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Abstract: Highly-advanced systems, such as mobile telecom-
munication networks, characterized by increased complexity, make
maintenance routines difficult. Amount of data to be analyzed in a
short time during fault diagnosis of the mobile telecommunication
networks strongly justifies the need to automate alarm correlation
and root cause analysis. A major challenge in the establishment
of alarm correlation is to determine how to reflect the alarm flow
inertia. Thus, adequate temporal alarm pattern discovery meth-
ods should be used in fault diagnosis for correlation-related pur-
poses. Automatic temporal alarm pattern discovery allows fast gen-
eration of root cause analysis hypotheses and supports effective trou-
bleshooting of network problems. The process for fault propagation
throughout the network is manifested by the time lag between the
root-cause alarm and potentially linked symptoms, as well as weak-
ening correlation strength with time. The paper presents a novel
method for alarm correlation analysis in mobile telecommunication
networks, based on binary series analysis. The method allows for
discovery of causal relationship between alarms with dynamic alarm
correlation window size estimation.

Keywords: mobile telecommunication networks, fault diagno-
sis, root cause analysis, Dice similarity coefficients, Hamming dis-
tance, temporal pattern mining

1. Introduction

The major challenges during the troubleshooting of faults in a system as com-
plex as a telecommunication network are the amount of data and limitations
to analysis time. The volume of troubleshooting data during fault propagation
for large networks can easily exceed several dozens of alarms per second. In
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the case of faults that make an impact on network usability for a large num-
ber of end users, problem resolution time is crucial and very important for
service providers. There are numerous benefits of automating fault diagnosis
routines. By automating the troubleshooting process, the time needed for iden-
tifying a potential source of the problem may be considerably shortened, what
influences downtime and QoS (Quality of Service) figures for the network. Quick
troubleshooting facilitates satisfying the Customers’ SLAs (Service Level Agree-
ment). In addition, less skilled personnel can be involved in network operation
routines, thus reducing network maintenance costs (Samba, 2006).

In this paper we focus on the correlation between fault management events
(alarms), which is a part of fault localization phase of fault diagnosis. In order
to holistically cope with automation in fault diagnosis field, work can be pursued
in two separate areas, data format on the one hand and efficient data correla-
tion methods on the other. From the input data format perspective, the best
option for fast processing is the binary format. In our approach, we convert
raw data, collected by the Network Management System into binary format,
where the appearance of a certain alarm type at a given moment of time is
represented with ones. The data correlation method should be characterized
by fast processing as well as easy interpretation of the results. For identify-
ing the relationship between alarm events we use the Dice coefficient with two
derivative coefficients, Dice1 and Dice2, which can be interpreted as empirical
estimates of a conditional probability. They indicate how many occurrences of
a given alarm trigger other alarms to occur at the same time. The proportion of
positive matches in relation to all the occurrences of a given alarm is converted
into estimates of conditional probability, represented by Dice1 or Dice2 coeffi-
cients. As we can analyse this aspect pairwise from the perspective of the first
alarm in an analysed pair or of the second alarm in the pair, we also derive the
possibility to discover the direction of the relation. In order to reflect the alarm
flow inertia, which is manifested by the time lag between the root-cause and the
associated effect-alarms, we apply a discrete, bidirectional binary shift to the
binary series and calculate the respective coefficients for these modified input
sequences. The time correlation window is estimated based on the Hamming
distance between the analyzed binary series. In addition, we use a graph-type
structure to represent the causal relations of alarm events, with the level of
uncertainty expressed by the estimates of conditional probabilities as the fault
propagation model. The graph has been selected as fault propagation model due
to its intuitive and easy to analyse interpretation. The selected model makes it
possible to uncover alarm sequences, which are central to the goal of correlating
alarm events (Steinder and Sethi, 2004; Samba, 2006; Boulotas et al., 1994).

The paper is organized as follows. Section 2 briefly describes the Mobile
Telecommunication Network architecture and summarizes the role of the Root
Cause Analysis process in daily network maintenance. Section 3 introduces
similarity coefficients for binary series. In Section 4 we present alarm correlation
methodology, based on the calculation of Dice, Dice1, Dice2 coefficients and
Hamming distance for binary alarm data representation. Section 5 describes
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the experiments and the results achieved. Finally, concluding remarks are given
in Section 6.

2. Preliminaries and problem statement

A Mobile Telecommunication Network consists of two major functional subsys-
tems: Radio Access Network (RAN) and the Core Network (CN).

The RAN is responsible for managing radio resources, involving strategies
and algorithms for controlling power, channel allocation and data rate. It allows
the user terminal to access network services. The Core Network is mainly re-
sponsible for high level traffic aggregation, routing, call control/switching, user
authentication and charging. The entire network is managed by the OSS (Op-
erations Support System), sometimes also called NMS (Network Management
System) (Datta and Niharika, 2013).

The fault management domain of the network is characterized by several
definitions and notations that are central to this paper (Steinder and Sethi,
2004; Bouillard et al., 2013).

• Event is an exceptional condition occurring in the operation of hardware
or software in a managed network; an instantaneous occurrence at a time.

• Alarm is a notification about an event.
• Event correlation is the process of establishing relationships between
network events.

• Alarm correlation is the process of grouping alarms, which refer to the
same problem in order to highlight those, which indicate the possible root
cause.

• Root causes are events, that can cause other events, but are not caused
by other events; they are associated with an abnormal state of network
infrastructure.

• Error, Fault or Failure is a discrepancy between the observed or com-
puted value or condition and a true value or condition that is assumed to
be correct.

• Symptoms are external manifestations of failures (errors), which are ob-
served as alarms.

Fault diagnosis typically involves three processes: fault detection, fault local-
ization (also called fault isolation or root cause analysis) and fault identification
(testing of the possible hypotheses) (Steinder and Sethi, 2004).

As presented in Fig. 1, in the first stage of the entire process, fault detection
has to take place, i.e. the network element has to detect a malfunction and
send a notification (alarm) to the Network Management System or the Net-
work Management System itself should obtain the faulty status of the Network
Element. Fault detection is the process of collecting information, related to
the malfunction of the network components (network elements) in the form of
alarms (Steinder and Sethi, 2004). In the next step, the alarms are analysed
and potential fault hypotheses are isolated (Root Cause Analysis, Fault Lo-
calization, Fault Isolation). Fault localization or Root Cause Analysis (RCA)
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Figure 1. Visualization of fault diagnosis process (after Steinder and Sethi,
2004)

is the process of identifying the origins of the faults. It involves several steps
of correlating events (including alarms), which occurred over a certain period
of time, together with technical knowledge about the system under analysis
(Steinder and Sethi, 2004; Bhaumik, 2010). Finally, the proposed root cause
analysis hypotheses are tested and validated (fault identification). Furthermore
repairing actions can be taken (Steinder and Sethi, 2004; Bouloutas et al., 1994;
Bhaumik, 2010; Raghavan, 2015).

Each alarm event possesses five major attributes: alarm number, alarm de-
scription, alarm type, alarm severity, and name of the alarming object (the
network element). The alarm number is a unique number, which identifies a
fault. Typically, alarm numbers are divided into ranges (classes) representing
a specific subsystem, network element type and alarm type. The alarm de-
scription inside an alarm frame is a very short, compact description of the fault
that usually contains a few words. The alarm type can be specified as com-
munication, or, for example, equipment type. The alarm severity specifies the
importance of the fault and describes the class of an alarm. It can take one of
the following nominal values: critical, major, medium, minor or warning. The
name of the object is an object identification label, which clearly identifies the
network element, which sent the alarm event signal. An important note is that
in practice we are not dealing with signaling of single alarm events, but rather
with a class of alarms, which represent a certain category of problems, related
to a certain network element type.

The graph models, often referred to as fault propagation graphs, have been
found to be very useful in developing efficient diagnostic algorithms (Padalkar
et al., 1991). Let G = (V,E) denote a fault propagation model graph, where V
denotes the set of nodes (vertices), alarms in our case, and an edge (u, v) ∈ E
(arc) denotes the fact that an alarm represented by node u is linked with the
alarm represented by node v. If u and v form an ordered pair, u is the tail of the
arc and v is the head, then the arc is directed from u to v and is represented by an
arrowhead in v (u → v). Specifically, a directed arc represents a causal relation
between the alarm events. If (u, v) is unordered, the respective arcs are referred
to as undirected arcs and represented with a simple line. The characteristics
of arcs define the graphs themselves as either directed or undirected. It is
also possible for a graph to include both directed and undirected arcs, and in
such a case the graph is called partially directed or mixed (Bang-Jensen and
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Gutin, 2009; Diestel, 2005). In our case, the existence of the arc (edge) and its
configuration are defined by Dice, Dice1 and Dice2 coefficients, calculated on
the basis of a binary representation of an alarm occurrence.

In this paper, we consider several aspects of alarm correlation. The literature
of the subject proposes several approaches, dealing with alarm correlation. It
is clear that the telecommunications and IT domains share similar approaches
to coping with the alarm correlation task holistically. It is also clear that there
are developments in many domains with respect to the alarm (alert) correla-
tion area, such as Network Management Systems, Supervisory Control And
Data Acquisition field (SCADA), IT Security (Salah et al., 2013) as well as
Software Engineering, aimed at pinpointing the root cause of software failures
(Abreu et al., 2009). A special challenge in the telecommunication field is to
select a technique, which will cope efficiently with multi-layer complex mobile
networks that generate big amounts of symptoms (alarms). There is no well-
established taxonomy for alarm correlation techniques in the literature. We
analyzed two taxonomic approaches. In the classification proposed by Kim et
al. (2011), we distinguish four major categories of correlation methodologies.
These are: Rule-Based Alarm Correlation, Codebook-Based Alarm Correlation,
Case-Based Alarm Correlation and Mining-Based Alarm Correlation (Kim et
al., 2011). Rule-Based Alarm Correlation is a manual methodology of creat-
ing correlation rules for identifying the root causes from symptoms collected
from the network, based on expert knowledge and experience (Banerjee et al.,
2009). The Codebook-Based approach is also based on expert knowledge, but
it defines a binary matrix format to establish the relation between the problems
and symptoms. The appearance of a particular symptom for a given problem
is denoted by 1, while lack of relation between the symptom and the problem is
coded by 0. The symptoms can be later analysed in a causality graph, created
on the basis of the matrix (EMC White Paper, 2009; Jian and Ming, 2008). In
Case-Based Alarm Correlation we use past experience to solve current problems.
The methodology is based on good documentation and quick access to knowledge
database (Lewis, 1995). The Mining-Based Alarm Correlation methodology is
based on data mining algorithms, which are able to isolate correlated alarms
(alarm clusters) and propose root cause analysis hypotheses automatically. The
main challenge in this approach is the processing time for big alarm data sets
(Jukic and Kunstic, 2009; Vaarandi, 2003, 2005). Among the remaining chal-
lenges in this methodology, the main problem is the selection of the appropriate
lag between events to establish the correlation between symptoms and the asso-
ciated problems. There are already several publications, proposing probabilistic
solutions to this specific problem (Expectation Maximization Based - likelihood
maximization, for example). However, discovering dependencies among multi-
ple events and the accuracy of the relations discovered remain an open topic for
future work (Zeng et al., 2014). Another classification of correlation techniques
is provided by Salah et al. (2013) where the authors propose a comprehensive
taxonomy that takes into account the number of data sources, the type of the
application (NMS, IT Security, SCADA), the correlation method and the data
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distribution architecture type (centralized, distributed, hierarchical). According
to this proposal, correlation analysis methods are divided into three categories:
Similarity-Based methods, Sequential-Based methods and Case-Based meth-
ods. The Similarity-Based methods cluster and aggregate alerts based on the
similarity of their attributes. In the Sequential-Based category, the methods
correlate the alerts by discovering causal relations among them. This group
of methods includes Graph-Based methods, Codebook-Based methods, Markov
models, as well as Bayesian networks and neural networks. According to this
taxonomy, Case-Based methods include all the methods that rely on the ex-
istence of a knowledge-based system which stores past experiences, previously
observed scenarios and solutions. Following the taxonomy proposals presented
above, our alarm correlation methodology based on Dice, Dice1, Dice2 coef-
ficients and Hamming distance can be classified as Mining-Based/Sequential-
Based method.

3. Similarity coefficients for binary series. Characteristics

of the Dice, Dice1, Dice2 coefficients and Hamming

distance

Binary sequences have proven their usefulness in many fields. Binary repre-
sentation of the data makes it possible to calculate similarity or dissimilarity
(distance) using relatively simple metrics. Thanks to the binary representation
of the data all operations on respective series are very effective and fast from the
processing perspective. The metrics of similarity for binary series are used in
many areas like ecology (Jaccard, Forbs), biology (Jaccard, Dice-Sorensen, Kul-
czynski, Driver-Kroeber-Ochiai), ethnology, taxonomy, geology, image recovery,
chemistry, biometric patterns identification and many others (Choi et al., 2015;
Hubalek, 1982; Warrens and Joost, 2008; Jousselme and Maupin, 2012; Wijaya
et al., 2016). An important question to be answered in a number of implemen-
tations is how similar binary sequences are. This explains why so many different
similarity or dissimilarity coefficients have been proposed and analysed, see for
example Choi et al.(2015) or Hubalek (1982). In this paper the Dice, Dice1
and Dice2 similarity coefficients are used.

To be more precise, let us denote by E a finite set of all alarms and assume
a discrete time scale with the unit of time set to 1 second. Next, for any alarm
ê ∈ E define a binary sequence e = (e1, e2, ...) in such a way that ek = 1
if the alarm ê occurred at time k and ek = 0 otherwise. Now, to evaluate
the conditional probability P (ê|f̂) concerning two alarms ê and f̂ , a suitably
selected similarity coefficient for binary sequences may be used.

Let us consider two binary sequences e = (e1, . . . , eN) and f = (f1, . . . , fN ),
and define their scalar product in the standard way, i.e.

e • f =

N∑

k=1

ekfk. (1)
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It is easy to notice that e • f is equal to the number of positions on which
both sequences are set to 1. In the context of alarm correlation, this may be
interpreted as the number of times when both alarms (alarm classes), ê and

f̂ , occurred simultaneously. Next, assume that ē and f̄ denote the sequences
obtained from e and f in such a way that all ones are replaced by zeros and
all zeros by ones. Then the following four variables summarize all information
contained in the sequences e and f :

• a = e • f - the number of positions, on which elements of both sequences
are equal to 1

• b = ē • f - the number of positions, on which elements of f are equal to 1
whereas elements of e are equal to 0

• c = e • f̄ - the number of positions, on which elements of e are equal to 1
whereas elements of f are equal to 0

• d = ē • f̄ - the number of positions, on which elements of both sequences
are equal to 0

The above four variables can be now used to construct the so-called contingency
table:

Table 1. Contingency table

f

1 0

e
1 a = e • f b= ē • f

0 c= e • f̄ d= ē • f̄

The Dice, Dice1 and Dice2 similarity coefficients are defined as:

SDice =
2 ∗ a

2 ∗ a+ b+ c
. (2)

SDice1 =
a

a+ b
. (3)

SDice2 =
a

a+ c
. (4)

The Dice coefficients may be interpreted as the empirical estimates condi-
tional probability of an alarm e given the alarm f , or an alarm f given the
alarm e (Warrens and Joost, 2008). This conditional probability characteristic

P (ê/f̂) or P (f̂/ê) is the basis of our methodology. The Dice coefficient was
proposed for binary variables by Gleason (1920), Dice (1945), Sorenson (1948),
Nei and Li (1979), and popularized by Bray (1956), Bray and Curtis (1957) and
Warrens and Joost (2008). The coefficient is a symmetrical, two-way similarity
coefficient, and takes the values from the interval [0, 1]. It compares the number
of coincident appearances of 1s (”1” ”1” situation) in the analysed binary series
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to the cumulative total number of appearances of 1s in both binary sequences.
The Dice1 and Dice2 coefficients were proposed by Dice (1945), Wallace (1983),
and Post and Snijders (1993) ( see Warrens and Joost, 2008). Coefficients Dice1
and Dice2 are asymmetrical coefficients, which estimate conditional probability
between a pair of identical length binary series. They take values from the inter-
val [0, 1]. These coefficients compare the number of coincident occurrences of 1s
in the analysed binary series to the total number of occurrences of 1s in analysed
binary series. The Dice1 coefficient compares the coincident occurrences of 1s
to the total number of the occurrences of 1s in the first binary series, while the
Dice2 coefficient estimates the relation to the total number of occurrences of 1s
in the second binary series. An additional advantage of Dice coefficients is the
simplicity and the speed of computation, which is in line with our main goal
(Hubalek, 1982; Warrens and Joost, 2008). The Dice coefficient-based method-
ology can be considered as methodology for correlating binary representations of
the appearance of alarms and it can be used as discovery engine for probability
relations in fault propagation models.

Apart from the group of normalized similarity coefficients there are a lot
of unnormalized distance (dissimilarity) measures for binary series. One of
the examples of very popular dissimilarity measure is the so-called Hamming
distance, which is widely used in information analysis. This distance metric
is named after the American mathematician Richard Hamming (1915-1998).
The Hamming distance is defined as follows, taking into consideration the
contingency table of Table 1:

DHamming = b+ c . (5)

It expresses the number of different values of bits in the same position in
a pair of identical length binary series. The Hamming distance measures the
number of configurations of bits where ”1” and ”0” are placed in the same
position in the analysed binary series (”0” ”1” ; ”1” ”0” cases) (Niederreiter
and Winterhof, 2015).

4. Alarm correlation identification. The methodology

The goal of the methodology is fast identification of alarms, which are cor-
related, among big alarm data sets. The method should be able to evaluate
causal relation between correlated alarms, taking into consideration an inertia
of the alarm flow. The relation should be represented by a strength measure,
which takes values from the [0, 1] interval. Finally, there should be a graphical
representation of the results, shown in the form of a graph structure.

The methodology is applied to gathered data and generates on demand alarm
dependencies from the analyzed samples. The RCA (root cause analysis) conclu-
sions drawn can be treated as the snapshot of current FM (fault management)
situation or can be used for the future as learned alarm patterns. This approach
is similar to the pattern recognition concept, where we recognize patterns in the
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analyzed data set and use predefined data subsets for further analysis and data
classification.

For this purpose, a collection of data, describing incidents and alarms in a
real telecommunication network is used. For all the alarms, observed during a
fixed time interval, the moments of time when they occurred have been recorded.
Information gathered in this way, after conversion to a binary format, will make
it possible to estimate the unknown relation measure and to infer possible alarm
correlations. Other information, regarding collected alarms i.e.: alarm severity,
alarm type, name of the alarming object, including a topology reference, are
used in the fault localization process for validating the RCA hypotheses.

The Dice coefficients are interpreted as empirical estimates of conditional
probability of there being a relation between the alarms. Taking into account
the individual characteristics of the coefficients, in the first stage we propose to
use the Dice coefficient for preliminary identification of the possible correlation
of the alarms. Based on the experiments we selected the value of 0.2 as Dice
coefficient threshold for detecting a possible correlation between two alarms.

After isolating potential alarm candidates for correlation, Dice, Dice1 and
Dice2 coefficients are used to evaluate the strength and the direction of the
correlation between the binary representations of the occurrence of alarms. In
other words, we use Dice coefficient as a preliminary correlation detector, which
is followed by the application of Dice, Dice1 and Dice2 coefficients in order to
obtain more precise conclusions about correlations.

A very important aspect to note is that Dice, Dice1 and Dice2 coefficients
can have the same value. This is the case of binary series with the same number
of occurrences of 1s/0s. If Dice, Dice1 and Dice2 coefficients have the same
value, the direction of the relation cannot be determined by the algorithm. In
such a situation, the value of the coefficients only approximates the strength
of the relation and is represented by undirected arc in the fault propagation
model graph. In this specific case, the expert needs to evaluate this correlation
hypothesis.

For binary series with a different number of 1s/0s (asymmetrical binary
series), Dice1 and Dice2 coefficients are used for the evaluation of the strength
and the direction of the relation.

If the first binary alarm representation in an analysed pair is the root-cause,
the Dice1 coefficient will have higher value than Dice and Dice2 coefficients
(Dice1 > Dice ∧Dice1 > Dice2). The value of Dice1 coefficient will indicate
the direction and the strength of the relation. Analogously, if the second binary
alarm representation in an analysed pair is the root-cause, Dice2 with its value
will be used for the identification of the direction and the estimation of relation
strength (Dice2 > Dice ∧Dice2 > Dice1).

The alarms linked to a given incident usually come with a certain delay,
which is related to the reaction time of interconnected network elements for a
problem. A visualization of the alarm correlation is presented in Fig. 2. An
important aspect to be noted is that an alarm event in our approach does not
have any duration. The alarm representation takes the value of ”1” only at the
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time instant when it is generated.

Alarm 1

Alarm 2

Alarm 3

Alarm 4

t1

t2 t2 + 1

t3 t3 + 2

t[s]

t[s]

t[s]

t[s]

I

II

III

Figure 2. Visualization of alarm correlation, backward (positive) shift example:
I) Alarm 1 and Alarm 2 correlated without time shifting. II) Alarm 1 and Alarm
3 correlated with backward (positive) time shift by 1 second. III) Alarm 1 and
Alarm 4 correlated with backward (positive) time shift by 2 second

In order to reflect the inertia of the alarm flow, which is manifested by the
time lag between the root-cause alarm and the potential linked effect alarms,
we model the correlation with the Hamming distance (Hd) between binary
series, representing the alarm occurrence time. We use the Hamming distance
as the correlation level control function, which helps our correlation engine,
based on rolling D̃ice coefficients to evaluate how a temporal shift (τ) influ-
ences the correlation. In order to detect the occurrence of a correlation in the
time function and simulate the decreasing value of the relation strength with

the increasing applied delay (τ), we calculate a weighted average of ˜Dice(τ),
˜Dice1(τ), ˜Dice2(τ) coefficients for the given time lag interval. We implement

the calculation of ˜Dice(τ) (similarly ˜Dice1(τ), ˜Dice2(τ)) coefficients for binary
series, shifted in time by τ (temporal shift implementation).

The model expressions of D̃ice, D̃ice1, D̃ice2 coefficients are presented below:

D̃ice ≃
1

N

∑

τ

( ˜Dice(τ) ∗ (1.5)−|τ |) (6)
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D̃ice1 ≃
1

N1

∑

τ

( ˜Dice1(τ) ∗ (1.5)−|τ |) (7)

D̃ice2 ≃
1

N2

∑

τ

( ˜Dice2(τ) ∗ (1.5)−|τ |) (8)

∀( ˜Dice(τ) > 0 ∧ H̃d(τ) ≤ H̃d(0)) (9)

∀ ˜Dice(τ) :
˜Dice(τ) ∗ (1.5)−|τ |

∑
τ

˜Dice(τ) ∗ (1.5)−|τ |
> 0.1 (10)

∀ ˜Dice1(τ) :
˜Dice1(τ) ∗ (1.5)−|τ |

∑
τ

˜Dice1(τ) ∗ (1.5)−|τ |
> 0.1 (11)

∀ ˜Dice2(τ) :
˜Dice2(τ) ∗ (1.5)−|τ |

∑
τ

˜Dice2(τ) ∗ (1.5)−|τ |
> 0.1 (12)

where N,N1, N2 are the numbers of respective coefficients fulfilling conditions
(9) through (12).

An important remark is that we take into consideration only weighted Dice
coefficients, which represent at least 0.1 of the overall weighted average value.

In the method we allow only for the shift, which does not increase the
Hamming distance, what is represented by the expression (9). On the other
hand, we can also interpret the Hamming distance as a sort of ability for cor-
relation after we apply the lag τ . The ability is represented by the number
of different bits in the same position in the analysed binary series. The moti-
vation behind this approach is that the difference of bits in the same position
enables the conditions to achieve the correlation after applying a temporal shift
between the binary series. In addition, the weakening correlation effect between
the alarms in time function is represented by the rolling exponentially-weighted
average.

We selected the exponential function of the form

f(τ) = coefficient(τ) ∗ (1, 5)−|τ |

for our model as we aim to achieve the weakening effect on the level of 0.2 for
the lag applied equal τ = 4 in relation to the full correlation without the lag
applied (coefficient(4) = 1 ⇒ f(4) = 0.1975).

The algorithmic scheme for ˜Dice(τ), ˜Dice1(τ), ˜Dice2(τ) coefficients calcu-
lation is presented in Fig. 3.

Because the binary shift for the binary series under analysis can be imposed
symmetrically (bidirectionally), we apply the shift in both directions. The max-
imum value of the shift (τ) for the binary series is determined by the Hamming

distance H̃d(τ) and the value of ˜Dice(τ) coefficient. We use the values of τ
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InitHd = Hd(0)
τ = - n

InitHD = 0
D̃ice = 1
D̃ice1 = 1
D̃ice2 = 1

˜Dice(τ)

H̃d(τ)

˜Dice(τ)

H̃d(τ)

Shift
pairs
by τ

˜Dice(τ) > 0

H̃d(τ) ≤ InitHd

˜Dice(τ)
˜Dice1(τ)
˜Dice2(τ)

τ = τ + 1

τ = n

D̃ice
D̃ice1
D̃ice2

yes

no

yes

no

yes

no

Figure 3. Calculation of ˜Dice(τ), ˜Dice1(τ), ˜Dice2(τ) coefficients with Hamming

distance H̃d(τ) control, the algorithmic scheme
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from the interval [−n;n], such that do not increase the initial value of the

Hamming distance InitHd = H̃d(τ = 0) for positive values of ˜Dice(τ) coeffi-

cient ( ˜Dice(τ) > 0). The absolute, maximum value of τ fulfilling the criteria,
specified by the expression (13) below, determines the maximum value of the
shift applied and defines the correlation window (14):

{τ : τ ∈ [−n;n] ∩ Z, (H̃d(0) ≥ H̃d(τ), ˜Dice(τ) > 0) (13)

τmax = max(| τ |) (14)

where n represents the length of the analysed binary series and Z is the set of
integer values.

In other words, we use weighted average in order to represent the mean value
of the Dice coefficients, calculated in specified correlation-window based on the
Hamming distance. By using the rolling exponentially weighted average, we

scale the contribution of ˜Dice(τ), ˜Dice1(τ), ˜Dice2(τ) coefficients to the total
mean depending on the time lag applied to analysed binary series. In addition,
for RCA hypotheses generation we select only the most significant components
for the rolling D̃ice, D̃ice1, D̃ice2 coefficients calculation, as expressed by (10),
(11), (12).

Thanks to the Hamming distance and the Dice coefficients characteristics
it is sufficient to calculate the Dice coefficients only for binary series with no
zero value of the Hamming distance. For the binary series with the initial
Hamming distance of zero (without applying binary shift) we have full correla-
tion expressed only by the 1s in the same position in the analysed binary series.
In this case there is no need for further analysis and the alarms can be classified
as correlated.

The entire RCA methodology can finally be summarized in Fig. 4.

5. Experiments and results

The proposed approach has been applied to real data obtained from one of
the main telecommunication operators. The network under analysis consists of
a variety of different 2G, 3G and 4G network elements. The overall data set
contains information about 1 440 813 alarm events, gathered from July 2014 to
May 2015. For each alarm, five attributes are stored, the time of occurrence
and a numerical ID which depends, in a unique way, on the source of the alarm,
its priority, severity and a brief description of what has happened. All the
attributes are used in the final RCA hypotheses validation.

Numerical experiments were carried out on a PC with Intel(R) Core(TM)
i7-4600U 2.1 GHz processor, 16 GB main memory and 64-bits MS Windows
operating system. We used the R package environment version 3.3.1. The per-
formance of the Dice-based alarm correlation methodology has been evaluated
by executing tests on independent sets of collected alarms. We tested the speed
of the algorithm by measuring correlation processing time for alarm subsets ex-
tracted from selected samples. The subsets contained 10, 100, 1 000, 10 000
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Input data conversion to
binary format

Calculation of D̃ice, D̃ice1, D̃ice2
with Hamming distance control

pairwise for the entire
alarm data set

Initial correlation identification
by D̃ice coefficient (D̃ice ≥ 0.2)

Correlation strength
and direction discovery
by D̃ice, D̃ice1 and
D̃ice2 coefficients

Generating Fault Prop-
agation Model graph

Root Cause Analysis

Figure 4. Root Cause Analysis based on D̃ice, D̃ice1, D̃ice2 coefficients
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and 20 000 alarms. As shown in Table 2 and in Fig. 5, for four samples the
correlation processing time for all the samples with up to 1 000 alarm events
is around 10 seconds. In the worst case we achieved 1176 seconds correlation
processing time for the sample with 20 000 alarms.

Table 2. Dice correlation methodology performance

Alarm
events
number

Sample1
correlation
time [s]

Sample2
correlation
time [s]

Sample3
correlation
time [s]

Sample4
correlation
time [s]

10 1 2 1 2
100 2 2 2 3
1000 6 12 7 9
10000 28 446 60 89
20000 374 1176 121 300

101 102 103 104

100

101

102

103
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Sample1
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Figure 5. Performance of Dice-coefficient-based alarm event correlation method-
ology

The proposed Dice-based algorithm was even able to construct a large FPM
consisting of several thousands of alarms, e.g. up to 64 000 alarms in a single
sample. For clarity reasons, we analyze a part of the generated FPM containing
seven alarm events and link them with arcs, as this is presented in Fig. 6.

This is a 2G technology alarm event correlation example. The alarm events
attributed to this case are presented in Table 3. For all the event pairs, which
fulfill the correlation criteria D̃ice ≥ 0.2, the D̃ice, D̃ice1 , D̃ice2 coefficients,



206 A. Maździarz
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Figure 6. 2G Technology FPM example

the Hamming distance (InitHD) and the applied maximal temporal shift τmax

values are presented in Table 4.

Table 3. 2G technology alarm events correlation example - alarm events at-
tributes

Alias Alarm Event.Network Element
Occurrence

time

A TRX FAULTY.PLMN-PLMN/BSC1/BCF1
46747
46748

B TRX FAULTY.PLMN-PLMN/BSC1/BCF1/BTS4/TRX-26 46747
C TRX OP. DEGRADED.PLMN-PLMN/BSC1/BCF1/BTS1/TRX-2 46748
D BTS OP. DEGRADED.PLMN-PLMN/BSC1/BCF1/BTS2 46748
E BTS OP. DEGRADED.PLMN-PLMN/BSC1/BCF1/BTS1 46748
F TRX OP. DEGRADED.PLMN-PLMN/BSC1/BCF1/BTS2/TRX-8 46748

In this example we present the correlation related to TRXes (transceivers).
The alarm, which is reported by the Network Element of the type BCF (BCF1)
”TRX FAULTY”, is caused by alarms ”TRX OP.DEGRADED” on two TRXes
connected to separate BTSes (sectors). The ”BTS OP.DEGRADED” alarms
are also the consequence of the TRX problem.

In this case, the Dice-based methodology generated a partially directed FPM
graph. We have a set of directed arcs, for which D̃ice 6= D̃ice1 6= D̃ice2 and
a set of undirected relations, for which D̃ice = D̃ice1 = D̃ice2. The entire set
of alarm events should be isolated as one correlation hypothesis. The example
shows the accuracy and reliability of the methodology. The alarm event A is the
only node in the FPM graph to which the directed arcs converge for all other
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Table 4. D̃ice, D̃ice1, D̃ice2 coefficients, initial Hamming distance and τmax

values for 2G technology example

Alarm Event.1 Alarm Event.2 D̃ice D̃ice1 D̃ice2 InitHD τmax

A E 0.55 0.42 0.83 1 1
A C 0.55 0.42 0.83 1 1
A D 0.55 0.42 0.83 1 1
A G 0.55 0.42 0.83 1 1
A B 0.55 0.42 0.83 1 1
E C 1 1 1 0 0
E D 1 1 1 0 0
E F 1 1 1 0 0
E B 0.67 0.67 0.67 2 1
C B 0.67 0.67 0.67 2 1
C D 1 1 1 0 0
C G 1 1 1 0 0
D B 0.67 0.67 0.67 2 1
D G 1 1 1 0 0
F B 0.67 0.67 0.67 2 1

Figure 7. The correlation method visualization for alarm events A and B from

the 2G technology example, the Hamming distance (Hd) and ˜Dice(τ) coeffi-
cient in the function of lag τ

alarm events in the sample. The alarm event A is caused by alarm events B,
C, D, E, F with the probability of 0.83. From the event time occurrence data,
presented in Table 3, it is clear that the relation between the events is established
on the basis of the coincidence of the occurrence of events A, B, C, D, E, F. The
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alarm event A occurred twice and it has been classified as the effect of the events
B, C, D, E, F. In this example, we can see the initial Hamming distance value
on the level of 1 and also the same value of the time lag τmax applied. In Fig.
7 we present the values of D̃ice coefficient together with Hamming distance in
the function of temporal lag applied for the correlation of alarm events A and
B from the 2G technology example. We can see that two values of the D̃ice
coefficient are taken into consideration for estimating the correlation. It is the
D̃ice coefficient for the lag value of 0 and the D̃ice coefficient for the time lag
of 1.

The methodology was able to discover multiple undirected relations having
probability of 0.67 between the events with a single occurrence within the 2-
second time window. In this case, the initial Hamming distance takes the value
of 2 and the applied temporal lag for this case is 1. Finally, the alarm events,
which occurred at the same time, share the same correlation probability at the
level of 1 without an established direction of the relation. In these circumstances,
the initial Hamming distance takes the value of 0 and there is no temporal lag
applied by the algorithm.

In the second example, we present a more complex 3G technology case, where
two alarm events occurred in the data set many times. Alarm events occurrence
times are presented in Tables 5 and 6. It is clear that manual correlation of these
events would be very challenging, due to the amount of data (occurrence time
references) to be correlated. From the technical point of view, we can see that
3G WCEL1 reports CELL OPERATION DEGRADED, most probably due to
WBTS1 problem with the license, required for a WBTS operation. In this case,
we obtained an undirected FPM graph with the relation strength 0.22. All three
coefficients D̃ice, D̃ice1, D̃ice2 have the value of 0.22 in this case.

In this example, the initial Hamming distance takes the value of 112 due to
number of different time occurrences of the alarms. In this case, the maximum
time lag applied is 2 seconds. In Fig. 8 we can see that only three values of
D̃ice coefficient are taken into consideration for the alarm correlation in this
case, the value for τ = 0, the value for τ = 1 and the value for τ = 2, as only
these values fulfill the requirement of not increasing the value of the Hamming
distance with a positive, significant value of D̃ice coefficient.

6. Conclusions

The alarm correlation methodology, based on the exponentially weighted aver-
age of Dice, Dice1 and Dice2 coefficients, shows satisfactory accuracy, speed
and reliability of generation of correlation hypotheses. In the here presented
methodology, the Hamming distance is used to control the maximal value of
the temporal shift τ to be applied in order to capture the correlation between
the alarm events. The methodology generates the reasonable Fault Propagation
Models for the Mobile Telecommunication Network. It is very effective from the
computational point of view, and it is possible to run the algorithm on a PC.
The proposed approach of using the Dice, Dice1, Dice2 coefficients with the



Temporal alarm pattern discovery in mobile telecommunication networks 209

Table 5. 3G technology alarm events correlation example - attributes of the
alarm event 1

CELL OPERATION DEGRADED.RNC1/WBTS1/WCEL1
320 450 782 834 964 1265 1519 1677 1924 2030 2197 2347
2434 2523 2671 2795 2849 2961 3073 3287 3413 3636 4412
4568 5408 5907 6064 7812 8665 8746 16401 17537 18104
19180 19339 1948819590 19827 19970 20070 20294 20457
20637 20814 20942 21290 21767 21856 22068 22344 22609
22791 22864 23009 23200 23286 23376 23440 23516 23769
23839 23972 24039 24305 24574 24728 25957 85821 86346

Table 6. 3G technology alarm events correlation example - attributes of the
alarm event 2

BTS RESET NEEDED TO ACTIVATE A LICENSE.RNC1/WBTS1
320 452 784 836 965 1267 1520 1678 1924 2031 2198 2349 2434 2524
2672 2796 2850 2962 3074 3288 3414 3637 4413 4569 5409 5908 6065
7813 8666 8747 16402 17538 18104 19182 19340 1949019591 19827
19972 20071 20295 20458 20637 20814 20943 21291 21769 21856
22068 22345 2261122793 22864 23011 23202 23287 23379 23442
23517 23771 23841 23972 24041 24305 24575 24728 25958 85822
86347

Hamming distance as temporal lag estimation for generating Fault Propaga-
tion Models works very efficiently for models with several thousand symptoms
(alarms).

The values of conditional probability estimates allow us to filter the most
probable symptoms for network problems with the right priorities. The binary
temporal shift introduced into the algorithm at the level, which does not increase
the Hamming distance, provides a good model of the time correlation window
in mobile telecommunication networks and makes it possible to correlate alarms
more accurately. The exponentially weighted average of Dice, Dice1 and Dice2
coefficients simulates reasonably well the impact of alarm propagation time on
the value of correlation strength.

The methodology is universal and works regardless of the mobile technol-
ogy, which is used in the network (2G,3G,4G). It has been established that
the methodology provides also a good base for constructing alarm correlation
patterns. The patterns obtained could be used as predefined alarm correlation
rules for reducing the alarm correlation effort in the future for alarm data sets
for a given technology.

Comparing the methodology proposed here with the state-of-the-art ap-
proaches is a separte challenge, due to the lack of standard strategies for such
comparison. Evaluating the performance of alert correlation techniques, as well
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Figure 8. 3G Technology FPM example, D̃ice coefficient, Hamming distance
(Hd) in the function of temporal lag τ

as any other aspect of the correlation, would require well established bench-
marking. This point was also made by Abren et al. (2009). We propose six
alarm correlation method attributes to be taken into consideration for compar-
ison purposes: alarm correlation accuracy, which is also related to the level of
alarm reduction (clustering), execution time scalability, correlation threshold
calibration requirement, possibility of applying correlation time-window, and,
finally, the ability to discover causal relationship between the alarm events. We
compare Dice-based methodology with Similarity-based family of methods, re-
ferring to the Temporal-based methods and to the Sequential-based methods,
where we use Bayesian Networks (BN) as the category representation.

Regarding the alarm correlation accuracy, we found that any Similarity-
based method accuracy requires a priori selection of similarity threshold based
on the experts’ knowledge. In that case the accuracy depends on the experience.
It is possible to apply optimization algorithm for the Similarity-based approach
like cluster analysis in timeline, taking into consideration alarm occurrence time.
In this approach, optimization can be seen as a variance minimization task
across the entire data set for the selected number of alarm clusters. This type
of method, though, has significant performance problems for big data sets and
requires additional actions to reduce the input data set size (Maździarz, 2018).
In the case of Bayesian Networks, the unsupervised discovery of the relation
between alarms requires appropriate representation of alarm occurrence (high
occurrence frequency). This method will not be able to discover correlation
between seldom events. It is possible to incorporate expert knowledge in this
method, as well, in the form of a priori conditional probability data (CPT
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tables), but the accuracy in this case will also rely on the experts’ knowledge.
Regarding the method execution time scalability, based on the experiments we
set up the target value of 10 seconds correlation time for 1000 alarms. This
requirement is fulfilled by most of the similarity-based methods as they work on
simple metric calculation for alarm attributes and compare the derived value of
the metric with a certain threshold level. The Dice-based method performance
depends strongly on the density of the data. For some of the samples, the
threshold limit of 1000/10, as mentioned before, has been slightly exceeded.
In the case of Bayesian Networks the performance of the method is the worst
compared to other methods.

Practical implementation of BN for big data sets is difficult. Each of the
alarm correlation methods requires a so-called method calibration in order to
validate the correlation threshold. Regarding the correlation methods, where
time is the major correlation attribute, the correlation time-window plays fun-
damental role in the correlation process. It is possible to apply the correlation
time-window in any of the comparable methods, but optimizing the time-window
size is a big challenge. In case of the Dice-based method we use the Hamming
distance for estimating the time-window size. In other methods, this aspect re-
quires significant optimization effort (Maździarz, 2018). Regarding the ability to
discover the causal relation between the alarms, it is possible in the Dice-based
method as well as in the Sequential-based methods. The Similarity-based meth-
ods do not provide the possibility to discover the causal relationship between
the alarm events. A summary of comparison is shown in Table 7.

Table 7. Alarm correlation methods comparative summary

Dice-based

Similarity-
based
(Temporal-
based)

Sequential-
based
(Bayesian
Networks)

Alarms reduction
(clustering)

+ + +

Accuracy high medium medium
Execution time
scalability
[1000/10]

medium high low

Scores/correlation
threshold

+ + +

Correlation
time-window

+ + +

Causal relationship
discovery - graph model

+ - +

In the future, we will extend our model to consider also other alarm at-
tributes, such as topology for alarm events correlation in mobile telecommuni-
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cation networks. We will validate the usage of other binary similarity coefficients
for correlating alarm events. Alarm event interrelations other than pairwise de-
pendencies will also be in the scope of our research.
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