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Abstract: The paper presents selected research results concern-
ing the identification and simulation of the TGE S.A. Day-Ahead
Market (DAM) system of the day for electricity delivered and sold,
listed for the following hours: 5:01-6:00, 11:01-12:00, 17:01-18:00
and 23:01-24:00 in 2019, which were obtained in the MATLAB and
Simulink environment using the System Identification Toolbox. As a
result of identification, four respective discrete parametric arx mod-
els were obtained, which were then subject to quality assessment.
Then, a simulation model was built in the Simulink environment,
which was used for simulation tests and for assessing the sensitivity
of the model created using the data from 2019 as the basis and the
data from 2020 for verification. The obtained results confirm the
correctness of both the performed discrete parametric identification
and the possibility of testing the quality of the model and its sensi-
tivity with the use of the DAM system model in the MATLAB and
Simulink environment.
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1. Introduction

At the beginning of the 21st century, the interest in modeling of the Electricity
Market System (EMS) increased significantly (see, in particular, Chodakowska

1Submitted: October 2022; Accepted: December 2022. The paper is an extended version
of the lecture, presented at the conference BOS/SOR2022 in October 2022.
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et al., 2005; Wnukowska, 2005), including the Polish Electricity Exchange Sys-
tem (PEE) as a subsystem operating on TGE S.A.1 (see Tchórzewski and
Marlȩga, 2019a, 2021; Ruciński, 2022), due to the very dynamically changing
international conditions, including structural changes caused by COVID, and
then by the energy crisis brought about by the international conflicts over en-
ergy resources (see the Report of the President of the Energy Regulation Board,
Prezes. . . , 2022; Wísniewski, 2022).

The structural changes, taking place on the EMS concern, inter alia, the
Day-Ahead Market System (DAM), which is a subsystem operating on PEE. In
Poland, this development has continued since the establishment of TGE S.A.,
i.e. since 2002 (see TGE S.A., 2002-2022; Tchórzewski, 2010). Within the
framework of DAM, the volume of electric power (ep) and the volume-weighted
average price of ee are quoted for each hour of the day. Transactions on the
DAM are concluded 24 hours before the physical delivery of electricity to the
recipient (see TGE S.A., 2002-2022).

For these reasons, the development of TGE S.A., including changes to the
DAM, mean that all participants, i.e. including suppliers, recipients and pro-
sumers, as well as trade intermediaries, are forced to properly prepare for trans-
actions (see Mielczarski, 2000). One of the ways to adequately prepare for
concluding transactions is the prior simulation of the expected volume-weighted
average ee prices, hence there is now an increased demand for the use of DAM
system models.

Models can be obtained with the use of various methods, from analytical
methods, through identification (“econometric”) methods, to artificial intelli-
gence methods, involving methodologies such as artificial neural networks, fuzzy
systems, or evolutionary algorithms (see Box and Jenkins, 1983; Pop lawski
and Weżgowiec, 2015; Tchórzewski, 2013, 2021; Trusz and Tserakh, 2017;
Weso lowski, 2011; Voronin, 2013; Ziel and Weron, 2018). In the study of the
DAM system model, which is reported in the present paper, two methods were
used, i.e. the arx parametric method (see Ejdys, Halicka and Godlewska, 2015;
Marlȩga, 2022; Nazarko, 2018; Tchórzewski, 2013; Zimmer and Englot, 2005)
and the Perceptron Artificial Neural Network (see Vargas, Pedrycz and Hemerly,
2019; Osowski, 2013; Ruciński, 2022; Tadeusiewicz, 1993). The results of the
literature review in this area are included in the paper by Marlȩga (2021), which
shows the originality of the conducted research against the background of the
available world literature in this field.

1TGE S.A.: Towarowa Gie lda Energii S.A. – Polish Energy Exchange Co., company run-
ning the commodity exchange for electric energy and for a number of other goods and services
(eds.).
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2. Formulations of the problems

In order to obtain a model of the DAM system, the basics of systems engineering
as well as of control and systems theory were referred to (see Kaczorek et al.,
2021; Konieczny, 1983; Staniszewski, 1990; Tchórzewski, 1990, 1992, 2013) and
the identification of the system was carried out with the use of data recorded
on Day-Ahead Market.

In order to conduct the experiments, leading to the development of the DAM
system model, numerical data recorded on the DAM in 2019-2020 were used
regarding the volume of delivered and sold electricity in each hour of the day and
the obtained average weighted with the volume of prices of delivered and sold
electricity. Thus, in individual models, the input quantities were the volumes of
delivered and sold ep in individual hours of the day (24 input quantities each),
and the output quantities were volume-weighted average prices obtained for the
sold ep in the above-mentioned period for the appropriate hours of the day. In
this publication, the obtained results have been limited to four hours of the day,
i.e. 6:00, 12:00, 18:00 and 24:00 hours2 (see: TGE S.A., 2002-2022).

In a more formalized perspective, the identification of the DAM system is the
problem of finding a representation of the matrix of measurement data recorded
on the DAM in the form (see Söderström and Stoica, 1997; Tchórzewski, 2013;
Zimmer and Englot, 2003) ZN =[input, output] in the model parameters vector
[θ] stored in the form of the th matrix of theta format, where N is the number
of ordered observations of successive values of the input variables and successive
values of the output variables.

Therefore, the problem of identification includes both the measurement data
acquisition technique and the computational procedures that are used to pro-
cess numerical data strings so as to obtain the estimators of model parameters.
It should be emphasized here that there are no results of research on the iden-
tification of the Day-Ahead Market system at TGE S.A. carried out in order
to obtain models understood as equivalent schemes of real systems in terms of
control theory and systems, including state space, hence the proposed approach
is innovative in this respect (see Marlȩga, 2021; Tchórzewski, Marlȩga, 2019a).

2The article discusses four MISO-type models, i.e. obtained as a result of identification
for 24 input quantities (volume of electricity quoted in all separate hours of the day) and for
single output quantities (average price volume-weighted in a specific one hour of the day).
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3. TGE S.A. Day-Ahead Market system identification

models

Based on the collected numerical data, as a result of identification modeling,
corresponding classes of system models are obtained, depending on the method
used, such as:

• one-dimensional models: Single Input Single Output (SISO),
• multidimensional models: Multi Input Multi Output (MIMO), Multi In-

put Single Output (MISO), Single Input Multi Output (SIMO),
• linear and non-linear models,
• parametric and non-parametric models,
• models constant in time and models changing in time,
• models in the time domain and models in the frequency domain,
• models with continuous time and models with discrete and even pulse

time,
• models with lumped parameters and models with distributed parameters,
• deterministic models and stochastic models, as well as a number of other

kinds of models (Box and Jenkins, 1983; Chodakowska, Halicka, Kono-
niuk and Nazarko, 2005, Ejdys, Halicka and Godlewska, 2015; Halicka,
2006; Marlȩga, 2022; Pop lawski and Weżgowiec, 2015; Ruciński, 2022;
Tchórzewski and Marlȩga, 2019a).

Due to the purpose of the research, which is reported here, including the
need to select the type of identification process with the use of an appropriate
method, it is worth paying attention to several basic and important types of
models in identification, which include, among others, dynamic linear model,
which can be defined by a discrete output signal y(t) of the form (see Fig. 2):

y (t) = G(z
−1

)u(t) + H(z
−1

)ε(t), (1)

where:

G(z
−1

) − control path characteristics,

H(z
−1

)− characteristics of the interference path,

u(t) – input signal,

ε(t) – disturbance (noise),

z − time shift operator,

t − short time as an independent variable [day].

Expressing G(z
−1

) and H(z
−1

) as quotients of the polynomials in z−1 leads
to the models of the form:

A(z
−1

)y (t) =
B(z

−1
)

F (z
−1

)
u (t) +

C(z
−1

)

D(z
−1

)
ε (t) (2)
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where:

A(z
−1

) = 1+a1z
−1 + . . . + anaz

−na,

B(z
−1

) = 1+b1z
−1 + . . . + bnaz

−nb,

C(z
−1

) = 1+c1z
−1 + . . . + cncz

−nc,

D(z
−1

) = 1+d1z
−1 + . . . + dndz

−nd

F (z
−1

) = 1+f1z
−1 + . . . + fnfz

−nf ,

z−1 – time delay by one unit, e.g. y(t)z−1 = y(t-1),
na – degree of the polynomial A(z),
nb – degree of the polynomial B(z),
nc – degree of polynomial C(z),
nd – degree of polynomial D(z),
nf – degree of polynomial F (z).

So, if:

C(z
−1

) = D(z
−1

) = F (z
−1

) = 1,

the model of the ARX form is obtained:

y (n) =
B(z

−1
)

A(z
−1

)
u (n) +

1

A(z
−1

)
ε (n) (3)

Figure 1. Block diagram of the parametric model in general form. Notations
are explained in the text. Source: Söderström and Stoica (1997)

From the point of view of the capacities characterising the methods of iden-
tifying the TGE S.A. system, which are used, referring also to individual sub-
systems, including the DAM system (Marlȩga, 2021), several groups of models
can be listed in this context, including, in particular:
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Figure 2. Block diagram of the parametric ARX model. Notations are explained
in the text. Source: Söderström and Stoica (1997), Zimmer and Englot (2003)

1. Models of electricity price forecasting as a group of models, which are used
to determine the price of electricity, taking into account the competitive-
ness of the Electricity Market, based on the simulation of the operation
of the National Power System and the related information on the costs
of generation, transmission and use, etc. The main obstacle, regarding
the effective application of this approach, is the requirement to have a
sufficiently long real time period for collecting the data used in the in-
vestigations. Such simulation methods work very well if used by market
operators and regulatory authorities that are authorized to collect precise
data, e.g. about equipment, losses, etc. (see Chodakowska et al., 2005;
Ejdys, Halicka and Godlewska, 2015; Nazarko, 2018; Voronin, 2013; Ziel
and Weron, 2018; Zimmer and Englot, 2005);

(a) Electricity pricing models based on the principles of game theory that
focus on the impact of the bidder on strategic changes in electricity
prices. In this particular context, it was found, among others, that
prices on the electricity market are closely related to the strategies
of submitting bids and setting prices by market participants (see
Weso lowski, 2011; Voronin, 2013);

(b) Stochastic models of ee pricing based on the modified Brownian geo-
metric motion method as a method of stochastic modeling of electric-
ity prices. In this type of models, calculation difficulties are caused by
the procedures, related to consideration of the physical properties of
power systems, such as transmission losses, transmission congestion,
etc., which may cause significant mismatches between the determined
electricity prices and the actually recorded electricity prices on the
market (see Söderström and Stoica, 1997; Voronin, 2013);
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2. Time series models used in modeling electricity prices, covering two main
groups of models: regressive models, such as, e.g., moving average autore-
gression (ARMA), transfer functions and dynamic regression, threshold
autoregressive models of the TAR type, conditional autoregression of the
ARCH type, Engle models, GARCH models and many other models, as
well as increasingly often used artificial intelligence (AI) models, e.g. neu-
ral models, neural models with evolutionary weight tuning, models using
swarm algorithms, including ant algorithms, models using fuzzy sets, ar-
tificial life models, machine learning models, hybrid models, etc. (see Box
and Jenkins, 1983; Pop lawski and Weżgowiec, 2015; Söderström and Sto-
ica, 1997; Tchórzewski, 2010; Trusz and Tserakh, 2017; Voronin, 2013,
Zimmer and Englot, 2005).

Time series models also include parametric models, obtained as a result of
identification, including ARX-type methods, used for many years, especially in
technical and economic sciences, and in particular – for management and control
of the DAM system. Various methods of obtaining parametric models are used,
depending on the object of research, including: AR, ARX, ARMAX, etc.

The review of the literature on the subject shows, among others, that in
the previous research on the Day-Ahead Market system, forecasting, planning
or programming models for determining electricity prices were obtained in the
effect of the use of time series modeling methods known in the literature, which
were then used to determine new prices.

Various modeling methods (analytical, identification and neural) were also
used, as a result of which models were obtained based on specific inputs such
as economic, environmental and even social factors, and outputs such as the
price of electricity. The latter models were then used to predict the price of
electricity.

It should be noted here that the literature on the subject lacks models of
the TGE S.A. Day-Ahead Market system. (and similar markets such as Nord
Pool), understood as technical or technical and economic systems, obtained as
a result of parametric identification carried out using methods of control theory
and systems engineering, which are finally converted into state space models.

It is also worth adding, in particular, that the demand for such models of
the TGE S.A. Day-Ahead Market system and its subsystems is increasing due
to the increase in their share in electricity trading on the Electricity Market (see
Mielczarski, 2000).
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4. Selection of the method for identifying the Day-Ahead

Market system

In order to identify the DAM system, preliminary research was carried out con-
sisting in the selection of the identification method. Due to the properties of the
DAM system, and, in particular, the fact that electricity volume quotations are
used as input values, and electricity price volume-weighted quotations as output
values, the following methods were taken into account: arx, nlarx, IV4, armax,
arxqs, which were then used in the analysis performed with SIT MATLAB (see
Guide for . . . , 1992-2021b).

Then, the identification of the DAM system was carried out using the data
listed on the stock exchange between 5:01 and 6.00 hours recorded for all 365
days of 2019. The above was adopted for comparison of five identification meth-
ods to choose the best identification method. MISO type models were used, i.e.
24 input quantities representing the volume recorded in each hour of the day
were taken into account (meaning simply the consecutive hourly periods be-
tween 0:00 and 24:00 hours), and at the output only one output value was taken
into account, i.e. the volume-weighted average price of electricity obtained in a
given hour of the day for electricity supplied and sold (in the case under consid-
eration, for the 6th hour, that is, between 5:01-6:00). The obtained results are
presented in Table 1.

Table 1. The degree of matching of the obtained models to real data using
selected identification methods for the 6th hour (between 5:01 – 6.00) in 2019.
Source: Own elaboration using MATLAB and System Identification Toolbox
(Guide for . . . , 1992-2021b)

Identification method arx arxnl iv4 armax arxqs
Degree of matching 75.66% 54.67% 51.08% 50.75% 66.96%

The best method turned out to be the parametric identification method
arx, using which the match of 75.66% was obtained, and the worst method was
armax with the match of 50.57%. For these reasons, the method of parametric
identification arx was used in further research.

5. Identification of the DAM system using data from 2019

The DAM system has been identified for hourly data downloaded from TGE
S.A. for all days, first in 2019, and then verified on data from 2020. As a result
of identification, MISO type models of the DAM system were obtained for 2019
and as a result of verification for 2020 for each distinguished hour, i.e. for
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hours of the day: 6, 12, 18 , 24. For each of these hours, a discrete parametric
model arx was determined, which was converted into a continuous parametric
model, and this into a state-space continuous model. In total, three models
were obtained for each hour of the day, i.e. 12 models for 2019 and, as a result
of verification, 3 models for 20203.

Therefore, for the detailed analysis, performed for the purposes of this publi-
cation, four discrete hourly arx parametric models were used, i.e. for the hours:
6, 12, 18 and 24, and the corresponding continuous hourly parametric models
and continuous models in the state space. As an example, parametric arx dis-
crete and continuous models as well as continuous models of state variables for
the 6th hour are presented here, with discrete full parametric models for all four
hours used in the simulation model.

So, for the 6th hour in 2019, the parametric arx discrete model was obtained
in the following form:

A6(z) · y6(t) = B1(z) · u1(t) + B2(z) · u2(t) + ... + B24(z) · u24(t) + e(t), (4)

where:

A6(z) = 1 − 0.3777 · z−1 + 0.1551 · z−2 − 0.1395 · z−3 − 0.1729 · z−4+

+0.07633 · z−5 − 0.0725 · z−6,

B1(z) = −0.1233 · z−1 − 0.021 · z−2 + 0.002389 · z−3 − 0.003882 · z−4+

+0.045 · z−5 + −0.0008132 · z−6 − 0.01498 · z−7 − 0.01678 · z−8−

−0.002096 · z−9 + 0.0196 · z−10,

B2(z) = −0.02169 · z−1 + 0.02292 · z−2 − 0.005696 · z−3 + 0.01106 · z−4−

−0.08478 · z−5 + −0.002471 · z−6 + 0.02813 · z−7 + 0.04245 · z−8+

+0.02165 · z−9 − 0.03317 · z−10,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B24(z) = −0.01645 · z−1 − 0.000098 · z−2 + 0.01285 · z−3+

+0.009628 · z−4 + 0.009773 · z−5 + −0.000536 · z−6 + 0.001467 · z−7+

+0.001157 · z−8 + 0.003415 · z−9 + 0.01136 · z−10.

3Due to the size of the article, the obtained test results are not included in this publication.
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When converting the parametric discrete arx model to the continuous arx
parametric model using the form function4:

th6101h62019=d2c(arx6101h62019,’tustin’) (5)

the following model was obtained:

y6(t) =
B1(s)

F (s)
·u1(t) +

B2(s)

F (s)
·u2(t) + ...+

B24(s)

F (s)
·u24(t) +

C1(s)

D1(s)
· e(t), (6)

where:

B1(s) = −0.02731 · s10 − 0.2861 · s9 + 2.816 · s8 − 9.212 · s7 + 49.11 · s6+
− 103.4 · s5 + 198.3 · s4 − 254.7 · s3 − 42.29 · s2 − 81.72 · s− 3.196,

B2(s) = 0.03977 · s10 + 0.501 · s9 − 6.2 · s8 + 18.33 · s7 − 90.71 · s6+
+ 193.0 · s5 − 306.8 · s4 + 339.7 · s3 + 169.0 · s2 + 36.33 · s + 14.83,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B24(s) = 0.006079 · s10 + 0.03525 · s9 + 2.183 · s8 − 2.081 · s7 + 32.8 · s6+

−58.96 · s5 + 74.968 · s4 − 211.2 · s3 + 19.52 · s2 − 68.22 · s + 19.93,

C1(s) = s6 + 12 · s5 + 60 · s4 + 160 · s3 + 240 · s2 + 192 · s + 64,

D1(s) = s6 + 11.04 · s5 + 41.99 · s4 + 107.2 · s3 + 128.6 · s2 + 125.3 · s + 13.46,

F (s) = s10 + 19.04 · s9 + 154.3 · s8 + 740 · s7 + 2363 · s6 + 5246 · s5+

8203 · s4 + 8943 · s3 + 6389 · s2 + 2435 · s + 215.4, (7)

Thus, as a result of converting the parametric model of the discrete arx into the
parametric model of continuous th, and this into the continuous model in the
state space by means of the function5 (see: Guide for . . . , 1992-2022b):

[A B C D KRDN X0RDN]= th2ss(th6101h62019). (8)

a model in the state space (ss) was obtained, consisting of 246 state variables
(matrix A had dimensions of 246 x 246), however, due to the cyclically repeating
groups of state variables (with identical 10 model coefficients), the model has

4The function d2c(arx6101h62019,’tustin’) located in the Control System Toolbox library
of the MATLAB environment converts the model named arx6101h62019 obtained as a re-
sult of identification in discrete form into a parametric model in continuous form named
th6101h62019, the argument of this function, apart from the model name arx6101h62019, is
the method tustin integration.

5The function th2ss(th6101h62019) located in the Control System Toolbox library of
the MATLAB environment converts the parametric model in a continuous form named
th6101h62019 into a continuous model in the state space (ss), i.e. into the appropriate
equation matrices of state variables and the output equation, i.e. A, B, C, D, KRDN,

X0RDN.
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been simplified to the first 10 state variables, and, consequently, to the following
10 state equations:

dx1(t)

dt
= −19.0379 · x1(t) − 9.6436 · x2(t) − 5.7815 · x3(t) − 4.6152 · x4(t)

−2.5617 · x5(t) + −2.0026 · x6(t) − 1.0917 · x7(t) − 0.7799 · x8(t)

−0.5945 · x9(t) − 0.2103 · x10(t) + u1(t), (9)

dx2(t)

dt
= −16 · x1(t),

dx3(t)

dt
= −19 · x2(t),

dx4(t)

dt
= 4 · x3(t),

dx5(t)

dt
= 4 · x4(t), (10)

dx6(t)

dt
= 2 · x5(t),

dx7(t)

dt
= 2 · x6(t),

dx8(t)

dt
= x7(t),

dx9(t)

dt
= 0.5 · x8(t),

dx10(t)

dt
= 0.25 · x9(t),

and for 6 o’clock in 2019, the output equation takes the following form:

y6(t) = 0.2338 · x1(t) + 0.4394 · x2(t) + 0.0859 · x3(t) + 0.2219 · x4(t)

+0.0195 · x5(t) + 0.1032 · x6(t) − 0.0013 · x7(t) + 0.0161 · x8(t) − 0.0037 · x9(t)

+0.026 · x10(t) + ... + −0.0273 · u1(t) + 0.0398 · u2(t) − 0.0053 · u3(t)

−0.0193 · u4(t) − 0.0036 · u5(t) + 0.0064 · u6(t) + 0.0215 · u7(t) + 0.0071 · u8(t)

−0.0108 · u9(t) − 0.0410 · u10(t) + 0.0470 · u11(t) − 0.0456 · u12(t) + 0.0643 · u13(t)

−0.0103 · u14(t) + 0.0055 · u15(t) − 0.00068 · u16(t) − 0.0226 · u17(t)− 0.0654· u18(t)

+0.0720 · u19(t) + 0.0017 · u20(t) − 0.007 · u21(t) − 0.0037 · u22(t)

−0.0087 · u23(t) + 0.0061 · u24(t), (11)

where: x1(t), x2(t),. . . . , x10(t) – relevant state variables,
u1(t), u2(t),. . . . , u24(t) – relevant input variables.
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Figure 3. Block diagram of the state variables of the TGE S.A. Day-Ahead
Market system Notations are provided in the text. Source: Own elaboration in
terms of control and systems theory (see Kaczorek et al., 2021; Tchórzewski,
2013)

The model of the Day-Ahead Market system in the state space described by
the state equations (6) and the output equation (7) is shown in the form of a
block diagram in Fig. 3.

One can notice the specific role of the input (control) variable from the first
hour (u1) on the formation of the output (response) y6 of the DAM system,
as well as the presence of the negative feedback from all state variables to the
system input, and also the direct influence of the input (control) signals on the
output signal (the presence of a non-zero matrix D), with the elements of the
matrix D being close to zero (these values are of the order of magnitude of
10−2 ÷ 10−3).

6. Full model and interpretation of DAM model parame-

ters in the state space

The analysis of the structure and parameters of matrix A shows that the degree
of internal organization of the state of the DAM system in 2019 and its changes
were determined mainly by one derivative of the state variable, i.e. dx 1(t)/dt,
which was influenced by all state variables adopted in the model, their number
being established at 10, and the elements of the first row of matrix A, related
to it. The derivatives of the remaining state variables were affected by the
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single state variables and the elements of matrix A associated with them, i.e.
dx 2(t)/dt was affected by the state variable x1(t), then, dx 3(t)/dt was affected
by the state variable x2(t), . . . , and, finally, dx 10(t)/dt was affected by the state
variable x9(t).

In order to examine the nature of the state variables, it was first established
that matrix B shows that only the input variable u1(t) and the associated
element b11 of matrix B affects the level of control, while all input quantities
affect the output from the model, because there is a non-zero matrix D, but
with values close to zero.

Thus, the first equation of state, included in equations (6), shows, among
others, that due to the fact that the input variable u1(t) concerns the volume
of ep delivered for sale at 0:01-1:00 [in MWh], hence the state variable x1(t)
can also be interpreted as the volume of ee delivered for sale at 0-1, assuming
that element b11 of matrix B is expressed in [1/h] and element a11 of matrix
A is expressed in [1/h]. On this basis, subsequent state variables can also be
interpreted as volumes of electricity delivered for sale at 0-1, assuming that the
subsequent elements of matrix A (a12, a13, ..., a1,10) are also expressed in [1/h].

Due to the fact that the subsequent equations of state variables, x11, x12, ..., x20,
are as follows:

dx11(t)

dt
= −19.0379 · x11(t) − 9.6436 · x12(t) − 5.7815 · x13(t)

−4.6152 · x14(t) − 2.5617 · x15(t) + −2.0026 · x16(t) − 1.0917 · x17(t)

−0.7799 · x18(t) − 0.5945 · x19(t) − 0.2103 · x20(t) + u2(t), (12)

dx12(t)

dt
= −16 · x11(t),

dx13(t)

dt
= −19 · x12(t),

dx14(t)

dt
= 4 · x13(t),

dx15(t)

dt
= 4 · x14(t), (13)

dx16(t)

dt
= 2 · x15(t),

dx17(t)

dt
= 2 · x16(t),

dx18(t)

dt
= x17(t),
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dx19(t)

dt
= 0.5 · x18(t),

dx20(t)

dt
= 0.25 · x19(t),

the output equation then has the following additional elements in terms of the
elements of matrix C:

y6(t) = ...− 0.2562 · x11(t) − 0.771 · x12(t) − 0.0868 · x13(t)

−0.3607 · x14(t) − 0.0076 · x15(t) + −0.1546 · x16(t) − 0.0020 · x17(t)

−0.0104 · x18(t) − 0.0148 · x19(t) + 0.0061 · x20(t) + ... (14)

Hence, from the first equation of state, included in equations (13), it follows,
among others, that due to the fact that the input variable u2(t) concerns the
volume of ep [MWh] delivered for sale between 1:01 – 2.00 o’clock, the state
variable x11(t) can also be interpreted as the volume of ee delivered for sale be-
tween 1:01-2:00 o’clock, assuming that the element b1,11 of matrix B is expressed
in [1/h], and element a1,11 of matrix A is also expressed in [1/h].

On this basis, subsequent state variables can also be interpreted as volumes
of electricity delivered for sale at 1-2 hours, assuming that subsequent elements
of matrix A (a1.12, a1.13, ..., a1.20) are also expressed in [1/h].

This situation is repeated until the equations of state:

dx231(t)

dt
= −19.0379 · x231(t) − 9.6436 · x232(t) − 5.7815 · x233(t)

−4.6152 · x234(t) − 2.5617 · x235(t) + −2.0026 · x236(t) − 1.0917 · x237(t)

−0.7799 · x238(t) − 0.5945 · x239(t) − 0.2103 · x240(t) + 0.5 · u24(t),

dx232(t)

dt
= −16 · x231(t),

dx233(t)

dt
= −19 · x232(t),

dx234(t)

dt
= 4 · x233(t),

dx235(t)

dt
= 4 · x234(t), (15)

dx236(t)

dt
= 2 · x235(t),

dx237(t)

dt
= 2 · x236(t),

dx238(t)

dt
= x237(t),
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dx239(t)

dt
= 0.5 · x238(t),

dx240(t)

dt
= 0.25 · x239(t),

and then the output equation has the following additional elements in terms of
elements of matrix C, respectively:

y6(t) = ...− 0.2562 · x231(t) − 0.771 · x232(t) − 0.0868 · x233(t)

−0.3607 · x234(t) − 0.0076 · x235(t) + −0.1546 · x236(t) − 0.0020 · x237(t)

−0.0104 · x238(t) − 0.0148 · x239(t) + 0.0061 · x240(t) + ..., (16)

which involves taking into account the impact of subsequent input quantities
on the derivatives of successive state variables, of which the last input quantity,
i.e. u24(t), has an impact on the derivative of the state variable x231(t), which
also applies to the appropriate interpretation of the state variables based on
the volume of electricity from the next hour until 23-24 hours, followed by the
following equations of state:

dx241(t)

dt
= −19.0379 · x241(t) − 9.6436 · x222(t) − 5.7815 · x243(t)

−4.6152 · x244(t) − 2.5617 · x245(t) − 2.0026 · x246(t),

dx242(t)

dt
= −16 · x241(t),

dx243(t)

dt
= −19 · x242(t),

dx244(t)

dt
= 4 · x243(t), (17)

dx245(t)

dt
= 4 · x244(t),

dx246(t)

dt
= 2 · x245(t),

which is no longer related to taking into account the influence of the input
quantities on the derivatives of subsequent state variables, because the last
input quantity has already been used in the first equation of state variables
(17), and therefore the output equation has the following additional elements
in the range of elements only included in the matrix C:

y6(t) = ...− 11.0379 · x241(t) − 5.2493 · x242(t) − 3.3492 · x243(t)

−2.0087 · x244(t) − 0.9788 · x245(t) + −0.4206 · x246(t).
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Therefore, in this case, due to the nature of the output variable y1(t), which is
the volume weighted average ee at hours 5-6, the state variables x241(t), x242(t),
..., x246(t) can be taken as the volumes of ee delivered and sold at hours 5-6,
assuming that the corresponding elements of the matrix C are expressed in [h],
and the corresponding elements of the matrix C are expressed in [1/h].

Of course, an in-depth interpretation can be adopted due to the possibility of
differentiating state variables by adopting a different interpretation of individual
elements of matrix A, which goes beyond the scope of this publication. Exam-
ples of in-depth interpretation of state variables are presented on the example
of the development of the power system in Tchórzewski (2013).

7. Simulation of the DAM system model using data from

2019

The block diagram of the DAM system model for 2019 is built with the use
of appropriate Simulink blocks, which are in fact appropriate Matlab m-files,
including: From Workspace, To Workspace, Demux, Mux, Math Function, Abs,
Gain, Product, Constant, Divide, Transport Delay, Scope, Sum, Idpoly, NNET,
Subsystem, Inport, Outport, Hitch link, etc. (see Appendix 1 and Appendix 2
to this paper).

The hourly model of the DAM system in the general form includes 17 sub-
systems of the following eight types:

• volume separator ep from hourly data of the DAM system (one subsys-
tem),

• hourly efficiency generator of the DAM system (one subsystem),
• hourly efficiency mileage meter of the DAM system (one subsystem),
• a measure of the relative error of robustness between the model and the

DAM system (four subsystems),
• price separator ep for hourly data of the DAM system (one subsystem),
• a measure of the relative efficiency error between the model and the DAM

system (four subsystems),
• generator of model quality assessment indicators for the DAM system

(efficiency, effectiveness, robustness, etc.) (four subsystems),
• hourly model of the DAM system (one subsystem),

Appendix 1 contains the scheme of the simulation models of individual subsys-
tems, and their descriptions are provided in Appendix 2.

Each of the above-mentioned subsystems is built of an appropriate number
of successive relevant subsystems and other accompanying elements, forming a
hierarchical model of the DAM system. The block diagram of the DAM system
was used to carry out, inter alia, simulation tests and sensitivity tests. The
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stimulation study was performed on data on the volume of electricity supplied
and sold in 2019, including the data for hours: 6:00, 12:00, 18:00 and 24:00, and
a sensitivity study was based on ep volume data for 2020.

8. Hourly model of the DAM system based on the 2019

data

The hourly model of the DAM system determines: DAM system models for
each hour of the day (as already specified, the Subsystem includes four selected
hours of the daily cycle, i.e. 6, 12, 18 and 24). This subsystem was built using
the following blocks: In, Subsystem designating the hourly model of the DAM
system, Subsystem designating the relative error of the model to the system,
Scope, ToWorkspace, Out. The Subsystem that determines the model of the
DAM system consists of the following blocks: In, Idmodel, Gain, Custom Neural
Network, Scope, ToWorkspace and Out (Fig. 2).

The basic block of this subsystem is the Idmodel described by the function:

yidmodelh62019=idpoly(arx6101h62019), (18)

whose argument is a parametric model with an input containing 24 input quan-
tities related to the volume of delivered and sold ee in particular hours of the
day, in the here considered example – in 2019.

9. Simulation tests of the accuracy of the DAM system

model

The simulation tests of the accuracy of the DAM system model were carried
out for each hour of the day, and the present paper includes selected test results
for the four indicated hours, i.e. for the hours 6:00, 12:00, 18:00 and 24:00 of
the day. In order to compare the accuracy of the model with respect to the
system, the simulation model was used, including the hourly model of Fig. 4 of
the subsystem to measure the absolute and relative error of the DAM system
model, shown in Fig. 5. In each of the individual cases considered, the absolute
error or discrepancy between the output from the model and the output from
the system was determined first, and then the relative error. The time histories
of the relative errors for the above-mentioned four hours of the day are shown
in Figs. 7 through 10.

The obtained annual results, as well as the results for a randomly selected
month (December 2019) and for a randomly selected week, accounting for the
exclusion of working days (the first full week of December) are presented in
Table 2.
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Figure 4. Hourly model of the DAM system. Symbols are explained in the text.
Source: own study using Simulink Environment (see Guide for . . . , 1992-2021b)

Figure 5. Subsystem designating the relative error of the model with respect to
the system. Notations are explained in the text. Source: own study using the
Simulink environment (see Guide . . . , 1992-2021b)

The determined relative errors for the individual four hours for 2019 for the
arx parametric model of the discrete DAM system (corrected with ANN) ranged
from 5.39% to 10.54%. In addition, the MAPE errors of the DAM system
model and the model corrected with the ANN were determined for the hours
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Figure 6. Subsystem designating the model of the DAM system. Notations are
explained in the text. Source: own study using the Simulink environment (see
Guide . . . , 1992-2021b)

Figure 7. Curves of the relative error of the model in relation to the DAM
system for 6 o’clock in 2019. Notation: X axis - long time [year]. Source: Own
study using the Simulink environment (see Guide for . . . , 1992-2021b)

6:00, 12:00, 18:00, 24:00 of 2019. The values of the MAPE error for selected
periods of 2019 are presented in Table 3.

In terms of summarizing the results, provided in Tables 2 and 3, we shall
now list the ranges of the corresponding errors for various criteria, models and
time periods modelled.

Relative errors ranged from the value of 5.39% for 6 hours of 2019 to 10.54%
for 12 hours of 2019.
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Figure 8. Curves of the relative error of the model in relation to the DAM
system for 12 o’clock in 2019. Notation: X axis - long time [year]. Source: Own
study using the Simulink environment (see Guide for . . . , 19922-2021b)

Figure 9. Runs of the relative error of the model in relation to the DAM system
for 6 pm in 2019. Notation: X axis - long time [year]. Source: Own study using
the Simulink environment (see Guide for . . . , 1992-2021b)

Moreover, errors were determined for selected months of 2019, and these
errors ranged from 3.46% for 6 hours in December 2019 for the adjusted DAM
system model up to the value of 13.69% for 12 o’clock in December 2019 for the
DAM system model.

Errors were also determined for selected weeks (the first full week of Decem-
ber) of 2019, and these errors ranged from the value of 0.71% for 6 o’clock in
December 2019 for the corrected DAM system model up to the value of 14.91%
for 12 o’clock in December 2019 for the uncorrected model of the DAM system.



Hourly identification and simulation of the TGE S.A. Day-Ahead Market system 543

Figure 10. Curves of the relative error of the model in relation to the DAM
system for 24 o’clock in 2019. Notation: X axis - long time [year]. Source: Own
study using the Simulink environment (see Guide for . . . , 1992-2021b)

Table 2. Summary of relative errors [in %] for selected periods (2019, December,
1st full week). Source: own elaboration using MATLAB and Simulink (see Guide
for . . . , 1992-2021b)

Model year month month

(working

days)

week week

(working

days)

Idmodel h6 5.46 4.86 4.81 3.01 2.85
Idmodel h6 with ANN

correction

5.30 3.46 2.52 0.71 1.26

Idmodel h12 11.29 13.69 13.92 11.55 11.43
Idmodel h12 with

ANN correction

10.54 18.45 20.63 20.85 23.20

Idmodel h18 11.77 12.40 12.44 14.91 18.85
Idmodel h18 with

ANN correction

9.68 8.24 7.04 9.61 10.27

Idmodel h24 6.18 11.02 11.70 11.61 12.10
Idmodel h24 with

ANN correction

6.39 11.15 10.83 8.99 10.18

Taking into account only working days in a month, the errors ranged from
the value of 2.52% to the value of 13.92%, and during the week they ranged
from the value of 1.26% to the value of 11.42%.
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Table 3. Summary of MAPE errors [%] for selected periods of 2019 (2019, De-
cember, 1st full week). Source: own elaboration using MATLAB and Simulink
(see Guide for . . . , 1992-2021b)

Model 2019 Decem-

ber

2019

only

working

days

Dec.

2019

1-st full

week

Dec.

2019

only

working

days

1-st full

week

Dec.

2019

Idmodel h6 5.46 6.57 6.15 3.01 2.85
Idmodel h6 with

ANN correction

5.39 6.81 6.51 3.77 4.58

Idmodel h12 11.50 13.07 14.33 11.24 13.91
Idmodel h12

with ANN cor-

rection

9.55 12.21 12.49 12.81 14.48

Idmodel h18 11.85 8.30 8.60 3.65 3.53
Idmodel h18

with ANN cor-

rection

9.92 11.86 11.99 5.98 5.77

Idmodel h24 6.94 7.89 7.93 8.80 8.89
Idmodel h24

with ANN cor-

rection

6.31 11.07 11.55 5.99 5.57

The MAPE errors ranged from the value of 5.39% for 6 o’clock for 2019 to
9.55% for 12 o’clock in 2019.

Moreover, MAPE errors were determined for selected months of 2019, with
values from 6.57% for 6 o’clock in December 2019 for the DAM system model to
12.21% for 12 o’clock in December 2019 for the adjusted DAM system model.

The relative MAPE errors were determined for selected weeks (the first full
week of December) of 2019, and they ranged, respectively, from the value of
3.01% for 6 o’clock in December 2019 to the value of 11.24% for 12 o’clock in
December 2019 for the DAM system model.

Taking into account only the working days in the month the relative MAPE
errors ranged from the value of 6.15% to the value of 12.49% and during the
week they ranged from the value of 2.85% to the value of 13.91%.
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At this point, Table 4 shows a comparison of the results, obtained by the
present authors, with a selection of those available in the literature, focusing on
the MAPE error values.

Thus, when analyzing the content of Table 4, one can notice, in particular,
that the arx model, which was obtained by the present authors on the basis of
the data for the year 2019, has the MAPE error values, which are compared as
follows with the other results, for the following lengths of the forecast:

year - 5.39%, but when corrected with ANN - 5.03%, so it is definitely a
smaller error than in the case of S. Voronin’s (2013) model: ARMA - 13.74%,
GARCH - 16.17%, ARMA + GARCH - 12.84%,

month - 3.46%, meaning that it is an error comparable with that of K.
Halicka’s (2006) neural model: ANN I - 3.69%, ANN II - 3.35%, and month
(working days only) – 2.52%,

week - 0.71% and for the working days week - 1.26%, so it is a lower error
than that obtained by T. Pop lawski and M. Weżgowiec (2015) for the additive
Winters model - 4.51%, the multiplicative Winters model - 7.01%, and the Holt
model - 2.98 %.

It is worth noting, however, that the main goal of the research, reported
in this paper, was not to achieve the results characterized by the lower MAPE
errors than those characterising the existing models, but to obtain, on the one
hand, a database for meta-identification in order to build a meta-model of the
Day-Ahead Market system, and, on the other hand, to obtain models of the
Day-Ahead Market system in the space of states, which have very interesting
interpretations, e.g. in the case of the currently developed multi-source system
of the Electricity Market in the world.

10. The testing study of the DAM system model

The testing study experiments of the DAM system model were carried out on
the DAM system model for 6 o’clock in 2019 for contractual figures regarding
the volume of delivered and sold ep in 2020.

The performance of the volume-weighted average price of ep, generated by
the model in relation to the price actually generated by the DAM system was
examined, with the assumption that the first fifteen input quantities relate to the
initial conditions of the model (due to the delays occurring in both polynomials,
A(z) as well as B(z)). The resulting MAPE error was obtained and summarized
in Table 5 for the selected periods of 2020.
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Table 4. Selected results of comparative studies of the Day-Ahead Market sys-
tem models, including the Nord Pool Spot models (see Marlȩga, 2021)

Name of

system

Data for

identifi-

cation

Model type Data for

forecast-

ing

MAPE

[%]

Envi-

ron-

ment

Day-Ahead
Market
(Ejdys, Hal-
icka and
Godlewska,
2015)

16 months Holt-Winters
ANN

day 37.32
4.71

STATIS-
TICA

Day-Ahead
Market
(Pop lawski
and
Weżgowiec,
2015)

quarter Winters Addi-
tive
Winters Multi-
plicative
Holt Model

week
(working
days)

4.51
7.01
2.98

-

Day Ahead
Market
(Halicka,
2006)

year ANN I
ANN II

month 3.69
3.35

STATIS-
TICA

Nord Pool
Spot
(Voronin,
2013)

11 years ARMA Model
GARCH Model
ARMA+GARCH

year 13.74
16.17
12.84

-

Day Ahead
Market
(Marlȩga,
2021)

year ARX Model
ANN corrected

year 5.39
5.03

MATLAB

month 3.46
month
(working
days)

2.52

week 0.71
week
(working
days)

1.26
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Table 5. List of MAPE errors for selected periods of 2020 (year, December,
week two) [%]. Source: Own elaboration using MATLAB and Simulink (see
Guide for . . . , 1992-2021b)

Model

used

for

6 o’clock

2019 December

2019

Only

working

days De-

cember

2019

1st full

week

Decem-

ber

2019

Only work-

ing days

1st full week

December

2019

Idmodel 32.00 7.00 6.70 10.05 4.58
Idmodel

with ANN

correction

31.33 7.24 5.99 6.96 3.83

11. Summary

As a result of the parametric identification using the arx model for the data
recorded on the DAM in the period from January 1, 2019, to December 31,
2019, four DAM discrete-type system models were obtained for the hours 6:00,
12:00, 18:00 and 24:00 of the day, respectively, in 2019. In a detailed analysis
of these models, in particular, absolute errors, relative errors and MAPE errors
for the whole year were determined for randomly selected months and weeks.

Simulation tests on the Day-Ahead system model carried out for the hours of
the day in 2019 made it possible to determine the absolute error value and thus
the discrepancy between the output from the model and the output from the
system, and then the values of relative errors. The determined relative errors
for individual four hours for the entire year 2019 for the arx parametric model
of the DAM adjusted by ANN ranged from 5.39% to 10.54%, and in December
2019 from 3.46% to 18.45%.

The smallest relative error was obtained at 06:00 in the first full week of De-
cember 2019, amounting to 0.71%, and the highest at 12:00 in the first full week
of December 2019 (counting only working days) amounting to 30.2%, which
shows that one can model the RDN system much more accurately at 6:00 a.m.
than at 12:00 p.m. These significantly different results show, among others, that
the DAM system can be modeled much more accurately at 6:00 hours than at
12:00 hours, this fact being strongly associated with similar behavior of people
during peak hours and quite different behavior during off-peak hours. Neverthe-
less, investigations, related to these differences have not been conducted, and
they may constitute a new direction of research.
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In addition, the DAM system models obtained on the basis of data from
2019 were tested on the basis of data from 2020. In particular, it was checked
what was the accuracy of the outputs obtained from the DAM system for the
inputs from 2020 in relation to the outputs for the data from 2019, which is very
important from the point of view of the possibility of using the parameters of
the DAM system models in meta-identification (see Tchórzewski and Marlȩga,
2019b), in the search of metamodels of the DAM system.

The relative error for the first full week of December 2019 (only working
days) for the parametric model was 4.58%, and after correcting the model with
the Perceptron ANN, 3.83%, so it was relatively low. On the other hand, the
relative error obtained using the arx parametric model obtained for 6 o’clock in
2019 and for the 2020 data was 32.00%, and after correcting with the Perceptron
ANN it was still at 31.33%.

The relative error was also relatively small for the month of December, as
it amounted to 7.00%, and for the working days of December, 6.77% (after
correcting the model with ANN - 5.99%), which indicates that this type of
modeling can be used for the purposes of meta-identification in order to obtain
models of the DAM system using metamodels.

Research in this direction continues. An important and still topical issue is
also to study the effectiveness, efficiency and robustness of the models and re-
spective systems (see Sienkiewicz, 1987; Staniszewski, 1990; Toczy lowski, 2008;
Tchórzewski and Marlȩga, 2021).
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Marlȩga, R. (2021) Comparative Study of the Identification Methods of the
Management System of the Day-Ahead Market of Polish Energy Market
SA, Studia Informatica. Systems and Information Technology, 1–2 (25),
67–86.

Marlega, R. (2022) Correction of the parametric model of the Day-Ahead
Market system using the Artificial Neural Network. Studia Informatica.
Systems and Information Technology, 1(26).

Mielczarski, W. (2000) Rynki energii elektrycznej. Wybrane aspekty tech-
niczne i ekonomiczne [Electric power markets. Selected technical and eco-
nomic aspects ; in Polish]. ARE S.A. i Energoprojekt-Consulting S.A.,
Warszawa.

Nazarko, J. (2018) Prognozowanie w zarza̧dzaniu przedsiȩbiorstwem. Czȩść
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sterowania i systemów [Development of the power system in terms of con-
trol and systems theory ; in Polish]. Oficyna Wydawnicza Politechniki
Wroc lawskiej, Wroc law.
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Appendix 1

Simulation model of the DAM system for hours 6, 12, 18 and 24 in 2019. No-
tations explained in Appendix 2. Source: Own elaboration using Simulink en-
vironment (see: Guide . . . , 2002-2021b)
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Appendix 2

Selected Simulink blocks used to build a simulation model of the Day-Ahead
Market system6

Abs, which generates the absolute value of the output. In the modeled cases,
this block was used to obtain the absolute value of the discrepancy between two
signals;

Constant, which generates a real or composite constant value. The output
can be scalar, vector or matrix signals. The block output has the same dimen-
sions and elements as the input signals, in the case under consideration they
were constant values;

Demux, which extracts the components of the input vector signal and out-
puts separate signals. The output ports are ordered top to bottom. In the
considered example, the input signal to the block is a matrix containing 24
quantities related to the input signal u (volume of sold ee), and the output
signals to individual volumes ee for each hour of the day;

Divide, which divides the signal values entered into the numerator (marked x)
by the signal values entered into the denominator (marked: ÷ ). The block exit
is the signal that is the result of the division. The numerator and denominator
must have the same dimensions. In the case under consideration, this block was
used to determine the effectiveness of the DAM system;

From Workspace, which reads data values specified in time series, matrices
or other forms from the MATLAB workspace, e.g. [tpp365 u242019], where:
tpp365 - data retrieval control vector, u242019 - matrix of input values for the
volume sold ee in individual hours of the day in 2019;

Gain, which is the proportional term used to multiply a signal by a number
or matrix of numbers. In the case under consideration, this block is used as a
proportional element, i.e. describing the numerical values present in the model
(e.g. data used to scale the input signal according to its parameter value), here:
constant value 100. Input signal and block parameter (gain) it can be a scalar
[???], vector, or matrix;

Hitch link, which splits the incoming scalar or vector signal into two identical
signals (so-called tap);

Idpoly, which is described by the function idpoly (arx6101h62019) and thus is
an implementation of the arx6101h62019 discrete parametric model in Simulink.
It requires that its argument be stored in Workspace. The argument of the

6When designing the simulation model, appropriate Simulink blocks were used (which are
in fact m-files of Matlab) in accordance with the adopted algorithm leading to obtaining a
computer program in the Simulink environment, which could then be used in simulation and
comparative studies and in testing the sensitivity of the system model to relevant input signals.
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function, which is in fact a model of the DAM system, must be, inter alia,
an idpoly object, as in the case under consideration for 6 o’clock 2019. This
function is performed in Simulink by means of a block that generally supports
models with or without continuous time input-output delays. The initial states
must be a vector with a length equal to the model row. In the case of the
considered idpoly model, the initial conditions are zero;

Inport, which is an input link to the subsystem from the system environment
(most often from the master system). They are automatically numbered in the
order from the highest level, starting with input 1. You can assign the port
a sampling time as the rate at which the ambient signal is downloaded to the
system. A value of -1 causes the block to inherit its sampling time from the
controlling block;

Mux, which combines a plurality of scalar inputs into a single vector output,
the input signal being a vector signal. In the discussed example, this block was
used to compile the robustness waveforms of the signal from the DAM system
model and from the DAM system measured for 6:00 a.m. 2019, so that both
signals could run on one graph;

Math Function, which, as a block of mathematical functions, has typical
mathematical functions assigned by means of parameters. In the case under
consideration, this block was used in the corrector of the output signal from the
neural model as a mathematical function of lifting to the power with the given
parameter v;

NNET, which simulates the operation of an Artificial Neural Network learned
to correct the output signal from a parametric arx discrete model. In the con-
sidered example, this model is arx6101h62019, that is the DAM system model
for 6 am in 2019. This block adopts the parameters of ANN designed and
implemented using NNT;

Outport, which is the output link from the subsystem to the system envi-
ronment (most often to the master system). The outports are automatically
numbered in order from the highest level, starting with input 1. You can assign
a sampling time to the port as the rate at which the signal is sent from the
system to the environment;

Product, which is used for the multiplication and division of scalar signals
and non-scalar signals with the same dimensions or for matrix multiplication
and inversion. In the discussed example, this block was used to compile the
robustness waveforms of the signal from the DAM system model and from the
DAM system measured for 6:00 a.m. 2019, so that both signals could run on
one graph;
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Scope, which displays the waveforms generated during the simulation. In the
case under consideration, the displayed signal is the effectiveness of the DAM
system model for 6 o’clock in 2019;

Sum, which enables the operation of adding and / or subtracting signals
introduced into the block. The number and type of inputs are the parameters of
the block as well as the type of the block shape. In the case under consideration,
the block was used to determine the absolute error between the system efficiency
and the model efficiency;

Subsystem, which is a subsystem consisting of several integrated Simulink
blocks, e.g. Bwymdoysh6 is a subsystem containing a model for determining
the absolute error and difference error between the arx parametric model and
the DAM system for 6 o’clock in 2019;

To Workspace, which inputs the signal and writes the signal data to the
MATLAB workspace. During simulation, the block writes data to an internal
buffer. Block description e.g. ToWbwemdosh6 as the name of the output is
passed to the MATLAB workspace, in this case the relative error between the
model and the DAM system for 6 o’clock in 2019;

Transport Delay, which delays input by a predetermined time unit, e.g.,
a delay unit resulting from the z − i time shift operator present in the arx
parametric model. At the start of simulation, the block outputs a start output
parameter until the simulation time exceeds the z − i time delay parameter,
then input delay is generated. In the case of discrete signals, the appropriate
value is present at the output at the required time. In the models considered in
the study, this block was used in the idpoly model as a subsystem.




