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1Faculty of Computer Science, Warsaw School of Information Technology
ul. Newelska 6, 01-447 Warsaw, Poland

kulma@wit.edu.pl
2Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland
{owsinski, stanczak, alex, sep}@ibspan.waw.pl

Abstract: The paper is devoted to the analysis of a graph trans-
formation, pertinent for the transport and logistic systems and their
planning and management. Namely, we consider, for a given graph,
representing some existing transport or logistic system, its transfor-
mation to a (non-equivalent) so-called ”hub-and-spoke” structure,
known from both literature and practice of transportation and lo-
gistics. This structure is supposed to bring benefits in terms of func-
tioning and economic performance of the respective systems. The
transformation into the ”hub-and-spoke” is not only non-equivalent
(regarding the original graph of the system), but is also, in gen-
eral, non unique. The structure sought is composed of two kinds
of elements - nodes of the graph (stations, airports, havens, etc.),
namely: the subgraph of hubs, which, in principle, ought to con-
stitute a complete sub-graph (a clique), and the ”spokes”, i.e. the
subsets of nodes, each of which is connected in the ultimate struc-
ture only with one of the hubs. The paper proposes a relaxation
of the hub-and-spoke structure by allowing the hub subgraph not
to be complete, but at least connected, with a definite ”degree of
completeness” (alpha), from where the name of ”alpha-clique”. It
is shown how such structures can be obtained and what are the re-
sulting benefits for various assumptions, regarding such structures.
The benefits are measured here with travel times. The desired struc-
tures are sought with an evolutionary algorithm. It is shown on an
academic example how the results vary and how the conclusions,
relevant for practical purposes, can be drawn from such analyses,
done with the methods here presented.
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1. Introduction

Optimization of transport systems constitutes an important challenge nowa-
days, both for the logistics and transport companies and for the specialists,
cooperating with them. It is possible to build faster transport means, roads of
bigger capacity etc., but this requires huge financial expenses. Improvement of
the system without big investments sometimes is possible by changing only the
operation mode. The hub and spoke structure of the transport system, which
we consider in this paper, is one of such ideas (see O’Kelly, 1987; O’Kelly and
Bryan, 2002). Hub and spoke is one of the structures, derived and possibly
implemented for an existing transport system, which can be obtained by ana-
lyzing the corresponding graphs. Improvement of some of the important system
parameters, or at least a simplification of the structure, leads to implementation
of the hub and spoke approach. The hub and spoke is a class of graph structures
having definite properties – described later on – which can, under certain condi-
tions, be obtained from the initial, problem-defined, structure. Here we are not
dealing with an equivalence between the initial and the hub and spoke structures,
but with a transformation, which ought to preserve definite key properties of
the initial structure, while securing a possibly significant improvement in other
properties. The hub and spoke structure is widely used in telecommunications
(Klincewicz, 1998), postal systems (Cetiner, Sepil and Süral, 2010), and also
in transportation (Campbell and O’Kelly, 2012). The hub and spoke structure
applied to a graph of connections is intended to resolve the problem of sepa-
rating some tightly bounded structures in a graph, corresponding to some real
system, especially regarding the transportation networks (Coyle, Bardi and No-
vack, 1994). We propose in the present paper to apply an evolutionary method
to obtain the hub and spoke structure that will improve the functioning of the
respective transport system.

There exist also other evolutionary approaches to the hub and spoke prob-
lem, see, e.g. Eghbali Zarch, Abedzadeh and Setak (2013). The application of
the hub and spoke structure for a given graph of connections makes it possible
to concentrate the flows of transported persons or goods. For the best results,
the hub subgraph should be a clique. Yet, in practical cases it is generally of-
ten impossible to find such a clique in the original graph, and so we propose a
relaxation of this condition and introduce the notion of an α-clique of vertices
featuring cheap, fast, frequent or high-capacity connections (depending on the
modeled transportation system), while the spoke vertices are connected only to
the relevant hub vertices, see Fig. 1 for an instance. The idea of hub and spoke
structure is meant to enable the elimination of many bilateral connections be-
tween majority of vertices. Instead, only connections among the hub vertices
and the local connections between the individual hub vertices and their corre-
sponding spoke vertices are required. Appropriate choice of several transit nodes
and local connections, forming the hub and spoke structure, can improve the ef-
ficiency of the respective transport system, reducing costs and increasing service
quality. The graph of connections, after concentration, when turned into the hub
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Figure 1. Main hubs in a route map for a major US airline. (Source: Continental
Airlines Route Maps)

and spoke structure, reduces also the complexity of the management problem.
The advantages of the properly designed hub-and-spoke transport structure may
be as follows: more frequent connections among points, lower average times of
journeys (including all kinds of waiting times), lower costs of transport, lower
number of required transport means to service all connections (elimination of
serious capacity slacks on low-demand connections, while maintaining connec-
tion frequencies), higher facility of synchronizing, timetabling, etc. with respect
to local connections.

The hub and spoke method of graph transition is useful in the instances,
where direct connections among spokes within one hub cluster are negligible and
of importance are only long distance connections with other clusters (hubs and
their spokes). In that case all local transfers (within the same cluster) between
spokes are performed through the local hub nodes (no direct local connections
among spokes of the same hub are necessary nor allowed).

It is possible to use several basic approaches to transform the unstructured
graph of connections into the hub and spoke structure. In this paper we use
two of them:

- the method, which searches for the minimum number of hubs, constituting
at least a connected subgraph, with all remaining nodes connected to their
hubs,

- the number of hubs is predetermined, with possibility of direct determi-
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nation of hub nodes, while the (rest of) hubs and the spoke nodes are
selected by the solving method (the number of hubs, predetermined in
this approach, should, of course, be bigger than the minimum value, men-
tioned in the previous point).

A special case of the approaches mentioned is constituted by the method with
the minimum number of hubs. It may be useful when creating communication
hubs is very difficult or expensive. It then appears necessary to pick up as low
number of hubs as possible, while preserving graph connectivity.

The hub and spoke method has been developed on the basis of O’Kelly (1987)
and O’Kelly and Bryan (2002), where similar structures and their applications
are described. Computational hardness of graph transformations and lack of
efficient, dedicated algorithms, motivated us to use the evolutionary algorithm
(Cowen, 1998). In our work, the evolutionary algorithm is responsible for the
selection of the optimized configuration of spoke nodes attached to their com-
munication hubs and the best candidates for hubs, if they are not predefined by
the user. A short introduction to the evolutionary method and the discussion on
the obtained results for the established conditions, regarding benefits in terms
of time, after the transformation of the transportation system, are presented
further in this paper.

2. Basic concepts

2.1. Preliminaries

The notions given below are based on Wilson (1996).
Thus, a graph is a pair G=(V, E ), where V is a non-empty set of vertices

and E is a set of edges. Each edge is represented by a pair of vertices {v1, v2}
with v1 6= v2. Two vertices in a graph G=(V, E ) are called incident if for vi,
vj ∈ V there is {vi, vj} ∈ E or vi = vj . Each vertex is incident to itself. A
subgraph of graph G=(V, E ) is a graph G’=(V’, E’), where V’⊆V , V’ 6= ∅

and E’⊆E such that for all e∈E and e = {v1, v2} if v1, v2 ∈ V ’ then e ∈ E ’.
A degree of a vertex is the number of edges, to which this vertex belongs. A
graph G=(V, E ) is a complete graph , if for each pair of vertices there is an
edge e∈E between them. A clique (a complete subgraph) Q=(Vq, Eq) in a
graph G=(V, E ) is a graph such that Vq ⊆ V and Eq ⊆ E and Card(Vq)=1
or each pair of vertices v1, v2 ∈ Vq fulfils the condition {v1, v2} ∈ Eq (Cormen
et al., 2009). Each subgraph of a clique is a clique. A neigbourhood matrix
of a graph G=(E, V ) with Card(V )=n is a square binary matrix n×n with
rows and columns corresponding to vertices. There is 1 in the aij cell of the
neighborhood matrix if vertices vi and vj are connecetd, 0 in the opposite case.

2.2. An α-clique

Let:
- A=(V’, E’) be a subgraph of a graph G=(V, E ), with V’⊆V, E’ ⊆E,
k=Card(V’)
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- ki be the number of vertices vj ∈ V’ such that vi, vj ∈E’.

1. For k=1 the subgraph A of graph G is an α-clique(α).
2. For k>1 the subgraph A of graph G is an α-clique (α) if for all vertices

vi∈V’ the condition α =
ki+1
k

is fulfilled, where α ∈ (0, 1].

In other words, an α-clique of a graph is its such subgraph that each vertex of
this subgraph is connected with not less than the proportion α of the vertices
of this subgraph. Further on, we will use the term of α-clique meaning α-
clique(α) for an earlier established α. More information on α-clique and
its properties can be found in Mażbic-Kulma et al. (2008) and Potrzebowski,
Stańczak and Sȩp (2007, 2008).

There is, however, another issue to explain, this issue being connected with
the construction of a greedy algorithm for solving the possible maximum α-
clique(γ) problem. Namely, a subgraph of an α-clique(γ) is not necessarily an
α-clique(γ). This is due to the simple fact that x+1

x+2
>

x
x+1

. As a result of this
fact, a greedy approach, in which we would try to find an improved solution
that is close to an already found one, by adding one or more new vertices to it,
could fail.

Let α-clique A=(V’, E’) be a graph with α>0.5; thus, for all vertices vi
belonging to α-clique(α), ki+1>0.5 k.

The set theory implies that if α>0.5, then for each pair of vertices the sets
of vertices incident with them have a non-empty intersection, so an α-clique(α)
with α>0.5 constitutes a connected graph. If α60.5, the obtained subgraph
may be disconnected.

Now, referring to some other similar proposals, in distinction from the k-
plex, proposed by S. Seidman (1978), and considered in Pattillo, Youssef and
Butenko (2013) as the s-plex, in the case of an α-clique the difference between
the minimum vertex degree in an α-clique and the degree of a vertex in a
corresponding complete graph (a clique) is changing according to the number
of vertices in the graph. In an α-clique, the α parameter is constant, but the
minimum degree is changing. The advantage of such an approach is some sort
of constant graph structure, but there are also some inconveniences. The most
important of them is the fact that not every subgraph of an α-clique(α) has to
be an α-clique(α) for the same α.

According to Pattillo, Youssef and Butenko (2013) there are few other ap-
proaches to the clique relaxation. Let dg(v1, v2) be the shortest length of path
between vertices v1 and v2, diam(G)=max dg(v, u) for all (v, u) ∈ V , δ (G) -
the minimum degree of the vertices in G, κ(G) - the minimum number of edges
whose deletion yields

1. S is called s-clique if for all v1, v2 ∈ V dg(v1, v2) 6 s
2. S is called s-club if diam(G) 6 s
3. S is called s-plex if δ(S) 6 Card(S) − s
4. S is called s-defective clique if S contains at least Card(S)(Card(S)-1)/2

edges
5. S is called k-core if δ(S) > k.
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The most relevant to our work is the (λ, γ) quasi-clique, introduced in
Brunato, Hoos and Battiti (2008). Thus, S is a (λ, γ) if quasi-clique δ(G(S)) >
λ(Card(S) − 1) and ρ(G(S)) > γ. δ(G(S)) is the minimum vertex degree,
ρ(G(S)) is the ratio of the number of edges to the total number of possible
edges (Pattillo, Youssef and Butenko, 2013). The (λ, γ) quasi-clique, intro-
duced in Brunato, Hoos and Battiti (2008) is a generalization of the α-clique.
For γ = 0, the (λ, γ) quasi-clique is an α-clique with α = λ.

3. The idea of generalized hub and spoke

A hub and spoke structure is a graph Hs=(Gh ∪ Gs, E ) where the
subset Gh is a fully connected subgraph (a clique) with the relevant subset of
the set E, each vertex of the subset Gs has degree 1 and is connected exactly
with one vertex from the subset Gh (thus forming a spoke), see O’Kelly (1987);
Mażbic-Kulma et al. (2008). In the quite frequent case of the sparse graphs of
connections, the requirement for the hub subgraph of being a clique in the hub
and spoke structure, cannot be fulfilled. This very strong constraint, imposed
on the final structure of the connection graph, makes it useless for some of the
practical cases. Thus, we decided to weaken this constraint by introducing the
earlier described α-clique instead of a clique as the hub subgraph. Of course, it
would be better, if α were possibly close to 1 (shorter connections with maximum
of two interchange nodes), but in the case of very sparse graphs it is admissible
to reduce this requirement to just that of obtaining a connected graph of hubs.
In the cases with very sparse graphs the transformation may, in general, turn
out to be useless, but the connectedness of a graph constitutes quite a natural
limitation to the possibility of the transformation.

A generalized hub and spoke structure is a graph Hs = (Gh ∪ Gs, E)
where the subset Gh is at least a connected graph∗ with the relevant subset of
the set E,, where each vertex of the subset Gs has degree 1 and is connected
exactly with one vertex from the subset Gh (thus forming a spoke), see Potrze-
bowski, Sta nczak and Sȩp (2008). We propose an evolutionary algorithm that
transforms the connection graph into an instance of the generalized (and also
the standard, when necessary) hub and spoke structure according to problem-
specific restrictions. Depending on the problem requirements, some of the hub
nodes or all of them may be imposed, and, on the top of this, the EA (evo-
lutionary algorithm) method maximizes the strength of connections within the
obtained α-clique of hubs and tries to derive structures with desired properties
(like similar sizes of the derived clusters – hubs and their spokes).

This structure can be used in transport and logistic models, where direct
connections between the spoke nodes, attached to respective hubs, are not very
important and, thus, are not really necessary. The hub and spoke structure can
be derived using one of two possible options. The first one uses a predetermined,

∗The subgraph of hubs should be as close to a clique as possible (an instance of α-clique
with α close to 1), but in the case of sparse input graph it should just be a connected graph
to preserve its functionality.
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Figure 2. A sparse source graph

Figure 3. The generalized hub and spoke

by some expert, number of communication hubs, with the possibility of directly
determining, which nodes should become hubs, or of selecting them by the
solving method. In the second option the method tries to find the minimum
number of hubs, which constitute at least a connected subgraph, with all the
remaining nodes connected to their hubs. It must be noticed that the number of
hubs used in the first option must be bigger than the minimum value, mentioned
for the second option.

4. The method to find the hub and spoke structure for

the given connection graph

4.1. The preliminaries

The evolutionary algorithms, considered to be the useful tools for solving dif-
ficult problems, are often used in graph problems, such as graph coloring, TSP,
graph partitioning, maximum clique search, etc. (Chen, Wang and Okazaki,
2008; Marchiori, 1998; Talbi and Bessiere, 1991), because exact algorithms have
too high computational complexity. It seems fully justified, then, to use the
evolutionary algorithm here, in the considered graph transformation problem.

The standard version an evolutionary algorithm is shown in Algorithm 1.
Nowadays, this common scheme is rather treated as a frame for building more
efficient, specialized evolutionary methods (Michalewicz, 1996), often called the
memetic algorithms (ME) (see Moscato, 1989). The evolutionary or memetic al-
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gorithms, specialised for the particular solved problem, require the introduction
of efficient encoding of solutions, invention of specialized heuristic and random
genetic operators and, finally, the fitness function.

Algorithm 1 The standard evolutionary algorithm

Require: Input data
Ensure: Output data

Random initialization of the population of solutions.
while stop condition is not satisfied do

Reproduction and modification of solutions using genetic operators.
Valuation of obtained solutions.
Selection of individuals for the next generation.

end while

The problem encoding, i.e. the representation of the individuals (EA pop-
ulation members, called also solutions or agents sometimes) depends on the
solved problem. In the presented approach, the information on the transformed
graph is stored in an array of data, describing all connections among the graph
nodes (the neighborhood matrix). Each solution contains the variable length
arrays of vertices (spokes) attached to their hub. Hubs are also stored in the
variable length array of hubs. This method of encoding makes it easier and
faster to modify the selected clusters and to evaluate the graph parameters in
clusters, but also makes it difficult to perform crossover-like operations. In the
here presented solution we decided to give up the use of the crossover oper-
ator, which, in the permutation-type problems, does not bring new solutions
by building cells from other individuals, but only exchanges information about
node attachments. Instead, we use several, also ”intelligent”, methods of so-
lution transformation, which work efficiently and do not produce inadmissible
solutions (which would be a typical effect of applying the crossover operator).

A method of selecting and executing the specialized operators in all iterations
of the algorithm is required in order to apply these operators. It is assumed in
the approach used in Sta nczak (2003) that an operator generating good results
should be selected for use with a bigger probability and affect more frequently
the population than the other ones. The method of computing the respective
quality factors is based on reinforcement learning (Sutton and Barto, 1998) (as
used in machine learning).

The fitness function in the EA is closely connected with the problem specific
quality function, meant to evaluate the quality of solutions. The fitness function
evaluates the members of the population. It is a modified (scaled, translated,
etc.) problem quality function, prepared for computational use in the EA. The
quality function is responsible for obtaining the proper graph structure. In the
considered problems, the quality functions are usually the heuristic formulae,
obtained on the basis of experiments. It is common that they contain a penalty
part for the potential invalid or improper structure of the obtained solutions.
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4.2. The evolutionary method to uncover the hub and spoke struc-
ture in the transportation system

As already mentioned, the hub nodes can be explicitly assigned or only
their number may be imposed and then specific nodes are selected by the EA,
according to connections and weights of the transformed graph. As it was
previously indicated, the subgraph of hubs is an α-clique with as big value of
α as possible – ideally, hubs should constitute a complete subgraph, but when
connections between nodes are very sparse or are determined as existing junction
nodes (for instance: railway stations), it is admitted that the subgraph of hubs
constitute simply a connected graph. The spokes constitute groups of nodes
connected only with their hubs.

The representation of a member of the population contains: the table of
selected by EA or imposed hubs with lists of attached spokes, the vector of real
numbers, describing the knowledge, related to genetic operators, and the index
number of the operator chosen to modify the solution in the current iteration.

For the hub and spoke structure with predetermined number of hub nodes
the quality function promotes solutions where a rather small subgraph of hubs
is (almost) fully connected and the sets of spokes attached to their hubs have
medium sizes:

max Q =
1

m

n
∑

i=1

(

ki −

∣

∣

∣

∣

k − n

n
− ki

∣

∣

∣

∣

+
hi

n

)

(1)

n – predetermined number of hubs in the solution, m – number of connected
subgraphs in hub subgraph, ki – number of nodes (spokes) attached to the
ith hub, k – number of nodes in the whole graph, hi – number of connections
between hub i and other hubs.

The fitness function (1) promotes the spoke subgraphs, ideally of the size
almost equal to the average number of spokes in hub subgraph (in the case of
ki equal (k − n)/n - average number of spokes, the fragment |(k − n)/n − ki|
of the formula (1) is equal 0), assuring connectivity of hub subgraph (1/m –
for connected subgraph m should be 1), maximizing the number of connections
among hubs (hi/n) - ideally equal 1.

In this case, the set of genetic operators consists of: mutation – exchange
of randomly chosen nodes in different sets of spokes, relocation of a randomly
chosen node to a different set of spokes, and exchange of a randomly selected hub
for a randomly selected spoke – this operator is inactive when the hub nodes are
explicitly assigned. When one node (spoke) is to be moved to the spoke cluster
associated with another hub as a result of action of one of genetic operators, it
must first be checked whether this node is connected with the newly considered
hub. If it is not connected, the operation is canceled and the solution is not
modified, because we do not allow the EA to create inadmissible solutions. We
also allow to repeat the selected operator a randomly established number of
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times to increase its efficiency - in this way we implicitly introduce the multiple
versions of genetic operators.

A problem arises when the predetermined number of hub nodes is lower
than the minimum value assuring that all spoke nodes are attached to their hub
nodes. This problem can be solved in two ways. The first one allows the final
result to contain unattached nodes. The second increases the number of hub
nodes so as to obtain the connected graph of the transportation system. These
methods can be implemented using modified forms of quality function (1) with
the penalty part for unattached spoke nodes or additional hub nodes.

The hub and spoke structure with the minimum size of the hub subgraph
is a special case of the hub and spoke structure. It is computationally more
difficult to solve. The problem encoding is similar the case described above, but
the optimized fitness function (2) is different:

min Q = n ·m (2)

n – number of hubs in the solution evaluated, m – number of connected sub-
graphs in hub subgraph.

Fitness function (2) promotes the smallest set of connected hub nodes with
all spokes attached to their hubs. The genetic operators are in this case the
same as in the previous case, but are supplemented by an additional one: con-
catenation – an attempt to concatenate two sets of spokes (this operator tries
to minimize the number of the hub nodes).

5. Results of computer simulations

We used as testing examples graphs randomly generated by the yEd† ap-
plication. The results presented here are obtained from the analysis of a graph
with 16 vertices and 100 edges. The methods, described earlier, were used to
obtain the transformation of the described test graph to the hub and spoke
structure. As it turned out, the method, which finds the minimum number of
hubs, yielded a solution with just one hub, which is beyond doubt the smallest
number of hubs possible to cover the source graph. Other results come from
the method with the given number of hubs. The results are presented in the
following sections.

5.1. Results obtained for the minimum number of hub nodes

The evolutionary method that computes the minimum number of hubs is
prepared mainly to finding the lower limit on the feasible number of hubs for
the approach with the imposed number of hubs. The solution, obtained us-
ing this method, is rather useless for practical purposes, due to the possibility
of appearance of long distances to spokes and overloading of the only, in the
presented example, or, in general, rather small number of hubs.

†yEd is a freely available application for manipulating graphs.
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Figure 4. The minimum number of hubs found by EA

The hub and spoke structure obtained with the minimum number of hubs
is shown in Fig. 4. As it can be seen, the discussed graph contains a vertex
connected with all other vertices. Thus, the evolutionary algorithm has chosen
this specific structure as the best solution, based on only one hub vertex (11th)
with the rest of nodes being the spokes. In this and the further figures, the bigger
dots represent hub(s), the smaller represent spokes, the bigger numbers describe
the numbers of vertices, while the smaller represent the flows between nodes
(assuming that between every pair of connected nodes in the input graph there
is a transfer of one unit of some good per time unit). The thicker lines represent
connections between hubs, the thinner ones represent connections between hubs
and spokes, the grayed ones being the unused edges of the input graph.

5.2. The problem with the imposed number of the hub nodes

The considered graph with 16 vertices is rather dense, as it contains 100
edges out of 120 possible ones. There is a hub and spoke structure shown in
Fig. 5, obtained for the imposed number of two hubs. The results obtained for
the imposed numbers of 3, 4, and 5 hubs are presented, respectively, in Fig. 6,
Fig. 7 and Fig. 8. In all those cases the subgraph of hubs constitutes a clique,
which, as it was said earlier, is not, in principle, necessary in our generalized
hub and spoke structure, but if it is achievable, it is advantageous to obtain
such a structure and the here applied evolutionary method successfully found
it. The situation changes in Fig. 9, where the subgraph of hubs constitutes an
α-clique with α equal 5/6 - hub 10 is not connected with hub 1.

5.3. The analysis of the obtained results

The improvement of transfer times of the transformed logistic network, com-
pared to the input graph, depends on many factors: the structure and size of
the input graph, the time range (or distance) between vertices, the shuttling
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Figure 5. Results obtained for 2 hubs

Figure 6. Results obtained for 3 hubs

frequency, and the number of chosen hubs in the output graph. As the number
of possible factors that can influence the results is high, we have made several
assumptions to simplify this situation. For the considered graph we assumed
constant time distances between vertices, equal frequencies of movements of the
required transport means and full utilization of their capacity in the input graph
and at least the same in the transformed graph. In addition, the capacity of
edges, connecting hubs in the transformed graph, is sufficient for the increased
level of traffic. The data presented in Fig. 10 show particular results for the
ratio of average times of journey before and after graph transformation. Re-
sults greater than one represent shorter transfer times after transformation and
indicate time-wise better solutions. The results obtained are rather in line with
expectations. Transformation of the connection graph into the hub and spoke
version is profitable in these situations, in which connections are rather rare or
take place with low frequencies. In the case of frequent connections it is im-
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Figure 7. Results obtained for 4 hubs

Figure 8. Results obtained for 5 hubs

possible to improve the transportation system by turning it into the hub and
spoke structure. In such situation there also arises the problem of the need to
build connections with very high bandwidth (capacity) among hubs. The curves
of the obtained time improvements for several cases of hub numbers, presented
in Fig. 10, were prepared using average values of time improvements for all
possible connections.

As it can be seen, the improvements in the average travel time depend on the
number of hubs and on frequency of transfers. The curves for different numbers
of hubs do not cross in one point, but have different points of crossing the line,
corresponding to the value of 1, and different points of crossings between each
other. Generally, the biggest values of time improvement can be achieved for
the solution with one hub for the widest range of the frequency of transfers (0 -
0.6). It must be noted that in practical cases travel times may be significantly
longer in this case due to longer distances from the spokes to the only hub.
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Figure 9. Results obtained for 6 hubs

For frequency of transfers lower than 0.3, the time improvement monotonically
decreases with increasing number of hubs, but for frequencies between 0.3 and
0.6 such monotonicity does not appear, with the worst results obtained for 3
and 4 hubs, and better results for lower and higher numbers of them. This
phenomenon is probably caused by the number of changes of transport means
in the hubs. For small numbers of hubs (1, 2) the average numbers of changes
is small – mostly one change is necessary to reach the destination. For bigger
numbers of hubs (5 and more) an important part of graph nodes (in this case)
are hubs and again the average number of changes is small. The biggest number
of changes is observed for graphs with 3 and 4 hubs, which causes the smallest
improvement for those cases. This may be an indication, for more realistic
graphs, of existence of hub number subsets that are distinctly more or less
interesting from the point of view of the qualities of the hub-and-spoke or similar
solutions.

6. Conclusions

The here presented and analyzed model is an obvious simplification of the
real situations, but it provides the possibility of examining some typical trends
and dependences regarding the obtained hub and spoke structures - the prelimi-
nary method meant to optimise the public transport network. An improvement
of transport times in a logistic network cannot always be easily obtained. The
quality of the achieved solution depends on many factors, including the time
range (distance) between points and the frequency of shuttling. In this paper
we presented the exemplary results, obtained for the graph with 16 vertices, for
different imposed numbers of hubs, their best locations having been computed
by a specialized EA. The results presented were obtained, therefore, for a rather
small graph with a simplified set of parameters, these parameters of the exem-
plary graph chosen for better visualisation of results. The software developed
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Figure 10. Improvement of transfer times for different number of hubs and
frequencies of transfers

is, however, universal and can deal with bigger problems, described by more
diverse data. Altogether, the methods here presented appear to be useful for
designing and improving the real-life logistic and transportation systems.
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Mażbic- Kulma, B., Potrzebowski, H., Stańczak, J., Sȩp, K., (2008)
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Stańczak, J., Potrzebowski, H., Sȩp, K. (2011) Evolutionary approach
to obtain graph covering by densely connected subgraphs. Control and
Cybernetics, 41, 3, 80–107.

Sutton, R.S., Barto, A.G. (1998) Reinforcement Learning: An Introduc-
tion. MIT Press.

Talbi, E.-G, Bessiere, P. (1991) A parallel genetic algorithm for the graph
partitioning problem. Proceedings of the 5th International Conference on
Supercomputing, ACM. NY. 312–320.

Wilson, R.J. (1996) Introduction to Graph Theory Addison Wesley Long-
man.


