notion of
shape derivative in Section 5.2. Section 6 is devoted to the group of characteristic
functions and its application to both topological and shape derivatives.

2. Hadamard semidifferential on subsets of a TVS

2.1. Definitions and notation

The use of semitrajectories in a subset of a topological vector space and the
characterization of the adjacent tangent cone provide a simple tool to define
Hadamard semidifferentials and differentials without a priori introducing the
geometric structures such as, for instance, a differential manifold. Such notions
retain all the operations of the classical differential calculus, including the chain
rule for a large class of non-differentiable functions, such as the norms and
the convex functions. It is remarkable that a few relatively simple notions can
embrace a whole range of problems arising in the applications of Mathematics
and Statistics to Science and Engineering. We recall definitions from Delfour
(2020b, sec. 4.)

Definition 1 Let A 6= ∅ be a subset of a topological vector space (TVS) X.
An admissible semitrajectory1 at x ∈ A in A is a function h : [0, τ) → A, τ > 0,
such that

h(0) = x and h′(0+)
def
= lim

tց0

h(t)− h(0)

t
exists in X.

h′(0+) is the semitangent to the trajectory h in A at h(0) = x.

Using semitrajectories with a semitangent instead of trajectories with a tangent
allows for the sets A, which are not smooth or not connected or manifolds with
boundaries.

1The term semitrajectory in [0, τ ] is preferred over path, which is often assumed to be
continuous or differentiable in an open interval (−τ, τ) around 0. Such paths would not be
appropriate to obtain the semidifferential of the absolute value or the norm at the origin.
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Definition 2 Let A 6= ∅ be a subset of a topological vector space X. The
adjacent (or intermediary) tangent cone2 to A at x ∈ A is defined as

T ♭
x(A)

def
=

{

v ∈ X : ∀{tn ց 0}, ∃{xn} ⊂ A such that lim
n→∞

xn − x

tn
= v

}

.

We use the notation R+
def
= {λ ∈ R : λ ≥ 0}, and T ♭

x(A) = R+(A− x) for a
convex subset A of a Fréchet space (that is, a topological vector space, which is
complete, metrizable, and locally convex).

T ♭
x(A) is related to the notion of admissible semitrajectories at x in A and

this provides an equivalent alternative way to characterize T ♭
x(A).

Theorem 1 Let A be a subset of a topological vector space X. For x ∈ A,

T ♭
x(A) =

{
h′(0+) : h an admissible semitrajectory in A at x

}
.

We now have all the elements, which are needed to extend the definition of
the Hadamard semidifferential to a subset of a TVS.

Definition 3 Let X and Y be TVS, A, ∅ 6= A ⊂ X, and f : A → Y .

(i) The function f is Hadamard semidifferentiable at x ∈ A in the direc-
tion v ∈ T ♭

x(A) if there exists g(x, v) ∈ Y such that, for all admissible
semitrajectories h in A at x such that h′(0+) = v,

(f ◦ h)′(0+) def
= lim

tց0

f(h(t))− f(h(0))

t
= g(x, v) in Y. (1)

The element g(x, v) will be denoted dHf(x; v).
(ii) f is Hadamard semidifferentiable at x ∈ A if f is Hadamard semidif-

ferentiable at x in all directions v ∈ T ♭
x(A).

(iii) f is Hadamard differentiable3 at x ∈ A if T ♭
x(A) is a linear subspace, f is

Hadamard semidifferentiable at x ∈ A, and the function v 7→ dHf(x; v) :
T ♭
x(A) → Y is linear, in which case it will be denoted Df(x).

In finite dimensions Definition 3 applies to sets A, which are not differentiable
manifolds, and to non-differentiable functions, as this is seen from the next
example.

2The natural tangent cone, associated with a Hadamard semidifferentiable function, defined
on a subset of a topological vector space (see Delfour, 2020b) is the adjacent tangent cone

defined in the book of Aubin and Frankowska (1990, p. 128) in terms of sequences rather
than its equivalent definition (Aubin and Frankowska, 1990, Dfn. 4.1.5, p. 127) in a normed
vector space via the distance function.

3In finite dimension, Hadamard diferentiability is equivalent to Fréchet differentiability,
but in infinite dimensions it is weaker, as recognized by Fréchet (1937).
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Example 1 Consider the boundary ∂S of the unit square S = {(x1, x2) : 0 ≤
xi ≤ 1}. It is not a differentiable manifold at the four corners. At (0, 0) one
cannot find a trajectory h : (−τ, τ) → ∂S through h(0) = (0, 0) such that h′(0)
exists, but you can find semitrajectories h : [0, τ) → ∂S through h(0) = (0, 0)
such that h′(0+) exists. This one-sided derivative h′(0+) defines a semitangent
at h(0) = x. The set of all such semitangents is the non-convex adjacent tangent
cone T ♭

(0,0)(∂S). If the calculation is repeated at a point x, which is not a corner,

the computation will reveal that T ♭
x(∂S) is the linear subspace R.

As an example, the non-differentiable function f(x1, x2) = |x1|+ |x2| on ∂S
is Hadamard semidiferentiable at (0, 0) for directions in the adjacent tangent
cone T ♭

(0,0)(∂S) = {(0, v2) : v2 ≥ 0} ∪ {(v1.0) : v1 ≥ 0} at (0, 0).

Definition 3 also applies to embedded smooth submanifolds, groups and sub-
groups of matrices, and groups of diffeomorphisms and characteristic functions
encountered in shape and topological optimization. It can be seen as a rela-
xation of the Lie derivative (Marsden and Ratiu, 1994, Sec. 4.3, pp. 120–121)
which a priori requires some form of differential manifold structure.

Remark 1 For a Ck, k ≥ 1, submanifold S of Rn of dimension d ≤ n, the
tangent space is usually defined from trajectories h : (−τ, τ) → S through the
point h(0) = x ∈ S such that the derivative h′(0) exists. This derivative (when
it exists) defines a tangent line through h(0) = x. But, in general, this is not
sufficient to characterize the whole tangent space and to show that it is linear.
The information that S is a submanifold of R

n is necessary to conclude that
T ♭
x(S) is a linear subspace of R

n. The issue is the same for a differentiable
manifold, but its definition and the definition of the tangent space are more
complicated.

The Hadamard semidifferentiability enjoys all the nice properties of the clas-
sical finite dimensional differential calculus, including the chain rule.

Theorem 2 Let X and Y be topological vector spaces and A, ∅ 6= A ⊂ X.

(i) If f : A → Y is Hadamard semidifferentiable at x ∈ A in the direc-
tion v ∈ T ♭

A(x), then for all admissible semitrajectory h in A, such that
h′(0+) = v, f◦h is an admissible trajectory in f(A) such that (f◦h)′(0+) =
dHf(x; v) ∈ T ♭

f(A)(f(x)). The mapping

v 7→ dHf(x; v) : T ♭
A(x) → T ♭

f(A)(f(x)) ⊂ Y (2)

is sequentially continuous for the induced topologies.
(ii) If f1 : A → Y and f2 : A → Y are Hadamard semidifferentiable at x ∈ A

in the direction v ∈ T ♭
A(x), then for all α and β in R,

dH(αf1 + βf2)(x; v) = αdHf1(x; v) + (1− α) dHf2(x; v), (3)
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and αf1 + βf2 is Hadamard semidifferentiable at x in the direction v.

(iii) (Chain rule) Let X, Y , Z be topological vector spaces, A ⊂ X, g : A → Y ,
and f : g(A) → Z be functions such that g is Hadamard semidifferentiable
at x in the direction v ∈ T ♭

A(x) and f is Hadamard semidifferentiable at
g(x) in g(A) in the direction dHg(x; v). Then, dHg(x; v) ∈ T ♭

g(A)(x), f ◦ g
is Hadamard semidifferentiable at x in the direction v ∈ T ♭

A(x), and

dH(f ◦ g)(x; v) = dHf(g(x); dHg(x; v)). (4)

The next question is to address the continuity of a Hadamard semidifferentiable
function.

Theorem 3 Let X and Y be topological vector spaces, A a non-empty subset of
X, and f : A → Y a function. Assume that f is Hadamard semidifferentiable
at x ∈ A.

(i) If there exists a bounded4 neighborhood U(0) ∈ R in X, then f is sequen-
tially continuous5 at x in A for the induced topology on A.

(ii) If X is a Fréchet space, then v 7→ dHf(x; v) : T ♭
A(x) → T ♭

f(A)(f(x)) is
positively homogeneous and continuous for the induced topologies. If X
and Y are Fréchet spaces, then f is continuous at x.

2.2. Some comments and perspectives

2.2.1. Numerical global optimization

In the context of semidifferentials and tangent cones, numerical methods have
to be adapted, but we are not starting from scratch. Working with a cone means
that some directions will be “taboo” as in global optimization (see, for instance,
Ji and Klinowski, 2006). Descent methods for Lipschitz continuous functions,
which are only Hadamard semidifferentiable at the minimum, work well, since
they are differentiable almost everywhere and the probability that the computer

4Recall that in a topological vector space there is a fundamental system R of neighborhoods
of the origin, for which (i) every V in R is absorbing and balanced, and (ii) for every V ∈
R, there exists U ∈ R such that U + U ⊂ V . In this paper, we always assume that the
neighborhoods are elements of R. A set A is bounded if, for all V (0) ∈ R, there exists α > 0
such that A ⊂ λV (0) for all λ ≥ α (Horváth, 1966, Dfn. 1, p. 108).

5Note the following natural equivalence for the semicontinuity in terms of semitrajectories.
Let X and Y be topological spaces and A a subset of X. A function f : A → Y is sequentially
continuous at a ∈ A if and only if for all semitrajectories h : [0, τ) → A

lim
tց0

h(t) = a ⇒ lim
tց0

f(h(t)) = f(a), (5)

where A is endowed with the topology induced by X.
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hits a point of non-differentiability is very very low (see, for instance, Delfour
and Huot-Chantal, 2019, and Huot-Chantal, 2018, “On the figure of columns of
Lagrange”).

2.2.2. Automatic differentiation

By its very definition, the Hadamard semidifferentiabilty is closely related to
differentiation along trajectories as in automatic differentiation. Quoted from
Lange (2024, p. 58):

Numerical computation of semidifferentials can be accomplished
via automatic differentiation, which implements the rules of the dif-
ferential calculus, including the chain rule, at specific points in pa-
rameter space (see Baydin et al., 2018, and Neidinger, 2010). Au-
tomatic differentiation is computationally fast and relieves humans
of the tedium of manual differentiation. It is hardly surprising that
the machine learning community has embraced automatic differen-
tiation.

The forward version of automatic differentiation is better adapted
to semidifferentials than the backward version. The backward ver-
sion is geared toward the computation of gradients, but these no
longer exist once linearity is abandoned. Computation of forward
directional derivatives is straightforward because it dispenses with
gradients. Modern computer languages such as Julia simplify the
coding of forward mode automatic semidifferentiation.

2.2.3. Stochastic gradient methods and deep learning

Some authors have introduced generalized derivatives to provide nonsmooth
approaches with a flexible calculus in the context of stochastic gradient methods
and deep learning. For instance, Bolte and Pauwels (2021) introduced gene-
ralized derivatives called conservative fields, for which they develop a calculus
and provide representation formulas. Functions having a conservative field are
called path differentiable: convex, concave, Clarke regular and any semialgebraic
Lipschitz continuous functions are path differentiable. But such functions are
all Hadamard semidifferentiable and the chain rule of Theorem 2 is built in the
Definition 3 of a Hadamard semidifferential.

3. Square matrices and their groups and subgroups

This section considers linear mappings from R
n to R

n as a preliminary to non-
linear mappings F : Rn → R

n, which belong to some topological vector space
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Θ, such as the spaces of m-times differentiable mappings with compact sup-
port Cm

c (Rn,Rn), m-times continuously differentiable mappings Cm(Rn,Rn),
0 ≤ m ≤ ∞, (m, ℓ)-times Hölderian mappings Cm,ℓ(Rn,Rn), m ≥ 0, 0 ≤ ℓ ≤ 1
(see Delfour and Zolésio, 2011, Chpt. 3).

3.1. The n × n matrices and their determinant

The vector space of n×n matrices with the matrix addition and multiplication
by a scalar is denoted L(Rn,Rn). Endowed with the Frobenius inner product
and Frobenius norm

∀A,B ∈ L(Rn,Rn), A··B def
=

n∑

i=1

n∑

j=1

aij bij , ‖A‖2 =
√
A··A, (6)

tt is a Hilbert space identified with the n2-dimensional Euclidean space R
n2

.

The matrix multiplication is a well-defined operation in that space. It cor-
responds to the composition (A ◦B)(x) = A(B(x)) of the linear mappings from
R

n into R
n, generated by n× n matrices. It contains the identity matrix In as

the neutral element.

All convergences in the construction of the adjacent tangent cone take place
in L(Rn,Rn) and not in some metric topology that can be defined on a group
or subgroup of matrices to make it complete.

3.1.1. Determinant and matrix of cofactors

Let A be an n×n matrix whose entries are denoted {ai,j}. In the sequel it will
be useful to write the matrix A in terms of its column vectors aj , (aj)i = ai,j ,
1 ≤ j ≤ n: A = [a1, . . . , an]. Recall the definition of the n × n cofactor matrix
CofA

(CofA)ij = (−1)i+j detAi,j , , 1 ≤ i ≤ n, 1 ≤ j ≤ n, (7)

where Ai,j is the matrix obtained by removing its ith line and its jth column:

Ai,j
def
=













a1,1 . . . a1,j−1 a1,j+1 . . . a1,n
...

. . .
...

...
. . .

...
ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n

ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n

...
. . .

...
...

. . .
...

an,1 . . . an,j−1 an,j+1 . . . an,n













.
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With the above notation

detA
def
=

n∑

i=1

(aj)i (CofA)ij =

n∑

i=1

ai,j(CofA)ij = A··CofA = CofA··A (8)

by using the Frobenius scalar product. Finally, the trace of A is defined as

tr(A)
def
=

n∑

i=1

ai,i = A·· In. (9)

With this notation

detA = tr(A⊤ CofA). (10)

3.1.2. The differential of the determinant and of its absolute value

As the determinant det(A) is a polynomial function of the entries, it is (Hada-
mard) differentiable, that is, dH det(A;B) exists for any n × n matrix B and
the function B 7→ dH det(A;B) : L(Rn,Rn) → R is linear. As a result, it is
sufficient to find its semidifferential at A in the direction B

∀B ∈ L(Rn,Rn), d det(A;B)
def
= lim

tց0

det(A+ tB)− detA

t
. (11)

Theorem 4 (Delfour, 2020a, Example 3.10, Chap. 3, p. 108–109)

(i) The function A 7→ detA : L(Rn,Rn) → R is (Hadamard) differentiable
and

∀B ∈ L(Rn,Rn), dH det(A;B) = (CofA)··B = tr((CofA)⊤B). (12)

(ii) The function A 7→ | detA| : L(Rn,Rn) → R is Hadamard semidifferen-
tiable at A and, for all B ∈ L(Rn,Rn),

dH | det |(A;B) =







det(A)

| det(A)| (CofA)··B, if det(A) 6= 0,

|(CofA)··B|, if det(A) = 0.

(13)

Remark 2 In the change of variable formula x 7→ Ax for an integral over R
n,

it is not det(A) but | det(A)| that appears in the formula.

Remark 3 If the matrix A is invertible, then

A−1 = (detA)−1(CofA)⊤

dH det(A;B) = det(A) [A−1]⊤··B = det(A) In··A−1B = det(A) tr(A−1B).
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Therefore, if A is invertible, the absolute value of the determinant at A is
Hadamard differentiable.

The proof of Theorem 4 requires the following useful lemma.

Lemma 1 Given the matrices A = {aij} and B = {bij} in L(Rn,Rn) and the
column vectors aj, (aj)i = aij, and bj, (bj)i = bij, 1 ≤ j ≤ n,

detB − detA =
n∑

j=1

det[a1, . . . , aj−1, bj − aj , bj+1, . . . , bn]. (14)

Proof of Lemma 1 The proof rests on the fact that the function

aj 7→ det[a1, . . . aj−1, aj , aj+1, . . . , an]

is linear. The formula is true for n = 2:

detB − detA = det[b1, b2]− det[a1, a2]

= det[b1 − a1, b2] + det[a1, b2]− det[a1, a2]

= det[b1 − a1, b2] + det[a1, b2 − a2].

Assume that it is true for n− 1 and compute the difference

detB − detA

=

n∑

i=1

(−1)n+ibin det[b1, . . . , bn−1]− (−1)n+iain det[a1, . . . , an−1]

=

n∑

i=1

(−1)n+i[bin − ain] det[a1, . . . , an−1]

+

n∑

i=1

(−1)n+ibin[det[b1, . . . , bn−1]− det[a1, . . . , an−1]
︸ ︷︷ ︸

=
∑n−1

j=1
det[a1,...,aj−1,bj−aj ,bj+1,...,bn−1]

]

since the property is valid for n− 1. Now, rearranging the two pieces

detB − detA

= det[b1, . . . , bn−1, bn − an]

+

n−1∑

j=1

n∑

i=1

(−1)n+ibin det[a1, . . . , aj−1, bj − aj , bj+1, . . . , bn−1]

= det[b1, . . . , bn−1, bn − an] +

n−1∑

j=1

det[a1, . . . , aj−1, bj − aj , bj+1, . . . , bn]

=
n∑

j=1

det[a1, . . . , aj−1, bj − aj , bj+1, . . . , bn].
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Proof of Theorem 4 (i) Since the function A 7→ det(A) is polynomial, it is
(Hadamard) differentiable and it is sufficient to find the one-sided directional
derivative d det(A;B) at A in the direction B in (11). From Lemma 1

det(A+ tB)− detA =

n∑

j=1

det[a1, . . . , aj−1, t bj , (a+ tb)j+1, . . . , (a+ tb)n].

Upon dividing by t > 0 and letting t → 0

det(A+ tB)−detA

t

=
1

t

n∑

j=1

n∑

i=1

(−1)i+j t bij det[a1, . . . , aj−1, (a+ tb)j+1, . . . , (a+ tb)n]

=

n∑

j=1

n∑

i=1

bij (−1)i+j det[a1, . . . , aj−1, (a+ tb)j+1, . . . , (a+ tb)n]

→
n∑

j=1

n∑

i=1

bij (−1)i+j det[a1, . . . , aj−1, aj+1, . . . , an] as t ց 0

and we obtain the formula

d det(A;B) =

n∑

j=1

n∑

i=1

bij (CofA)ij = B··CofA = tr((CofA)⊤B).

(ii) By using the chain rule for the composition, we get

dH | det |(A;B) =







det(A)

| det(A)| CofA··B, if det(A) 6= 0,

|CofA··B|, if det(A) = 0.

3.2. The General Linear Group GL(n) and the matrix groups

Definition 4 The General Linear Group

GL(n)
def
= {X ∈ L(Rn,Rn) : X is invertible} (15)

is the set of all n× n invertible matrices in L(Rn,Rn).

By Theorem 4, for the determinant at X ∈ L(Rn,Rn)

∀Y ∈ L(Rn,Rn), dH det(X;Y ) = (CofX)··Y = tr((CofX)⊤Y )

and for the determinant at X ∈ GL(n) in the direction Y ∈ L(Rn,Rn)

dH det(X;Y ) = det(X) [X−1]⊤··Y = det(X) tr(X−1Y ).
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Theorem 5 (i) GL(n) is an open subset of L(Rn,Rn) in the Frobenius ma-
trix norm, the mapping X 7→ X−1 : GL(n) → GL(n) is continuous, and
GL(n) is a group under matrix multiplication.

(ii) For all F ∈ GL(n),

T ♭
F (GL(n)) = L(Rn,Rn) ⇒ T ♭

In(GL(n)) = L(Rn,Rn). (16)

Proof (i) From Rudin (1976, Thm. 9.8(b), Chpt. 9, p. 209).

(ii) Since GL(n) is an open subset of L(Rn,Rn), T ♭
F (GL(n)) = L(Rn,Rn)

for all F ∈ GL(n). In particular, T ♭
In
(GL(n)) = L(Rn,Rn) = T ♭

In
(GL(n)).

Definition 5 A Matrix Group G is an (algebraically) closed subgroup of GL(n),
that is, for all F1, F2 ∈ G, F1F2 ∈ G, In ∈ G and for each F ∈ G, F−1 ∈ G.

By definition, GL(n) is a matrix group, but GL(n) is not topologically closed
in L(Rn,Rn).

Theorem 6 Let G be a matrix group.

(i) T ♭
In
(G) is a closed linear subspace of L(Rn,Rn) and

∀X ∈ G,
T ♭
X(G) = XT ♭

In(G) = T ♭
In(G)X

XT ♭
In(G)X−1 = T ♭

In(G).
(17)

(ii) The Lie bracket

(A,B) 7→ [A,B] : T ♭
In(G)× T ♭

In(G) → T ♭
In(G)

is well-defined and continuous.
(iii) For each X ∈ GL(n), the mappings

Y 7→ Y X−1 : T ♭
X(G) → T ♭

In(G) and Y 7→ X−1Y : T ♭
X(G) → T ♭

In(G) (18)

are bijective and bi-continuous.

Corollary 1 As a closed subgroup of itself, the conclusions of the theorem
are true for GL(n), where, for all X ∈ GL(n), T ♭

X(GL(n)) = T ♭
In
(GL(n)) =

L(Rn,Rn).

Remark 4 For a matrix group G, T ♭
In
(G) with the Lie bracket operation

(Z1, Z2) 7→ [Z1, Z2];T
♭
In(G)× T ♭

In(G) → T ♭
In(G) (19)

is the Lie algebra g of G and G is a Lie group. So, we have obtained those
properties without a priori introducing the notion of differentiable manifold,
which serves to guarantee that the tangent space is a linear subspace and legit-
imates the use of full (smooth) trajectories or paths over the less demanding
semitrajectories.
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Proof (i) Let Z1, Z2 ∈ T ♭
In
(G) with admissible semitrajectories h1 and h2.

Since G is a closed subgroup of GL(n), the semitrajectory h(t) = h1(t)h2(t),
h(0) = h1(0)h2(0) = In, belongs to G and

h′(0+) = h′
1(0

+)h2(0) + h1(0)h2(0
+) = Z1In + InZ2 = Z1 + Z2 ∈ T ♭

In(G).

For α ≥ 0 and Z ∈ T ♭
In
(G) with admissible semitrajectory h, the semitrajectory

hα(t) = h(αt) belongs to G, and

hα(0) = In and h′
α(0

+) = αh′(0+) = αZ ∈ T ♭
In(G).

Since G is a closed subgroup of GL(n), for any admissible semitrajectory h :
[0, τ [→ G, the semitrajectory t 7→ h−1(t) = h(t)−1 in [0, τ ] belongs to G,

h−1(t) → h−1(0) = I−1
n = In and (h−1)′(0+) = −h′(0+) = −Z ∈ T ♭

In(G).

As a result, for Z1, Z2 ∈ T ♭
In
(G) and a, b ∈ R, aZ1 + bZ2 ∈ T ♭

In
(G). So T ♭

In
(G)

is closed as a linear subspace of the finite dimensional space L(Rn,Rn).

For X ∈ G, Y ∈ T ♭
X(G), let h : [0, τ ] → G be an admissible trajectory such

that h(0) = X and h′(0+) = Y . Since X is invertible and (h(t)−X)/t → Y ,

X−1h(t)− In
t

→ X−1Y ∈ T ♭
In(G) and X−1T ♭

X(G) ⊂ T ♭
In(G)

h(t)X−1 − In
t

→ Y X−1 ∈ T ♭
In(G) and T ♭

X(G)X−1 ⊂ T ♭
In(G).

Conversely, for X ∈ G, Z ∈ T ♭
In
(G), and and all admissible semitrajectories

k; [0, τ ] → G such that k(0) = In and k′(0+) = Z,

k(t)− In
t

→ Z,
Xk(t)−X

t
→ XZ ∈ T ♭

X(G), and XT ♭
In(G) ⊂ T ♭

X(G)

k(t)X −X

t
→ ZX ∈ T ♭

X(G) and T ♭
In(G)X ⊂ T ♭

X(G),

which implies that

XT ♭
In(G) = T ♭

X(G) and T ♭
In(G)X = T ♭

X(G).

Therefore, for all X ∈ G, XT ♭
In
(G)X−1 = T ♭

In
(G) and

∀Z ∈ T ♭
In(G) ⇒ XZX−1 ∈ T ♭

In(G).

(ii) Take A and B in T ♭
In
(G) and an admissible semitrajectory α : [0, τ ] → G

such that α(0) = In and α′(0+) = A. Consider the new admissible semitra-
jectory h(t) = α(t)Bα(t)−1, h(0) = B. From the last identity (17) in part (i),
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h(t) ∈ T ♭
In
(G) and since T ♭

In
(G) is a closed linear subspace

α(t)Bα(t)−1 −B

t
∈ T ♭

In(G) and h′(0+) = lim
tց0

α(t)Bα(t)−1 −B

t
∈ T ♭

In(G)

⇒ h′(0+) = α′(0+)Bα(0)−1 + α(0)B(α−1)′(0+) = AB −BA ∈ T ♭
In(G),

since (α−1)′(0+) = −α′(0+) = −A. Therefore, [A,B] ∈ T ♭
In
(G) and the map-

ping

(A,B) 7→ [A,B] : T ♭
In(G)× T ♭

In(G) → T ♭
In(G)

is well-defined and continuous.

(iii) Direct consequence from (17) in part (i).

3.3. Examples of matrix groups

We consider three classical examples.

3.3.1. The Special Linear Group SL(n)

The special linear group

SL(n)
def
= {X ∈ GL(n) : detX = 1} (20)

is a closed subset of L(Rn,Rn), which is not bounded for n > 1.6

Theorem 7 (i) SL(n) is a closed subgroup of GL(n).
(ii) The adjacent tangent cone to SL(n) at X ∈ SL(n) is the closed linear

subspace

T ♭
X(SL(n)) = {Y ∈ L(Rn,Rn) : tr (X−1Y ) = 0} (21)

of L(Rn,Rn) and

T ♭
In(SL(n)) = {Y ∈ L(Rn,Rn) : trY = 0}. (22)

6Given a Cauchy sequence {Xm} in SL(n) converging to X in L(Rn,Rn), 1 = det(Xm) →
det(X) by continuity of A 7→ det(A). So, SL(n) is closed. It is bounded in the Frobenius
norm for n = 1, but not for n ≥ 2. For instance, for n = 2

∀k ∈ R, Xk

def
=

[

1 0
k 1

]

∈ SL(2), Xk··Xk = 1 + k2 → ∞ as k → ∞

and SL(n) is not bounded and not compact for n ≥ 2.
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(iii) For each X ∈ SL(n),

T ♭
X(SL(n)) = XT ♭

In(SL(n)) = T ♭
In(SL(n))X (23)

and XT ♭
In(SL(n))X

−1 = T ♭
In(SL(n)). (24)

(iv) The Lie bracket mapping

(A,B) 7→ [A,B] : T ♭
In(SL(n))× T ♭

In(SL(n)) → T ♭
In(SL(n))

is well-defined and continuous.
(v) For each X ∈ SL(n), the mappings

Y 7→ Y X−1 : T ♭
SL(n)(X) → T ♭

In(SL(n))

and Y 7→ X−1Y : T ♭
X(SL(n)) → T ♭

In(SL(n))

are bijective and bi-continuous.

Proof (i) SL(n) is a closed subgroup: det In = 1; for each X ∈ SL(n) detX = 1
implies detX−1 = 1; for X1, X2 ∈ SL(n), det(X1X2) = detX1 detX2 = 1.

(ii) If Y ∈ T ♭
X(SL(n)), then there exists an admissible semitrajectory X(t) ∈

SL(n) such that

X(t)−X

t
→ Y, where det(X(t) = detX = 1.

For the column vectors of Xj(t), [Xj(t)]i = X(t)ij , and of X, Xj , [Xj ]i = Xij ,

detX(t) = det[X(t)1, . . . X(t)j−1, X(t)j , X(t)j+1, . . . , X(t)n]

detX = det[X1, . . . Xj−1, Xj , Xj+1, . . . , Xn].

From Lemma 1 we have the formula

detX(t)− detX =

n∑

j=1

[det[X1, . . . Xj−i;X(t)j −Xj , X(t)j+1, . . . , X(t)n].

In particular

detX(t)− detX

=
n∑

j=1

n∑

i=1

(−1)i+j(X(t)ij −Xij) det[X1, . . . Xj−1, X(t)j+1, . . . , X(t)n]

=

n∑

j=1

n∑

i=1

(X(t)ij −Xij) (−1)i+j det[X1, . . . Xj−1, X(t)j+1, . . . , X(t)n].
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Dividing by t > 0 and letting n go to infinity

detX(t)− detX

t

=
n∑

j=1

n∑

i=1

X(t)ij −Xij

t
(−1)i+j det[X1, . . . Xj−1, X(t)j+1, . . . , X(t)n]

→
n∑

j=1

n∑

i=1

Yij (−1)i+j det[X1, . . . Xj−1, Xj+1, . . . , Xn] as n → ∞

=

n∑

j=1

n∑

i=1

Yij (CofX)ij = Y ··CofX = tr(Y ⊤CofX)

and we obtain the general formula

lim
n→∞

detX(t)− detX

t
= (CofX)··Y = tr((CofX)⊤Y ).

In our case X and X(t) are invertible, detX(t) = detX = 1, and

X−1 = (CofX)⊤ detX = (CofX)⊤

⇒ 0 = tr(Y ⊤CofX) = tr(Y ⊤X−⊤) = tr(X−1Y )

and for X ∈ SL(n)

T ♭
X(SL(n)) ⊂ {Y ∈ L(Rn,Rn) : tr(X−1Y ) = 0}.

Conversely, take X ∈ SL(n) = {X ∈ GL(n) : detX = 1} and Y ∈ L(Rn,Rn)
such that tr(X−1Y ) = 0. For t ≥ 0, consider the invertible matrix and its
determinant

X(t)
def
= XeX

−1Y t, det(XeX
−1Y t) = det(X) det(eX

−1Y t)

d

dt
XeX

−1Y t = XX−1Y eX
−1Y t → Y as t ց 0

d

dt
det(XeX

−1Y t) = det(X)tr(X−1Y ) det(eX
−1Y t)

= tr(X−1Y ) det(XeX
−1Y t) = 0

⇒ ∀t ≥ 0, det(XeX
−1Y t) = det(X) = 1

and X(t) ∈ SL(n), Therefore, Y ∈ T ♭
X(SL(n)).

(iii), (iv), and (v). From Theorem 6.
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3.3.2. (General) Orthogonal Group O(n)

The (General) Orthogonal Group

O(n)
def
=

{
X ∈ GLn(R) : X

⊤X = XX⊤ = I
}

(25)

is a compact subset of L(Rn,Rn).7

Since 1 = det(XX⊤) = det(X) det(X⊤) = det(X)2, then | det(X)| = 1 and
O(n) has two closed connected components (detX = 1 and detX = −1). The
one that contains the identity matrix In is a normal subgroup called the Special
Orthogonal Group:

SO(n)
def
= {X ∈ O(n) : detX = 1}. (26)

Theorem 8 (i) O(n) is a closed subgroup of GL(n).
(ii) The adjacent tangent cone to O(n) at X ∈ O(n) is the closed linear sub-

space

T ♭
X(O(n))) =

{
Y ∈ L(Rn,Rn) : Y ⊤X +X⊤Y = 0

}
(27)

of L(Rn,Rn) and

T ♭
In(O(n))) =

{
Y ∈ L(Rn,Rn) : Y ⊤ + Y = 0

}
. (28)

(iii) For each X ∈ O(n),

T ♭
X(O(n))=XT ♭

In(O(n))=T ♭
In(O(n))X

and XT ♭
In(O(n))X−1=T ♭

In(O(n)).
(29)

(iv) The Lie bracket mapping

(A,B) 7→ [A,B] : T ♭
In(O(n))× T ♭

In(O(n)) → T ♭
In(O(n))

is well-defined and continuous.

(v) For each X ∈ O(n), the mappings

Y 7→ Y X−1 : T ♭
X(O(n)) → T ♭

In(O(n)) (30)

and Y 7→ X−1Y : T ♭
X(O(n)) → T ♭

In(O(n)) (31)

are bijective and bi-continuous.

7Given a Cauchy sequence {Xm} converging to X in O(n), X⊤
m → X⊤ and,

In = XmX⊤
m = (Xm −X)X⊤

m +XX⊤
m → XX⊤

In = X⊤
mXm = (Xm −X)⊤Xm +X⊤Xm → X⊤X,

and O(n) is closed. It is bounded in the Frobenius norm, since ‖X‖2 = X··X = In··X⊤X =
In·· In = n, and hence O(n) is compact.
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Proof (i) Clearly, In ∈ O(n). For X1, X2 ∈ O(n)

(X1X2)
⊤X1X2 = X⊤

2 X⊤
1 X1X2 = X⊤

2 X2 = 1

X1X2(X1X2)
⊤ = X1X2X

⊤
2 X⊤

1 = X⊤
1 X1 = 1

and X1X2 ∈ O(n)(In). For X ∈ O(n), X−1 = X⊤ and X⊤ ∈ O(n).

(ii) By definition, for Y ∈ T ♭
X(O(n))), there exists an admissible semitrajec-

tory X(t) ∈ O(n) such that

X(t)−X

t
→ Y, where X(t)X(t)⊤ = X(t)⊤X(t) = In = XX⊤ = X⊤X

⇒ X(t)⊤X(t))−X⊤X = 0

⇒ 0 = [X(t)−X]⊤X +X(t)⊤[X(t)−X] ⇒ Y ⊤X +X⊤Y = 0.

Conversely, assume X,Y ∈ O(n) such that Y ⊤X +X⊤Y = 0. Then

(X + tY )⊤(X + tY ) = In + t(Y ⊤X +X⊤Y ) + t2Y ⊤Y = In + t2Y ⊤Y.

Since In + t2Y ⊤Y is symmetric and positive definite for t ≥ 0 small, its square
root [In + t2Y ⊤Y ]1/2 has the same property. Choose the semi-trajectory

X(t)
def
= (X + tY )[In + t2Y ⊤Y ]−1/2 ∈ L(Rn,Rn)

and show that X(t)⊤X(t) = X(t)X(t)⊤ = In:

X(t)⊤X(t) = [In + t2Y ⊤Y ]−1/2(X + tY )⊤(X + tY )[In + t2Y ⊤Y ]−1/2 = In

X(t)X(t)⊤ = (X + tY )[In + t2Y ⊤Y ]−1/2[In + t2Y ⊤Y ]−1/2(X + tY )⊤

= (X + tY )[In + t2Y ⊤Y ]−1(X + tY )⊤

= (X + tY )
[
(X + tY )⊤(X + tY )

]−1
(X + tY )⊤

= (X + tY )(X + tY )−1(X + tY )−⊤(X + tY )⊤ = In.

Hence, X(t) ∈ O(n). Consider the differential quotient

X(t)−X

t

=
(X + tY )[In + t2Y ⊤Y ]−1/2 −X

t

= Y [In + t2Y ⊤Y ]−1/2 +X
[In + t2Y ⊤Y ]−1/2 − In

t

= Y [In + t2Y ⊤Y ]−1/2 +X[In + t2Y ⊤Y ]−1/2 In − [In + t2Y ⊤Y ]1/2

t
.
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But
(

In − [In + t2Y ⊤Y ]1/2
)(

In + [In − t2Y ⊤Y ]1/2
)

= In − [In − t2Y ⊤Y ] = t2Y ⊤Y

In − [In + t2Y ⊤Y ]1/2 = t2Y ⊤Y
(

In + [In − t2Y ⊤Y ]1/2
)−1

.

Finally, as t ց 0, the differential quotient

X(t)−X

t

= Y[In + t2Y ⊤Y ]−1/2+ tX[In + t2Y ⊤Y ]−1/2Y ⊤Y
(

In+ [In − t2Y ⊤Y ]1/2
)−1

goes to Y and
{
Y ∈ O(n) : X⊤Y + Y ⊤X = 0

}
⊂ T ♭

X(O(n)).

(iii), (iv), and (v). From Theorem 6.

3.3.3. Special Orthogonal Group

The Special Orthogonal Group is the intersection SO(n) = O(n) ∩ SL(n) of the
compact group O(n) and the matrix group SL(n):

SO(n)
def
= {X ∈ O(n) : detX = 1} =

{

X ∈ GL(n) :
XX⊤=X⊤X =In

detX = 1

}

. (32)

It is a compact matrix group. The adjacent tangent cone at X ∈ SO(n) is

T ♭
X(SO(n)) =

{
Y ∈ L(Rn,Rn) : Y ⊤X +X⊤Y = 0 and tr(X⊤Y ) = 0

}

=
{
Y ∈ L(Rn,Rn) : Y ⊤X +X⊤Y = 0

}
= T ♭

X(O(n)),
(33)

since SO(n) is one of the two compact connected components of O(n).

4. Stiefel manifold

For integers 0 < d ≤ n, let L(Rd,Rn) be endowed with the Frobenius inner
product Frobenius and norm

∀A,B ∈ L(Rd,Rn), A··B def
=

d∑

i=1

n∑

j=1

aij bij , ‖A‖2 =
√
A··A, (34)

. The Stiefel Manifold is the subset

Vd(R
n)

def
=

{

L(Rd,Rn) : X⊤X = Id

}

. (35)
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Theorem 9 Let 0 < d ≤ n be integers. Vd(R
n) is compact and the adjacent

tangent cone at X ∈ Vd(R
n),

T ♭
X(Vd(R

n)) =
{
V ∈ Vd(R

n) : X⊤V + V ⊤X = 0
}
, (36)

is a closed linear subspace of L(Rd,Rn) of dimension nd− d(d+ 1)/2.

Proof (i) For a Cauchy sequence {Xn} in T ♭
X(Vd(R

n)), converging to X in

L(Rd,Rn), X⊤
n → X⊤,

Id = X⊤
n Xn = (Xn −X)⊤Xn +X⊤Xn → X⊤X,

and Vd(R
n) is closed. It is bounded in the Frobenius norm, since

‖X‖2 = X··X = Id··X⊤X = Id·· Id = d

and hence Vd(R
n) is compact.

(ii) By definition of an element V of the adjacent tangent cone atX, T ♭
X(Vd(R

n)):
for all tn ց 0, there exists {Xn} in Vd(R

n) such that

lim
n→∞

Xn −X

tn
= V.

Since X⊤
n Xn = Id = X⊤X, 0 = X⊤

n Xn−X⊤X = (Xn−X)⊤Xn−X⊤(X−Xn)
and

0 =
(Xn −X)⊤

tn
Xn −X⊤X −Xn

tn
→ V ⊤X +X⊤V.

So, T ♭
X(Vd(R

n)) ⊂
{
V ∈ Vd(R

n) : X⊤V + V ⊤X = 0
}
.

Conversely, take X,V ∈ Vd(R
n) such that V ⊤X +X⊤V = 0. Then

(X + tV )⊤(X + tV ) = Id + t(V ⊤X +X⊤V ) + t2V ⊤V = Id + t2V ⊤V.

Since Id + t2V ⊤V is symmetric and positive definite for t ≥ 0, its square root
[Id + t2V ⊤V ]1/2 has the same property. Choose the semi-trajectory

[0, τ ] 7→ X(t)
def
= (X + tV )[Id + t2V ⊤V ]−1/2 ∈ L(Rd,Rn)

and show that X(t)⊤X(t) = Id:

X(t)⊤X(t)

= [Id + t2V ⊤V ]−1/2(X + tV )⊤(X + tV )[Id + t2V ⊤V ]−1/2

= [Id + t2V ⊤V ]−1/2
[
X⊤X + t(X⊤V + V ⊤X) + t2V ⊤V

]
[Id + t2V ⊤V ]−1/2

= [Id + t2V ⊤V ]−1/2
[
Id + t2V ⊤V

]
[Id + t2V ⊤V ]−1/2 = Id.
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Hence, X(t) ∈ Vd(R
n). Now, consider the differential quotient

X(t)−X

t

=
(X + tV )[Id + t2V ⊤V ]−1/2 −X

t

= V [Id + t2V ⊤V ]−1/2 +X
[Id + t2V ⊤V ]−1/2 − Id

t

= V [Id + t2V ⊤V ]−1/2 +X[Id + t2V ⊤V ]−1/2 Id − [Id + t2V ⊤V ]1/2

t
.

But
(

Id − [Id + t2V ⊤V ]1/2
)(

Id + [Id − t2V ⊤V ]1/2
)

= Id − [Id − t2V ⊤V ] = t2V ⊤V

Id − [Id + t2V ⊤V ]1/2 = t2V ⊤V
(

Id + [Id − t2V ⊤V ]1/2
)−1

.

Finally, as t ց 0, the differential quotient

X(t)−X

t

=V [Id+ t2V ⊤V ]−1/2 + tX[Id+ t2V ⊤V ]−1/2V ⊤V
(

Id + [Id− t2V ⊤V ]1/2
)−1

goes to V and
{
V ∈ Vd(R

n) : X⊤V + V ⊤X = 0
}
⊂ T ♭

X(Vd(R
n)).

5. Diffeomorphism groups of nonlinear mappings

5.1. The ambient space θ and the group of diffeomorphisms F(θ)

For the matrix groups in the previous section, the common ambient space was
L(Rn, Rn); for nonlinear mappings from Rn to Rn there is a zoo,8 that is, a
broad choice, of ambient spaces, which is application dependent, and for each
choice there are subgroups similar to the subgroups SL(n), O(n), or SO(n) of
L(Rn, Rn).

To construct diffeomorphism groups of nonlinear mappings we start with an
ambient space θ of mappings F : Rn 7→ Rn, which contains the identity ǫ, that
is, for all x ∈ Rn, e(x) = x, closed under addition, scalar multiplication, and
composition, and endowed with a Fréchet space structure (that is, a topological
vector space, which is complete, metrizable, and locally convex). Denote by De

8See, for instance, Michor and Mumford, (2013) and Poinsot (2017).
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the Jacobian matrix, which can be identified with the n × n identity matrix
I ∈ Rn previously denoted In. For instance, consider the following choices of
θ:9

(i) the vector space C0(Rn,Rn) of continuous mappings from R
n to R

n en-
dowed with the family of seminorms indexed by the compact subsets K
of Rn (see Horvath, 1966, pp. 89, 110, 136)

qK(f)
def
= sup

x∈K
|f(x)|; (37)

(ii) the m-times continuously differentiable mappings Cm(Rn,Rn), m ≥ 1,

Cm(Rn,Rn)
def
=

{

f ∈ Cm−1(Rn,Rn) :
∀α, |α| = m

∂αf ∈ C0(Rn,Rn)

}

(38)

with the family of seminorms indexed by the compact subsets K of Rn

and the multi-index α ∈ N
n, |α| ≤ m (see Horvath, 1966, pp. 89, 110,

136)

qK,α(f)
def
= sup

x∈K
|∂αf(x)|; (39)

(iii) the Lipschitzian mappings

C0,1(Rn,Rn)
def
=







f ∈ C0(Rn,Rn) :

∀K compact ∃cK > 0,

sup
x,y∈K
x 6=y

|f(y)− f(x)|
|x− y| ≤ cK







(40)

with the seminorms indexed by the compact subsets K

qK(f)
def
= sup

x∈K
|f(x)|+ sup

y,z∈K
y 6=z

|f(y)− f(z)|
|y − z| ; (41)

(iv) the m-Lipschitzian mappings, m ≥ 1,

Cm,1(Rn,Rn)
def
=

{

f ∈ Cm−1(Rn,Rn) :
∀α, |α| = m

∂αf ∈ C0,1(Rn,Rn)

}

(42)

with the family of seminorms indexed by the compact subsets K of Rn

and the multi-index α ∈ N
n, |α| ≤ m,

qK,α(f)
def
=







sup
x∈K

|∂αf(x)|+ sup
y,z∈K
y 6=z

|∂αf(y)− ∂αf(z)|
|y − z|







. (43)

9See Horvath (1966), Delfour and Zolésio (2011, Chpt. 3), for other examples.
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Note that they all contain the identity mapping e.

Given a Fréchet space Θ of mappings from R
n to R

n that satisfies the pre-
vious hypotheses, we are interested in the group

F(Θ)
def
=

{
F ∈ Θ : F−1 exists and F−1 ∈ Θ

}
. (44)

Theorem 10 Let Θ = Cm(Rn,Rn), m ≥ 1, be the Fréchet space of m-times
continuously differentiable mappings endowed with the Fréchet topology of uni-
form convergence on compact subsets of Rn.

(i) The set
{
F ∈ Θ : F−1 exists

}
is a group and

{
F ∈ Θ : F−1 exists

}
= F(Θ). (45)

(ii) The adjacent tangent cone T ♭
F (F(Θ)) at F ∈ F(Θ) is the linear space Θ.

(iii) For each F ∈ F(Θ)

T ♭
F (F(Θ)) = F ◦ T ♭

e (F(Θ)) = T ♭
e (F(Θ)) ◦ F, (46)

T ♭
e (F(Θ)) = F ◦ T ♭

e (F(Θ)) ◦ F−1. (47)

(iv) T ♭
e (F(Θ)) is the Lie algebra of the group F(Θ), that is,

∀V,W ∈ T ♭
e (F(Θ)), [V,W ]

def
= V ◦W −W ◦ V ∈ T ♭

e (F(Θ)). (48)

Proof (i) To show that
{
F ∈ Θ : F−1 exists

}
⊂ Θ is a group it is sufficient to

show that F−1 ∈ Θ. At each point x, DF (x) is invertible and continuous in a
neighborhood of x. By the inverse function theorem, F is invertible and F−1 is
C1 in a neighborhood of x, and

DF−1 = (DF ◦ F−1)−1 = (DF )−1 ◦ F−1.

Moreover, if F ∈ Cm(Rn,Rn) for m ≥ 1, then F−1 ∈ Cm(Rn,Rn) (cf. Lang,
1969, Chpt. VI, Sec. 1, p. 122). From this local property, F−1 ∈ Θ and
{
F ∈ Θ : F−1 exists

}
= F(Θ).

(ii) For F ∈ F(Θ), G ∈ Θ, and t ≥ 0, F + tG ∈ Θ and

F + tG = [e+ tG ◦ F−1] ◦ F
⇒ detD(F + tG) = det[I + tDG ◦ F−1] detDF−1 → detDF−1 6= 0.

Since detDF−1 6= 0, (F + tG)−1 exists for t > 0 small, F + tG ∈ F(Θ), and

lim
tց0

F + tG − F

t
= lim

tց0
G = G ∈ T ♭

F (F(Θ)) ⇒ Θ ⊂ T ♭
F (F(Θ)),
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and, since F(Θ) ⊂ Θ, T ♭
F (F(Θ)) ⊂ Θ and T ♭

F (F(Θ)) = Θ.

(iii) Given F ∈ F(Θ) and V ∈ T ♭
e (F(Θ)), for all sequences tn ց 0, there

exists {Gn} ⊂ F(Θ) such that

Gn − e

tn
→ V in Θ ⇒







Gn ◦ F − F

tn
→ V ◦ F in Θ

F ◦Gn − F

tn
→ F ◦ V in Θ

and T ♭
e (F(Θ)) ◦ F ⊂ T ♭

F (F(Θ)) and F ◦ T ♭
e (F(Θ)) ⊂ T ♭

F (F(Θ)). Conversely,
given F ∈ F(Θ) and W ∈ T ♭

F (F(Θ)), for all sequences tn ց 0, there exists
{Fn} ⊂ F(Θ) such that

Fn − F

tn
→ W in Θ ⇒







Fn ◦ F−1 − e

tn
→ W ◦ F−1 in Θ

F−1 ◦ Fn − e

tn
→ F−1 ◦W in Θ

and T ♭
F (F(Θ)) ⊂ T ♭

e (F(Θ)) ◦F−1 and F−1 ◦ T ♭
F (F(Θ)) ⊂ T ♭

e (F(Θ)). Combining
the last two relations with the previous ones we get (46).

(iv) Let V,W ∈ Te(F(Θ)). For all sequences tn ց 0, there exists {Gn} ⊂
F(Θ) such that (Gn − e)/tn → W in Θ. Since G−1

n → e in Θ,

Gn ◦G−1
n = e ⇒ G−1

n − e

tn
= −Gn − e

tn
◦G−1

n → −W in Θ.

From (47) in part (iii), the mapping Gn ◦ V ◦ G−1
n ∈ T ♭

e (F(Θ)) = Θ and Gn ◦
V ◦G−1

n → V ∈ Θ since Θ is closed. Similarly, the quotient

Gn ◦ V ◦G−1
n − V

tn

belongs to the closed linear space T ♭
e (F(Θ)) = Θ and the following limit neces-

sarily belongs to Θ

Gn ◦ V ◦G−1
n − V

tn
=

Gn − e

tn
◦ V ◦G−1

n + V ◦ G−1
n − e

tn

=
Gn − e

tn
◦ V ◦G−1

n + V ◦ G−1
n − e

tn
→ W ◦ V − V ◦W ∈ Θ.

We conclude that T ♭
e (F(Θ)) = Θ is the Lie algebra of the Lie group F(Θ).
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The proof and the conclusions of Theorem 10 for Θ = Cm(Rn,Rn), m ≥
1, will be the same for Θ equal to Cm,1(Rn,Rn) (see, for instance, Poinsot,
2017, for Lipschitz groups10 and his references to Assouad, 1983; Gromov, 1991;
Pansu, 1989). Diffeomorphism subgroups analogous to SL(n), O(n), or SO(n)
in L(Rn,Rn) can be introduced:

{
F ∈ Θ : F−1 ∈ Θ and det(DF ) = 1

}
(incompressibility)

{

F ∈ Θ : F−1 ∈ Θ and
DF (DF )⊤ = (DF )⊤DF = I

and det(DF ) = 1

}
(rigid

displacements

and small

deformations)

for Θ equal to Cm(Rn,Rn), m ≥ 0, or Cm,1(Rn,Rn), m ≥ 1. See, for instance,
Michor and Mumford (2018) for a tour in a zoo of diffeomorphism groups on
R

n.

5.2. Formula for the shape derivative of the integral of a function

Let Ω be a bounded open subset of Rn with Lipschitz boundary, f ∈ W 1,1(Rn)
and

J(Ω)
def
=

∫

Ω

f dx. (49)

Let Θ = C1(Rn,Rn) and the family {ΩF = F (Ω) : F ∈ F(Θ)}. Since
C1(Rn,Rn) ⊂ C0,1(Rn,Rn), F is locallly bi-Lipschitzian. A bi-Lipschitzian
bijection transports open Lipschitzian domains onto open Lipschitzian domains
and Sobolev spaces onto Sobolev spaces

H1(F (Ω)) = {f ◦ F : f ∈ H1(Ω)}. (50)

Associate with our family of Lipschitzian open domains the volume integral

J(ΩF )
def
=

∫

ΩF

f dx =

∫

Ω

f ◦ F | detDF | dx, j(F )
def
=

∫

Ω

f ◦ F | detDF | dx. (51)

Recall that for V ∈ T ♭
e (F(Θ)), for all tn ց 0, there exists {Fn} ⊂ F(Θ) such

that (Fn − e)/tn → V . We want to compute for V ∈ T ♭
e (F(Θ))

dj(F ;V )
def
= lim

n→∞

j(Fn)− j(e)

tn
(52)

10See Evans and Gariepy (1992, Crl. 1 (ii), p. 84). Let f, g : Rn → R
n be locally Lipschitz

and Y = {x ∈ R
n : g(f(x)) = x}. Then Dg(f(x))Df(x) = I for mn a.e. x ∈ Y .
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and show that the limit is independent of the choice of {Fn}. Since det I = 1,
we can drop the absolute value of detDFn as n goes to infinity.

The functions involved are Hadamard differentiable

F 7→ g(F )
def
= f ◦G : Θ → L1(Rn), dHg(e;V ) = ∇f · V

F 7→ DF : Θ → C0(Rn;Rn), dHD(e;V ) = DV

A 7→ detA : C0(Rn;Rn) → C0(Rn;Rn), dH det(A;B) = (CofA)··B
F 7→ h(F ) = det(DF ), dHh(e;V ) = div (dHD(e;V )) = div V.

Then, using the chain rule for V ∈ T ♭
e (F(Θ)) = C1(Rn,Rn)

j(F ) =

∫

Ω

g(F )h(F ) dx ⇒ dj(e;V ) =

∫

Ω

∇f · V + f div V dx. (53)

So, for all V ∈ T ♭
e (F(Θ)) the domain integral is Hadamard differentiable

dJ(Ω, V )
def
= dj(e;V ) =

∫

Ω

∇f · V + f div V dx (54)

and

V 7→ dJ(Ω, V ) : C1(Rn,Rn) → R (55)

is linear and continuous.

If instead of perturbing Ω with V ∈ T ♭
e (F(Θ)), we perturb ΩF by some

W ∈ T ♭
F (F(Θ)): for all tn ց 0, there exists {Fn} ⊂ F(Θ) such that

Fn − F

tn
→ W in Θ ⇒ Fn ◦ F−1 − e

tn
→ W ◦ F−1 in Θ.

Using the change of variable Fn ◦ F−1, for which detD(Fn ◦ F−1) goes to +1
as n goes to infinity, we can drop the absolute value of the determinant and

∫

ΩFn

f dx−
∫

ΩF

f dx =

∫

ΩF

f ◦ (Fn ◦ F−1) detD(Fn ◦ F−1) dx−
∫

ΩF

f dx

∫

ΩFn

f dx−
∫

ΩF
f dx

tn
→

∫

ΩF

∇f · (W ◦ F−1) + f div (W ◦ F−1) dx.

For all F ∈ F(Θ)) and W ∈ T ♭
F (F(Θ))

dJ(ΩF ;W )
def
=

∫

ΩF

∇f · (W ◦ F−1) + f div (W ◦ F−1) dx. (56)
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6. Group of characteristic functions

6.1. From shape to topological changes

Since diffeomorphism groups used to define the shape derivative cannot induce
topological changes, we have to enlarge the group of subsets of R

n and the
ambient space, where the adjacent tangent cone is defined. There are many
avenues to explore, but the group of characteristic functions

X(Rn)
def
=

{
χ ∈ L1(Rn) : χ(1− χ) = 0 mn a.e.

}
(57)

with respect to the n-dimensional Lebesgue measure mn has been successful for
the topological derivative (Delfour, 2016, 2018a, 2023a). It is one of several
spaces of set-parametrized functions that can be endowed with a metric space
structure.

For X(Rn) the group operation

χA △ χB
def
= |χA − χB | (58)

corresponds to the symmetric difference of two sets

A △ B
def
= (A\B) ∪ (B\A) ⇒ χA△B = χA △ χB = |χA − χB |. (59)

This operation induces an Abelian group structure on X(Rn):

A △ B = B △ A, (A △ B) △ C = A △ (B △ C)

⇒ χA △ χB = χB △ χA and (χA △ χB) △ χC = χA △ (χB △ χC),

∅ is the neutral element, A △ ∅ = A and χA △ χ∅ = χA, and every element
χA is its own inverse, A △ A = ∅ and χA △ χA = χA△A = χ∅. Given the
n-dimensional Lebesgue measure mn, the metric

ρ(χA, χB)
def
=

∫

Rn

|χA(x)− χB(x)| dmn

makes the Abelian group X(Rn) a complete metric space. As in the case of
images of a fixed set for the shape derivative, we have a group X(Rn) in the
space L1(Rn).

But L1(Rn) is too small to accomodate semitangents to X(Rn) at a char-
acteristic function χΩ of a bounded open subset of Rn, since, in general, the
quotient (χΩn

− χΩ)/tn does not converge in L1(Rn). But it can converge in
the larger space of distributions D(Rn)′: there exists T ∈ D(Rn)′ such that for
all ϕ ∈ D(Rn)

∫

Rn

χΩn
− χΩ

tn
ϕdmn=

∫

Ωn
ϕdmn −

∫

Ω
ϕdmn

tn
=

∫

Ωn\Ω
ϕdmn

tn
→< T,ϕ > .
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In general, the convergence occurs in one of the smaller intermediate spaces
Dm(Rn)′, m ≥ 1, down to the space of bounded measures

M(Rn) = D
0(Rn)′, (60)

where D0(Rn), also denoted Cc(R
n), is the space of continuous functions on R

n

with compact support in R
n. Note that we also have

M(Rn)
def
= C0(R

n)′, (61)

where C0(R
n) is the space of continuous functions on R

n, which vanish at in-
finity.

In order to use Dm(Rn)′, 0 ≤ m ≤ ∞, introduce the continuous injection

f 7→ i(f) : L1(Rn) → D
m(Rn)′, i(f)(ϕ)

def
=

∫

Rn

f ϕ dmn, (62)

and consider the group X(Rn) as a subset of the ambient space Dm(Rn)′. Now,
for a bounded open subset of Rn and by the definition of a semitangent ν ∈
T ♭
χΩ

(X(Rn)): for each tn ց 0, there exists a sequence {χn} ⊂ X(Rn) such that

∀ϕ ∈ D
m(Rn),

∫

Rn

χn − χΩ

tn
ϕdmn →< ν, ϕ > . (63)

We know how to construct a sequence of measurable subsets Ωn = {x ∈ R
n :

χn(x) = 1} for several examples including the d-dimensional topological deriva-
tive.

6.2. Formula for the topological derivative of the integral of a func-
tion

For the topological derivative a bounded open subset Ω of Rn is perturbed by
removing an r-dilation of a d-dimensional closed subset E of Ω

E ⊂ Ω, Ωr = Ω\Er, Er
def
= {x ∈ R

n : dE(x) ≤ r}. (64)

Given a continuous function f : Rn → R, 0 ≤ d < n, and 0 ≤ r < R such that
ER ⊂ Ω, the d-dimensional topological derivative of the volume integral of a
function f is defined (Delfour, 2016, 2018a, 2023a) as the limit as r ց 0 of the
differential quotient

∫

Rn (χΩr
− χΩ) f dmn

α(n− d)rn−d
= − 1

α(n− d)rn−d

∫

Er

f dmn, (65)

where α(m) is the volume of the unit ball in dimension m, 0 ≤ m ≤ n (α(0) = 1
in dimension m = 0).
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For 0 ≤ d < n and a d-rectifiable set E with positive reach and finite d-
dimensional Hausdorff measure Hd, Hd(E) < ∞, the restriction Hd

xE of Hd

to E is a Radon measure and the limit exists and it is equal to

lim
rց0

− 1

α(n− d)rn−d

∫

Er

f dx = −
∫

E

f dHd = −
∫

Rn

f d(Hd
xE), (66)

where the convergence takes place in the ambient space of bounded measures

M(Rn) = D
0(Rn)′ = Cc(R

n)′. (67)

Remark 5 For d = n and E being a compact subset of R
n, the differential

quotient in formula (65) reduces to a difference and

∀f ∈ D
0(Rn),

∫

Ωr

f dmn −
∫

Ω

f dmn = −
∫

Er

f dmn → −
∫

E

f dmn,

which is consistent with the case of 0 ≤ d < n, since Hn = mn in R
n.

IfM(Rn) is chosen as the ambient space, then, by definition of ν ∈ T ♭
χ(X(Rn)):

for each tn ց 0, there exists a sequence {χn} ⊂ X(Rn) such that

∀ϕ ∈ D
0(Rn),

∫

Rn

χn − χ

tn
ϕdmn →

∫

Rn

ϕdν. (68)

In this case, we know the form of the limit by Riesz Representation Theorem.

Theorem 11 (Evans and Gariepy, 1992, Thm. 1, sec. 1.8, p. 49) Let L :
Cc(R

n,Rm) → R be a linear functional, satisfying

sup{L(f) : f ∈ Cc(R
n,Rm), ‖f‖C0 ≤ 1, supp (f) ⊂ K} < ∞ (69)

for each compact set K ⊂ R
n. Then, there exist a Radon measure µ on R

n and
a µ-measurable function σ : Rn → R

m such that

(i) |σ(x)| = 1 for µ a.e. x, and
(ii) L(f) =

∫

Rn f · σ dµ for all f ∈ Cc(R
n,Rm).

Therefore, for all ϕ ∈ Cc(R
n)

∫

Rn

χn − χ

tn
ϕdmn →

∫

Rn

ϕdν =

∫

Rn

ϕσ dµ

⇒
∫

Rn

|χn − χ|
tn

dmn =
mn(An △ A)

tn
→

∫

Rn

d|ν| =
∫

Rn

|σ| dµ =

∫

Rn

dµ,

where An = {x ∈ R
n : χn(x) = 1} and A = {x ∈ R

n : χ(x) = 1}.



72 M. C. Delfour

Going back to the topological derivative introduced in (66)

lim
rց0

∫

Ωr
f dx−

∫

Ω
f dx

α(n− d)rn−d
= −

∫

E

f dHd = −
∫

Rn

f d(Hd
xE),

µ = Hd
xE) and σ = −1, by constructing the r-dilatations Er of E.

Can other constructions of the sequence of sets Ωn be envisioned? Since µ =
Hd

xE) only generates a half tangent, the adjacent tangent cone T ♭
χΩ

(X(Rn)) is
possibly convex, but definitely not equal to the whole space M(Rn) or a linear
subspace.

6.3. Velocity method

Another point raised in Delfour (2016, sec 3.1. pp. 234–235), Delfour (2018a,
sec. 4.1, pp. 967–968) is that there are semitangents in the larger space
(D1(Rn))′11, which correspond to shape derivatives via the Velocity Method.

For the Velocity Method, consider the following continuous trajectory in
X(Rn)

t 7→ χTt(V )(Ω) : [0, 1] → X(Rn),
dTt(V )

dt
= V (t) ◦ Tt(V ), T0(V ) = I.

The semitangent at χΩ is obtained by considering the limit of the differential
quotient

(
χTt(V )(Ω) − χΩ

)
/t ∈ L1(Rn), which does not exist in L1(Rn). Asso-

ciate with χTt(V )(Ω) the distribution

φ 7→
∫

Rn

χTt(V )(Ω) φ dx =

∫

Tt(V )(Ω)

φ dx =

∫

Ω

φ ◦ Tt detDTt dx : D(Rn) → R .

If V ∈ C0,1(Rn,Rn), then

d

dt

∣
∣
∣
∣
t=0+

∫

Ω

φ ◦ Tt detDTt dx =

∫

Ω

[div V (0)φ+ V (0) · ∇φ] dx

=

∫

Rn

χΩ [div V (0)φ+ V (0) · ∇φ] dx

=

∫

Rn

χΩ div (V (0)φ) dx

= − < ∇χΩ, V (0)φ >,

11Dm(Rn) is the space of m times continuously differentiable functions with compact sup-
port.
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where ∇χΩ is the distributional gradient of χΩ (see, for instance, Delfour and
Zolésio, 2011, Thm. 4.1, Chapter 9, p. 483). The bilinear function

(φ, V ) 7→
∫

Rn

χΩ div (V (0)φ) dx : H1
0 (R

n)× C0,1(Rn,Rn) → R

is continuous. This generates the continuous linear mapping V 7→ ∇χΩ · V :
C0,1(Rn,Rn) → H−1(Rn)

∀φ ∈ H1
0 (R

n), < (∇χΩ · V ), φ >
def
=

∫

Rn

χΩ div (V (0)φ) dx.

The support of ∇χΩ · V is in Γ, the boundary of Ω.

So, the adjacent tangent cone T ♭
χΩ

(X(Rn)) to X(Rn) at χΩ (considered as
a subset of the space of distributions D(Rn)′) contains the linear subspace of
functions in H−1(Rn) of the form

{

∇χΩ · V : V ∈ C0,1(Rn,Rn)
}

⊂ H−1(Rn) ⊂ D(Rn)′.

Therefore, T ♭
χΩ

(X(Rn)) is not completely contained in the space of bounded

measures M(Rn). The full characterization of all the elements of T ♭
χΩ

(X(Rn))
remains an open problem which might require new ways to perturb of a domain
Ω.
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