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Abstract: This paper investigates the use of Adaptive General-
ized Predictive Control (TS-AGPC) for an activated sludge reactor,
based on a Takagi Sugeno (TS) model, and presents the comparison
between the latter and Generalized Predictive Control using an over-
all TS model (TS-GPC). The reduced bio-reactor Activated Sludge
ASM1 Model, which describes the biological degradation of an acti-
vated sludge reactor, is designed based on several simplifications, as
a TS model, its structure being based on a set of linear submodels,
covering the process input-output space, interpolated by a nonlinear
weighting function µ. The adaptive GPC approach is obtained by
switching between linear submodels of the TS formulation. This is
performed by selecting, in turns, a portion of the weighting function
µ. The winning model will then act as an internal model for the
TS-AGPC control law formulation, whereas the complete TS model
is used in the calculation of the TS-GPC control law. Finally, the
performance under input and parametric disturbances as well as con-
trol variable constraints of the TS-AGPC controller are compared to
those for a global TS-GPC controller and a benchmark PID in terms
of error and response dynamics.

Keywords: adaptive generalized predictive control, general-
ized predictive control, Takagi Sugeno, activated sludge reactor, ac-
tivated sludge model

1. Introduction

Since its first industrial applications, Model Predictive Control (MPC) (Froisy,
1994; Qin and Badgwell, 1996) has widely spread to a broad variety of ap-
plication areas including chemicals, food processing, automotive branch, and
aerospace applications, away from its first petrochemical nest (Qin and Badg-
well, 2003).
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The concept of advanced controls can be referred to the work of Kalman, in
the early 1960s (Kalman, 1960a, b), which was later on summarized as a problem
of optimization, known as the Linear Quadratic Gaussian (LQG) controller. The
LQG approach soon became a tool to solve control problems in a wide range of
application areas. However, it did not have a great impact on control technology
development in industry, because of the existence of heavy constraints, process
nonlinearities, model uncertainty, etc. (Richalet et al., 1976, Garcia et al., 1989).

The first description of MPC applications was presented by Richalet in the
form of Model Predictive Heuristic Control (MPHC) (Richalet et al., 1976,
1978). The solution software was referred to as IDCOM (IDentification and
COMmand), representing the first generation of MPC technology.

Cutler and Ramaker presented an unconstrained multivariable control al-
gorithm Dynamic Matrix Control (DMC) (Cutler and Ramaker, 1979). An
application of a modified DMC, including nonlinearities and constraints, was
presented by Prett and Gillette (1980).

Then, QDMC was developed in 1983, representing the DMC algorithm in
terms of a Quadratic Program (QP) in which input and output constraints were
included (Cutler, 1983; Garcia and Morshedi, 1986).

As MPC technology gained wider acceptance in industry for systems with
more important complexities, a new generation of MPC technology has been
developed, including IDCOM-M, HIECON, SMCA, SMOC, representing the
third generation within this methodological domain of research endeavour.

Generalized Predictive Control (GPC) is one of the most popular implemen-
tations of MPC (Clarke et al., 1987) along with Predictive Functional Control
(PFC) (Richalet, 1993), these approaches having been mainly designed for low
complexity internal models, applied to petrochemical systems.

Later, Aspen Technology have developed DMC-plus and RMPCT as the
fourth generation MPC technology.

Since then, MPC has established itself as a valuable and efficient form of
advanced control in the industrial world, counting thousands of applications. In
most cases, a linear model of the process is sufficient for ensuring good control
as the robustness of MPC is sufficient for overcoming the process/model mis-
matches. However, when severe nonlinearities are in presence, Nonlinear Model
Predictive Control (NMPC) may be a suitable option (Escano et al., 2009).

Wastewater treatment systems are, nowadays, a challenging control problem,
needing advanced control to optimize water quality as well as to reduce costs,
especially MPC (Caraman et al. 2007). The treatment is usually performed bio-
logically, using activated sludge reactors. The reduced bio-reactor ASM1 model
is able to model the biological processes, including carbon removal, nitrification
and denitrification (Henze et al., 1987).

Usually, modelling of ASM1 systems involves the use of complex expressions,
based on the knowledge of physical and chemical phenomena. To overcome this
difficulty, a solution will be to use a Multi-Model Takagi-Sugeno (TS) approach,
meaning to obtain of a set of linear models, combined with a nonlinear function
µ. The nonlinearities (premise variables), with the function µ, are represented
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using a Quasi-LPV (Quasi-Linear Parameter Varying) approach (Huang and
Jadbabaie, 1999).

The weight of the system or the model nonlinearity is therefore put in, or
expressed through the weighting function µ, with the linear part being expressed
by r linear models. Despite the clear resulting advantage, choosing the right
premise variables, the adequate number of sub models,. . . etc., remains a chal-
lenge as regards assuring system observability and controllability (Matoug and
Khadir, 2014, 2015; Nagy et al., 2010; Nagy, 2010).

The present work investigates the use of MIMO GPC for the control of
an activated sludge reactor using as an internal model a TS multi-model, giv-
ing a multi-model MPC controller (TS-GPC). As an alternative to the global
TS-GPC, an Adaptive Generalized Predictive Control (TS-AGPC) is also in-
vestigated, and is based on the same TS model, using, however, only one linear
sub model at a time, by switching between sub models (TS-AGPC). The use
of the two most significant internal models has, as well, been implemented and
tested as TS-AGPC2.

The paper is organized as follows: Section 2 gives a comprehensive descrip-
tion of the activated sludge process and presents the mathematical model of the
plant, stating the simplifications made.

In Section 3, the TS approach is presented. In Section 4, the steps taken
in the MIMO multi-model GPC algorithm formulation are outlined and Sec-
tion 5 gives the Adaptive MIMO GPC version. Section 6 presents the obtained
results of the TS-GPC and TS-AGPC designs along with a comprehensive per-
formance comparison with the benchmark PID design. Finally, the last section
concludes with an extensive comparison between TS-GPC and TS-AGPC and
a benchmark PID control in terms of performance and complexity.

2. Activated sludge bioreactor process

2.1. Working principle of the activated sludge treatment plant

Industrialization and urbanization have led to one of the most serious problems
of our days: sewage, the polluted water that travels across our cities through
underground sewers and ends up in our lakes and rivers, and eventually raises
the concern of the states and governments, which subsequently appliy stringent
conditions on industry and devices to overcome this problem.

The presence of nitrogen in the water and waste water was regulated by
the Community law in the late 1970s. Nitrogen in municipal waste water is
primarily treated biologically. The activated sludge is one of methods that are
capable of carrying out this treatment.

In 1982, the International Association on Research and Control of Water
Pollution (IAWPRC) has implemented the activated sludge model No1. In
1995, model No2, including nitrogen removal and biological phosphorus removal
(ASM2) was published. In 1999, this process has been replaced by the ASM2d
model, including combined denitrification.
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In 1998, the working group, dealing with the problem, decided to develop a
new process ASM3 (Jeppsson, 1996).

The treatment of organic materials and nitrogen is carried out in a single bio-
reactor aerated intermittently (Fig. 1). In the presence of oxygen, autotrophic
bacteria oxidize ammonia to nitrite nitrogen and nitrate (nitrification), which
will be reduced to nitrogen gas by heterotrophic bacteria in the absence of oxy-
gen (denitrification). The decrease of the carbonaceous filler produces biomass
that has to be regularly removed from the processing systems. This is done in
the clarifier and the respective output is largely recycled to the bio-reactor, so
that only a small amount of sludge is extracted from the system.
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Figure 1: Diagram of activated sludge wastewater treatment process

2.2. Modelling of activated sludge waste water treatment plants

The ASM1 model (Henze et al., 1987) is able to accurately represent the be-
havior of the process when treating effluent loaded with nitrogen and carbon
materials, the initial model being composed of thirteen variables.

In Nagy et al. (2010), a method for the scale model in the activated single
aeration basin with sludge surface has been developed on the basis of a number
of simplifications, listed below:

• The variable describing alkalinity is not included,
• The products of the biomass decomposition (dead) (XP ) are included
together with the inert organic compounds and the particulate is given by
the variable (XI)

• Oxygen concentration is considered as state variable,
• The inert soluble and particulate organic matter (SI) and (XI) are ne-
glected in the reduced model,

• Inhibition of the mechanism of hydrolysis and ammonification, and elimi-
nation of the two fractions of organic nitrogen, soluble SND and particu-
late XND are accounted for through, respectively,

• The growth of autotrophic active biomass (XBA) is not taken into account,
• Nitrogen in the form of nitrate and nitrite, SNO, is a small quantity and
is thus eliminated
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• The mechanism of formation of nitrogen in ammonia form, SNH , is not
considered to be critical for the control.

The treatment method with activated single aeration basin surface sludge
in the aerobic phase consists in mixing used waters with a rich mixture of
bacteria in order to degrade the organic matter. The ASM1 model will then
only consider the organic substrate removal process, and will be reduced to the
interaction of three state variables. The final mathematical representation is
given by equations (1).
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where XBH , SS , and SO represent, respectively, the heterotrophic biomass con-
centration, substrate concentration and the dissolved oxygen concentration.

Usually, qR and qW , being, respectively, the input recycled flow and the
wasted flow, represent the fractions of input flow qin:

qR = fRqin, 1 ≤ fR ≤ 2

qW = fW qin, 0 ≤ fW ≤ 1.

The parameters used in this model are defined in Table 1 (Nagy, 2010).
In Table 1, YH is the conversion rate of substrate/ heterotrophic biomass,

fP is the fraction of inert DCO, µ̂H the maximum growth rate of heterotrophic
biomass, bH the mortality rate of heterotrophic biomass, KS the coefficient of
half saturation of rapidly biodegradable substrate, KOH the coefficient of half
saturation of oxygen for heterotrophic biomass, K the gain regulator of oxygen,
V the volume setting of the reactor, Smax

O the concentration of oxygen satura-
tion, and fR, fW the fractions of the recycled and wasted sludge, respectively.

3. Introduction to the fuzzy Takagi-Sugeno model

TS (Takagi-Sugeno) models represent a very interesting mathematical formula-
tion of nonlinear systems. These can thereby be easily represented, regardless
of their complexity, with a simple structure, based on a nonlinear combination
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Table 1: Parameters of ASM 1 model

Notation Value Unite
YH 0.67 −
fP 0.08 −
µ̂H 4 [1/24]h−1

bH 0.3 [1/24]h−1

KS 10 g/m3

KOH 0.2 g/m3

K 2.3 m−3

V 6000 m3

Smax
O 10 g/m3

fR 1.1 −
fW 0.03 −

of a set of linear models (Murray-Smith and Johansen, 1997; Li et al., 2004;
Smets et al., 2006). This simple structure with interesting properties, makes TS
models easily exploitable from a mathematical point of view, allowing them to
be used as internal models in linear MPC algorithms such as GPC, DMC and
PFC, widely recognised for their proven efficiency in the industrial and academic
world.

3.1. Representation of fuzzy Takagi Sugeno models

Fuzzy Takagi Sugeno models are represented by fuzzy rules such as ”IF-THEN”
(Takagi and Sugeno, 1985). The ith fuzzy rule of continuous TS model is then
written as:

if z1(t) is F i
1(z1(t)) and · · · zp(t) is F i

p(zp(t)),

then

{

x(t+ 1) = Aix(t) +Biu(t),

y(t) = Cix(t) +Diu(t) i=1,2,. . . ,r.
(2)

where F i
j (zj(t)) for j = 1, . . . , p are fuzzy sets, p is the number of fuzzy rules,

zj(t) are the premise variables that depend on the input and/or state of the
system, x(t) ∈ ℜn, y(t) ∈ ℜq, u(t) ∈ ℜm, respectively, represent the state vec-
tor, the output vector and the control vector. Ai ∈ ℜn×n, Bi ∈ ℜn×m, Ci ∈
ℜq×n, Di ∈ ℜq×m are matrices describing the system dynamics.

Each rule is assigned a weight noted µi(z(t)), which depends on the degree
of membership of the premise variables zj(t) in the fuzzy subsets F i

j (zj(t)) and
the connector ”and” connecting the premises selected such that:
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µi(z(t)) =

p
∏

j=1

F i
j (zj(t)), i=1,2,. . . ,r. (3)

F i
j (zj(t)) represent the values of the membership function zj(t) with respect

to the fuzzy set F i
j . We then have the following properties:











r
∑

i=1

µi(z(t)) = 1,

µi(z(t)) ≥ 0 i=1,2,. . . ,r.

(4)

Finally, the defuzzification of the fuzzy model provides the state represen-
tation of a nonlinear model by interconnecting local time invariant models by
nonlinear activation functions, obtaining :



















x(t+ 1) =

∑r
i=1 µi(z(t)){Aix(t) +Biu(t)}

∑r

i=1 µi(z(t))
,

y(t) =

∑r

i=1 µi(z(t)){Cix(t) +Diu(t)}
∑r

i=1 µi(z(t))

. (5)

3.2. Construction of fuzzy Takagi-Sugeno models

For obtaining a TS model, three approaches are widely used in the literature.
The first approach relies on identification techniques (Gasso, 2000). The second
is based on the linearization of the nonlinear model around several operating
points, and the third one is based directly on the analytical knowledge of the
nonlinear model and is known as the nonlinear transformation sectors (Tanaka
and Wang, 2001; Morere, 2001; Wang et al., 1996). The principle thereof is
based on a polytopic convex nonlinear transformation of the dynamic system’s
nonlinear terms.

Unlike the first two approaches that give a definite approximation of the
nonlinear model, the third method provides a representative and accurate TS
model that is as close as possible to the nonlinear model. Note that the sector
nonlinearity approach allows to associate an infinity of TS models with a non-
linear system, based on the division of nonlinearities achieved. A systematic
approach to cutting nonlinear areas is based on the following Polytopic Convex
Transformation (PCT) lemma (Tanaka and Wang, 2001; Morere, 2001):

Lemma 1 Polytopic Convex Transformation (PCT) (Tanaka and Wang, 2001)
Let zj((x(t), u(t)) be a bounded continuous function on the domain D ⊂ ℜn ×
ℜm, having values in ℜ, with x(t) ∈ ℜn, u(t) ∈ ℜm .

Then there exist two functions (k = 1, 2)

Fj,k : D 7→ [0, 1]
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(x(t), u(t)) 7→ Fj,k(x(t), u(t))

with Fj,1(x(t), u(t)) + Fj,2(x(t), u(t)) = 1 such that

zj(x(t), u(t)) = Fj,1(x(t), u(t))zj,1 + Fj,2(x(t), u(t))zj,2

for all zj,1 ≥ max
x,u∈D

{zj(x, u)} and zj,2 ≤ min
x,u∈D

{zj(x, u)}.

The functions Fj,1 and Fj,2 are defined by:

Fj,1(x(t), u(t)) =
zj(x(t), u(t)) − zj,2

zj,1 − zj,2

Fj,2(x(t), u(t)) =
zj,1 − zj(x(t), u(t))

zj,1 − zj,2

where

zj,1 = max
x,u

{zj(x, u)}, zj,2 = min
x,u

{zj(x, u)}.

3.3. Quasi-linear parameter variable form ”Quasi-LPV”

The first step is to convert the nonlinear model into the ”Quasi-Linear Variable
Parameters” form, called ”Quasi-LPV” model, given by (6)

{

ẋ = A(x, u)x +B(x, u)u,

y = C(x, u)x +D(x, u)u.
(6)

There are several possible choices for the Quasi-LPV form, depending on
the choice of premise variables. The Quasi-LPV form, preferably contains a low
number of premise variables, also depending on the lowest number of state vari-
ables. Reduction of the number of premise variables affects proportionally the
number of sub-models, the overall model structure, as well as system feasibility.

Observability/controllability of the overall system must also be ensured for
each submodel (Huang and Jadbabaie, 1999). In order to ensure the controlla-
bility/observability of the overall system, finding a solution for the LMIs using
the Lyapunov method associated to each submodel is then necessary (Guerra
et al., 2009).

3.4. Application to ASM1 model

The activated sludge process, shown in Fig. 1, is represented by the system of
differential equations (1) that contains four nonlinearities. The selected premise
variables that ensure the satisfaction of the Quasi-LPV form selection criteria,
previously cited, are shown in formulae (7):
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z1(SS , SO) =
SS

KS + SS

SO

KOH + SO

z2(qin, V ) =
qin
V

,

z3(qa) = qa,

z4(XBH) = XBH .

(7)

The number of sub-models is given by 2p with p being the number of premise
variables, i.e, 24 = 16 sub-models, which are presented by pairs (Ai, Bi)(i =
1, . . . , 16), as this is shown below

A1 = A(z1,1, z2,1, z3,1) B1 = B(z2,1, z4,1)

A2 = A(z1,1, z2,1, z3,1) B2 = B(z2,1, z4,2)

A3 = A(z1,1, z2,1, z3,2) B3 = B(z2,1, z4,1)

A4 = A(z1,1, z2,1, z3,2) B4 = B(z2,1, z4,2)

A5 = A(z1,1, z2,2, z3,1) B5 = B(z2,2, z4,1)

A6 = A(z1,1, z2,2, z3,1) B6 = B(z2,2, z4,2)

A7 = A(z1,1, z2,2, z3,2) B7 = B(z2,2, z4,1)

A8 = A(z1,1, z2,2, z3,2) B8 = B(z2,2, z4,2)

A9 = A(z1,2, z2,1, z3,1) B9 = B(z2,1, z4,1)

A10 = A(z1,2, z2,1, z3,1) B10 = B(z2,1, z4,2)

A11 = A(z1,2, z2,1, z3,2) B11 = B(z2,1, z4,1)

A12 = A(z1,2, z2,1, z3,2) B12 = B(z2,1, z4,2)

A13 = A(z1,2, z2,2, z3,1) B13 = B(z2,2, z4,1)

A14 = A(z1,2, z2,2, z3,1) B14 = B(z2,2, z4,2)

A15 = A(z1,2, z2,2, z3,2) B15 = B(z2,2, z4,1)

A16 = A(z1,2, z2,2, z3,2) B16 = B(z2,2, z4,2).

Finally, the nonlinear system (1) will be the sum of 16 linear models interpolated
by the nonlinear functions, given as a final result in (8):

x(t+ 1) =

∑16
i=1 µi(z(t)){Aix(t) +Biu(t)}

∑16
i=1 µi(z(t))

, (8)

where µi(z(t)) (Fig. 4) are given through the formula (3) as the following ex-
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pressions:

µ1(z(t)) = F1,1(z1(t))F2,1(z2(t))F3,1(z3(t))F4,1(z4(t))

µ2(z(t)) = F1,1(z1(t))F2,1(z2(t))F3,1(z3(t))F4,2(z4(t))

µ3(z(t)) = F1,1(z1(t))F2,1(z2(t))F3,2(z3(t))F4,1(z4(t))

µ4(z(t)) = F1,1(z1(t))F2,1(z2(t))F3,2(z3(t))F4,2(z4(t))

µ5(z(t)) = F1,1(z1(t))F2,2(z2(t))F3,1(z3(t))F4,1(z4(t))

µ6(z(t)) = F1,1(z1(t))F2,2(z2(t))F3,1(z3(t))F4,2(z4(t))

µ7(z(t)) = F1,1(z1(t))F2,2(z2(t))F3,2(z3(t))F4,1(z4(t))

µ8(z(t)) = F1,1(z1(t))F2,2(z2(t))F3,2(z3(t))F4,2(z4(t))

µ9(z(t)) = F1,2(z1(t))F2,1(z2(t))F3,1(z3(t))F4,1(z4(t))

µ10(z(t)) = F1,2(z1(t))F2,1(z2(t))F3,1(z3(t))F4,2(z4(t))

µ11(z(t)) = F1,2(z1(t))F2,1(z2(t))F3,2(z3(t))F4,1(z4(t))

µ12(z(t)) = F1,2(z1(t))F2,1(z2(t))F3,2(z3(t))F4,2(z4(t))

µ13(z(t)) = F1,2(z1(t))F2,2(z2(t))F3,1(z3(t))F4,1(z4(t))

µ14(z(t)) = F1,2(z1(t))F2,2(z2(t))F3,1(z3(t))F4,2(z4(t))

µ15(z(t)) = F1,2(z1(t))F2,2(z2(t))F3,2(z3(t))F4,1(z4(t))

µ16(z(t)) = F1,2(z1(t))F2,2(z2(t))F3,2(z3(t))F4,2(z4(t)).

Here, the state vector is: x = [XBH , SS , SO]
T
, and the input vector is

u =
[

qW , qa, X
in
BH , Sin

S

]T
, respectively, the wasted flow (the control variable),

the air flow input, heterotrophic bacteria and carbon substrate inputs being
treated as non controllable input disturbances.

The choice of the input vector for the model is heavily influenced by real
conditions, challenging the chosen MPC control strategies, these real conditions
including constraints, disturbances as well as realistic control variables.

3.5. Model evaluation

The evolution of the nonlinear system outputs, given by the differential equa-
tions (1) and the TS model outputs, obtained through application of the for-
mulation (5), using the inputs shown in Fig. 2, can be seen in Fig. 3.

For space and clarity reasons, only eight of the sixteen weighting functions
of the multiple model are presented in Fig. 4.

The air flow input qa influences directly the dissolved oxygen concentration
SO, an increase of the air flow produces an increase of the oxygen concentration
while its drop produces the decrease of the oxygen concentration.

The soluble carbon substrate and the heterotrophic biomass concentration
(respectively SS and XBH) are influenced by their corresponding input concen-
trations (Sin

S and X in
BH).
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Figure 2: System inputs

The qin input flow influences the three concentrations: XBH , SS , and SO.
An increase of the input flow qin produces an increase of the substrate con-
centration SS and the heterotrophic biomass concentration XBH , as well as a
decrease of the dissolved oxygen concentration SO.

As expected, it can be clearly seen that the obtained TS model, based on
a polytopic convex nonlinear transformation (see Section 3.3) called ”Quasi-
LPV” model (Matoug and Khadir, 2012), follows scrupulously the chosen ASM1
model.

The evaluation gives the MSE (Mean Square Error) equal to 0.1614. The
TS multi-model formulation can therefore be used in a control based strategy
also because of subsystem linearity.

4. Multi-model predictive control based on TS model

A TS-GPC formulation may be obtained based on the original GPC algorithm
(Clarke et al., 1987) using as an internal prediction model the TS formulation,
obtained in Section 3.4. In what follows, the original MIMO GPC algorithm is
described and applied to each sub-model as the first step. The global control law
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Figure 3: Outputs of the nonlinear system and multi-model

modifications needed to use the complete TS model (a nonlinear aggregation of
the 16 submodels) are presented as the second step.

4.1. Local MIMO GPC

In this section, the procedure to obtain the GPC control law formulation is
presented for the MIMO case. System dynamics is formulated using state space
description as:

{

x(k + 1) = Aix(k) +Biu(k)

y(k) = Cix(k) +Diu(k)
(9)

where x is the n-dimensional state vector, Ai, Bi, Ci, Di are matrices of di-
mensions (n× n), (n×m), (r × n), and (s× r), respectively. The MIMO GPC
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Figure 4: Nonlinear weighting function

control law is calculated to minimize the following cost function:

J(N1, N2, Nc, λ) =

N2
∑

j=N1

(y(k + j)− w(k + j))T (y(k + j)− w(k + j))

+

Nc
∑

j=1

λ(∆u(k + j − 1))T∆u(k + j − 1)),

(10)

where y is the r-vector of predicted outputs, w is the r-vector of the setpoint
and ∆u is the s-vector of input increments. The following section develops the
calculation steps of the MPC optimal control law minimizing the above cost
function (10).

4.1.1. Predicted outputs:

Consider a MIMO system (9). The outputs y(k+ j)(j = N1, . . . , N2) based on
the system information available up to the sampling time k using a recursion
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procedure from all the subsystems can be computed and are given by:

yi(k + j) = CAjx(k) +

j−1
∑

p=0

CAj−p−1
i Bi∆u(k + p). (11)

In the matrix form we get:

yi(k + j) = [CAj−1
i Bi CAj−2

i Bi · · ·CAiBi CBi]














∆u(k)
∆u(k + 1)

...
∆u(k + j − 2)
∆u(k + j − 1)















+ CAj
ix(k) (12)

where

y =

































y1(k +N1)
...

yr(k +N1)
...
...

y1(k +N2)
...

yr(k +N2)

































(N2−N1+1)r×1

(13)

∆ui =















































∆u1(k)
...

∆us(k)
∆u1(k + 1)

...
∆us(k + 1)

...

...
∆u1(k +Nu− 1)

...
∆us(k +Nu− 1)















































(Ncs×1

. (14)

The predicted outputs are given in a more compact form as follows:

yi = Gi∆u+ fi. (15)
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Matrices G and f are calculated using the Diophantine-based technique (Clarke
et al., 1987), obtaining: to fit the control law requirements:

Gi =







CAN1−1
i Bi CAN1−2

i Bi · · · 0
...

...
. . .

...

CAN2−1
i Bi CAN2−2

i Bi · · · 0







(Ncs×1

(16)

f =







CAN1

...
CAN2






x(k). (17)

4.1.2. MIMO GPC control law formulation

The cost function (10) can be written in a more compact form, by substituting
the predicted outputs by the respective expression:

J(N1, N2, Nc, λ) = (y − w)T (y − w) + λ∆uTλ∆u

= (G∆u + w − w)T (G∆u + w − w)T

+ λ∆uTλ∆u.

(18)

Simplifying the equation above one gets:

J = 1
2∆uTH∆u+ 2[(f − w)TG] + f0 (19)

where H = 2[GTG+ λI], f0 = (y − w)T (y − w).

The optimal solution is obtained upon setting:

∂J

∂∆u
= 0

∆u = −2H−1GT (f − w),

= [GTG+ λI]−1GT (w − f).
(20)

Finally, the actual control signal sent to the process is constituted by the
first s elements of the optimal solution obtained above.

The MIMO GPC control law developed in (20) is based on the system having
input ∆u. The model has to be transformed accordingly. Once this is done,
GPC control equation can be derived and used to compute the output. The
control variable u is then computed as: u(k + 1) = u(k) + ∆u(k + 1) and only
then, constraints, limiting u at every sample time instant, are applied.
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4.2. The multi-model generalized predictive control

In this section, a parallel control configuration (shown in Fig. 5) is used to
implement the multi-model predictive controller. In Section 4.1, the local stable
generalized controller (controller i) has been designed for each model (Ai, Bi),
and so, the global controller can be implemented by weighted integration of all
the local controllers. That is, for the given regression vector x(k), the global
control law is given by

∆u(k) =
∑r

i=1 µi∆ui/
∑r

i=1 µi. (21)

Figure 5: Weighted integration of local controller

5. Adaptive TS-GPC

The adaptive TS-AGPC controller uses an internal model, resulting from an
adaptive switching among local TS models. Therefore, a unique ith local model
is used to describe the global system influencing the resulting control input.

Fig. 6 shows the switching scheme used in the TS-AGPC approach, based on
the biggest value of the weighting functions µi. At an instant k, the weighting
functions µi, associated with the 16 submodels are calculated and the biggest
value of µi is found. Consequently, this µi is the weight of the selected model
i and, therefore, we use the latter to predict the process output and calculate
the optimal control increment ∆u(k).

Unlike the TS-GPC control approach that uses a combination of all 16
sub control increments wherein the output of each submodel will be calculated
through the appropriate control increment, the TS-AGPC control uses at each
time k of a control increment i, a unique selected submodel in order to calculate
the associated control law.
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Figure 6: Switching of local controller in the TS-AGPC approach

6. Simulation results

A set of simulations have been performed in order to test the developed con-
trollers, under the following assumptions and parameters:

1. 9 hours of simulation time, corresponding to 900 samples, obtained with
the sampling interval of 36 s.

2. To ensure flexible control, Nc is equal to 1, in the case where there is no
unstable pole in the open-loop system.

3. The prediction horizon N2 = 50 (for the maximum efficiency, N2 is equal
to the response time of the system).

4. Input constraints are imposed on the waste water flow qW .
5. Disturbances appear through air flow input qa, heterotrophic bacteria

X in
BH and carbon substrate input Sin

S .
6. Uncertainties concern the parameter of the mortality rate of heterotrophic

biomass bh.

Fig. 7 represents the fuzzy weight µi(z(t)), given by equation (3), when the
above listed assumptions are applied.

According to Fig. 7, the introduced input and parametric disturbances have
seriously impaired the weighting functions µi as well as the performance of the
overall model. The explanation is given by the fact that the premise variables,
which depend on qa, X

in
BH , and Sin

S , are in this case heavily affected by distur-
bances in the air flow qa, heterotrophic bacteria X in

BH and carbon substrate Sin
S

(see Fig. 7).

From Fig. 7 one can clearly see that at the sampling times 3h50mn and
4h20mn, µ2 and µ4 overlap. The same observations can be made for the samples
7h50mn, 8h00mn and 8h20mn, where µ1 and µ3 overlap. Overlapping in µi is
the evidence for the increased importance of associated submodels, for instance,
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Figure 7: Nonlinear weighting function with disturbances

models 2 and 4 at time 3h50mn, and models 1 and 3 at time 7h50mn.

From Fig. 8, it can be seen that the TS-AGPC control, in the absence of dis-
turbances, gives excellent results, slightly better than TS-GPC control; however,
the effects of the sudden changes in the submodel selection around 0h83mn, as
we switch from submodel 5 to submodel 6, and around 3h36mn, as we switch
from submodel 5 to submodel 2, can nevertheless be noticed. This phenomenon
is, logically, not apparent when using TS-GPC, as the controller uses the com-
plete TS model with the combination of the 16 submodel outputs (see Fig. 9).

In the presence of disturbances and constraints, the TS-AGPC shows weak-
nesses in different scenarios (see Fig. 10), as it uses only one model at a time for
control law calculation, based on the maximum values of the weighting functions
µi. It will, then, select one submodel at a time, neglecting the output of the
second submodel of importance in the case of the overlapping in µi. This will
induce a loss of valuable information and process model mismatch, as the global
model is the sum of all sub-models, where each submodel represents better the
global system in a specific region of input/output space. The rest of the mod-
els represent additional information, necessary to better render the behavior
of the global nonlinear model. These pieces of information are lost during the
switching process.
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(a)

(b)

Figure 8: TS-AGPC without disturbances: (a) XBH ; (b) qw
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(a)

(b)

Figure 9: TS-GPC without disturbances: (a) XBH ; (b) qw
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(a)

(b)

Figure 10: TS-AGPC with disturbances: (a) XBH ; (b) qw
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To overcome this problem, we propose to use more than one submodel at
a time, i.e., for instance, choosing both submodels 1 and 3 when µ1 and µ3

overlap, as well as both sub models 2 and 4 when µ2 and µ4 overlap. The
performance of the approach, which uses the combination of the two winning
models (TS-AGPC2) during switching, is shown in Fig. 11.

The controller can be implemented by weighted integration of the two win-
ning local controllers during switching and is then given by

∆u(k) =

4,3
∑

i=2,1

µi∆ui/

4,3
∑

i=2,1

µi. (25)

Opting for a combination of sub models as a multi-model control strategy
gives rise to the following question: why not then use the complete TS model,
leading to the TS-GPC approach, instead?

No complementary efforts from the designed controllers ought to be under-
taken, even in the presence of disturbance, when the complete TS model is used
as an internal model in the TS-GPC approach, as all submodels are used in
the calculation of the control increment (see Fig. 12). This gives the TS-GPC
the power to follow any reference trajectory and reject any kind of reasonable
disturbances.

To show the robustness-related superiority of MPC strategies over classi-
cal control, represented by a PID (tuned in the best manners, yielding Kp =
170;Ki = 20;Kd = 90), the corresponding tests have been performed. It can
be clearly seen that the PID, no matter how optimally tuned, cannot stand up
to the performance of MPC in the absence of disturbances (Fig. 13), whereas
in the presence of disturbances and constraints it fails to provide acceptable
reference tracking (Fig. 14). It can be clearly seen from Fig. 14 that the control
variable (qw) quickly reaches the constraints and the controller is not able to
adjust afterwards.

On the contrary, the MPC strategies succeeded in providing accurate con-
trol without disturbances (Figs. 8 and 9) for both strategies, TS-GPC and TS-
AGPC, respectively. However, in the presence of severe constraints and distur-
bances, TS-AGPC suffers from performance losses when model switching occurs
(Fig. 10), while TS-GPC maintains practically the same level of performance
(Fig. 12).

Indeed, on the one hand, the output errors, given in Table 2, show that TS-
GPC produces a sensibly lower tracking error than the one obtained with TS-
AGPC. On the other hand, the input constraints are scrupulously respected by
TS-GPC, while in the case of TS-AGPC control with disturbances, constraints
are clearly violated, leading to a faulty following of the set reference.

The use of the combination of two dominant sub-models in the switching
process of the TS-AGPC2 approach, improves the performance of TS-AGPC,
and the results outperform those of the TS-GPC in the presence of disturbances.



Comparison between GPC and adaptive GPC based on Takagi Sugeno multi-model 169

(a)

(b)

Figure 11: TS-AGPC2 with disturbances: (a) XBH ; (b) qw
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(a)

(b)

Figure 12: TS-GPC with disturbances: (a) XBH ; (b) qw
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(a)

(b)

Figure 13: PID without disturbances: (a) XBH ; (b) qw
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(a)

(b)

Figure 14: PID with disturbances: (a) XBH ; (b) qw
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Table 2: TS-GPC, TS-AGPC, TS-AGPC2, and PID control performances

TS-GPC TS-AGPC TS-AGPC2 PID

MAE with parametric and input disturbances

4.8307 127.5360 4.6243 2.8917

MAE without parametric and input disturbances

4.5967 4.3898 4.3898 214.1286

Figures 15 and 16 illustrate the performance of the different controllers,
derived in this paper, without and with disturbances, respectively. The figures
relate faithfully the results obtained and displayed in Table 2, and are shown
here for a better visual comparison in terms of MAE, overshooting, constraint
violation, etc. However, the presented PID performance (Fig. 15) is the one
without constraints, as when constraints considered, the PID performance drops
drastically.

7. Conclusions

The TS multi-model approach permitted to accurately model the ASM1 sludge
reactor process, giving a model construction, which can be used in MPC based
control strategy. MPC in general and GPC in particular, based on an accurate
linear model, are well able to obtain high control performances in case of setpoint
changes and parametric disturbances and constraints. The designed TS-GPC
controller has been shown to outperform, for the here considered system, the
TS-AGPC and the benchmark PID, especially when taking into account input
constraints. However, the performance of TS-AGPC or TS-AGPC2 may be
preferred over that of TS-GPC, if severe disturbances are not considered, due
to simpler control law formulations.
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